research communications
I intercalation compound: catena-poly[[silver(I)-μ-N-(pyridin-3-ylmethyl)pyridin-3-amine-κ2N:N′] hexafluoridophosphate acetonitrile disolvate]
of an AgaDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea, and cResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr, kmpark@gnu.ac.kr
The 11H11N3)]PF6·2CH3CN or {[AgL]·PF6·2CH3CN}n, L = N-(pyridin-3-ylmethyl)pyridin-3-amine, comprises one AgI atom, one L ligand, two acetonitrile solvent molecules and one PF6− anion disordered over two orientations in a 0.567 (11):0.433 (11) ratio. Each AgI atom is coordinated by two pyridine N atoms from two L ligands in a slightly distorted linear coordination geometry [N—Ag—N = 170.55 (8)°]. Each L ligand bridges two AgI ions, resulting in the formation of a zigzag chain propagating along the [101] direction. In the crystal, Ag⋯Ag contacts [3.3023 (5) Å] and intermolecular π–π stacking interactions [centroid-to-centroid distance = 3.5922 (15) Å] between the pyridine rings link these chains into a corrugated layer parallel to the (01) plane. The layers are stacked with a separation of 10.4532 (5) Å, and acetonitrile solvent molecules and PF6− anions as guests are intercalated between the layers. The layers are connected through several N/C—H⋯F hydrogen bonds and P—F⋯π interactions [F⋯ring centroid = 3.241 (8) Å] between the layer and the intercalated guests and between the intercalated guests, forming a three-dimensional supramolecular network.
in the title compound, [Ag(CKeywords: crystal structure; silver(I); dipyridyl-type ligand; intercalation; Ag⋯Ag interaction; hydrogen bonding; π–π interactions.
CCDC reference: 1575393
1. Chemical context
Silver coordination polymers based on dipyridyl-type ligands have been widely exploited due to the intriguing topologies and the fascinating properties caused by a variety of coordination geometries and d10 electronic configurations of the AgI ion (Leong & Vittal, 2011; Moulton & Zaworotko, 2001; Wang et al., 2012). In particular, AgI ions have a preference for a linear two-coordinate geometry and can serve to link bridging dipyridyl-type ligands to form polymeric chains. Based on this concept, we have focused our attention on the development of one-dimensional AgI coordination polymers with dipyridyl-type ligands. Up to date, we have reported several AgI coordination polymers with interesting topologies involving zigzag (Moon et al., 2016), helical (Moon et al., 2014, 2015) and double helical (Lee et al., 2015) structures. In an extension of our research, the title compound was prepared by the reaction of silver(I) hexafluoridophosphate with a dipyridyl type-ligand, namely N-(pyridin-3-ylmethyl)pyridin-3-amine (L), synthesized according to a literature procedure (Lee et al., 2013). Herein, we report on the of the title compound in which lattice solvent molecules and anions as guests are intercalated between the layers formed by intermolecular interactions between zigzag –(Ag–L)n– chains.
2. Structural commentary
The molecular components of the title structure are shown in Fig. 1. The comprises one AgI atom, one L ligand, two acetonitrile solvent molecules, and one hexafluoridophosphate anion disordered over two orientations in a 0.567 (11):0.433 (11) ratio. The silver(I) atom is coordinated by two pyridine N atoms (N1 and N2) from two symmetry-related L ligands, leading to the formation of an infinite zigzag chain propagating along the [101] direction. Thus, the AgI atom is two-coordinated in a slightly distorted linear coordination geometry [N1i—Ag1—N2 = 170.55 (8)°; symmetry code: (i) x + , −y + , z + ; Table 1]. This distortion from linear geometry may be caused by Ag⋯N interactions between the AgI ion and two acetonitrile N atoms [Ag1⋯N4 = 2.792 (4), Ag1⋯N5 = 2.815 (4) Å; black dashed lines in Fig. 1]. The two pyridine rings coordinated to the AgI center are tilted slightly, by 6.29 (15)° with respect to each other. In the chain, the AgI atoms are separated by 11.1009 (3) Å along the L linker which adopts a stretched trans conformation with the C2—N3—C6—C7 torsion angles being 174.7 (3)°.
3. Supramolecular features
The neighbouring zigzag chains are connected by Ag⋯Ag contacts [Ag1⋯Ag1 = 3.3023 (5) Å; red dashed lines in Fig. 2] and intermolecular π-π-stacking interactions between the pyridine rings [Cg1⋯Cg2ii = 3.5922 (15) Å; yellow dashed lines in Fig. 2; Cg1 and Cg2 are the centroids of the N1/C1–C5 and N2/C7–C11 rings, respectively; symmetry code: (ii) −x + , y − , −z + ], resulting in the formation of a corrugated layer spreading out along the (01) plane (Fig. 2). Adjacent layers are stacked on each other with a separation of 10.4532 (5) Å. Acetonitrile molecules and PF6− anions as guests are intercalated between the layers (Fig. 3). The layers are further connected by several intermolecular N/C—H⋯F hydrogen bonds (Table 2; yellow dashed lines in Figs. 1 and 3) and P—F⋯π interactions [F3⋯Cg2 = 3.241 (8) Å; sky-blue dashed line in Fig. 1] between the layer and the anions and between the acetonitrile solvent molecules and the anions, forming a three-dimensional supramolecular network.
4. Synthesis and crystallization
The L ligand was synthesized according to a literature method (Lee et al., 2013). Slow evaporation of an acetonitrile solution of the L ligand with AgPF6 in the molar ratio 1:1 afforded colourless block-like X-ray quality single crystals of the title compound.
5. Refinement
Crystal data, data collection and structure . The PF6− anion is disordered over two orientations in a 0.567 (11):0.433 (11) ratio. The amine H atom was located from a difference-Fourier map and freely refined [N—H = 0.84 (3) Å]. All other H atoms were positioned geometrically and refined as riding: C—H = 0.95 Å for Csp2—H, 0.99 Å for methylene C—H and 0.98 Å for methyl C—H with Uiso(H) = 1.5Ueq (C-methyl) and 1.2Ueq(C) for other C-bound H atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1575393
https://doi.org/10.1107/S2056989017013421/su5393sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017013421/su5393Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[Ag(C11H11N3)]PF6·2C2H3N | F(000) = 1032 |
Mr = 520.17 | Dx = 1.739 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.8997 (4) Å | Cell parameters from 5825 reflections |
b = 7.5361 (3) Å | θ = 2.9–28.0° |
c = 20.9747 (7) Å | µ = 1.16 mm−1 |
β = 102.9900 (6)° | T = 173 K |
V = 1986.84 (12) Å3 | Block, colorless |
Z = 4 | 0.35 × 0.25 × 0.15 mm |
Bruker APEXII CCD diffractometer | 3527 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.020 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 27.0°, θmin = 1.7° |
Tmin = 0.666, Tmax = 0.746 | h = −10→16 |
11824 measured reflections | k = −9→9 |
4316 independent reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: mixed |
wR(F2) = 0.081 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0297P)2 + 2.2488P] where P = (Fo2 + 2Fc2)/3 |
4316 reflections | (Δ/σ)max = 0.001 |
312 parameters | Δρmax = 1.12 e Å−3 |
18 restraints | Δρmin = −0.66 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.57809 (2) | 0.34509 (3) | 0.48065 (2) | 0.04382 (9) | |
N1 | 0.09170 (18) | 0.3315 (3) | 0.06343 (10) | 0.0313 (5) | |
N2 | 0.55270 (18) | 0.4849 (3) | 0.38820 (10) | 0.0317 (5) | |
N3 | 0.3023 (2) | 0.4904 (4) | 0.19724 (12) | 0.0385 (6) | |
H3A | 0.352 (3) | 0.439 (4) | 0.1850 (15) | 0.035 (8)* | |
C1 | 0.1875 (2) | 0.3614 (4) | 0.10237 (12) | 0.0305 (6) | |
H1 | 0.2478 | 0.3053 | 0.0924 | 0.037* | |
C2 | 0.2022 (2) | 0.4724 (3) | 0.15729 (12) | 0.0282 (5) | |
C3 | 0.1127 (2) | 0.5557 (4) | 0.17056 (13) | 0.0315 (6) | |
H3 | 0.1192 | 0.6331 | 0.2070 | 0.038* | |
C4 | 0.0141 (2) | 0.5233 (4) | 0.12960 (13) | 0.0347 (6) | |
H4 | −0.0477 | 0.5784 | 0.1379 | 0.042* | |
C5 | 0.0059 (2) | 0.4111 (4) | 0.07669 (13) | 0.0328 (6) | |
H5 | −0.0620 | 0.3897 | 0.0490 | 0.039* | |
C6 | 0.3223 (2) | 0.6106 (4) | 0.25170 (13) | 0.0363 (6) | |
H6A | 0.2721 | 0.5853 | 0.2800 | 0.044* | |
H6B | 0.3097 | 0.7338 | 0.2354 | 0.044* | |
C7 | 0.4343 (2) | 0.5940 (3) | 0.29117 (12) | 0.0288 (5) | |
C8 | 0.4549 (2) | 0.5027 (3) | 0.34988 (12) | 0.0294 (5) | |
H8 | 0.3968 | 0.4500 | 0.3638 | 0.035* | |
C9 | 0.6343 (2) | 0.5596 (4) | 0.36808 (14) | 0.0355 (6) | |
H9 | 0.7041 | 0.5474 | 0.3946 | 0.043* | |
C10 | 0.6207 (2) | 0.6531 (4) | 0.31048 (14) | 0.0400 (7) | |
H10 | 0.6801 | 0.7041 | 0.2976 | 0.048* | |
C11 | 0.5193 (2) | 0.6720 (4) | 0.27147 (13) | 0.0374 (6) | |
H11 | 0.5082 | 0.7374 | 0.2318 | 0.045* | |
P1 | 0.52792 (8) | 0.16310 (12) | 0.15620 (5) | 0.0532 (2) | |
F1 | 0.6049 (5) | 0.0241 (8) | 0.2082 (3) | 0.0812 (19) | 0.567 (11) |
F2 | 0.6355 (6) | 0.2633 (12) | 0.1590 (6) | 0.106 (3) | 0.567 (11) |
F3 | 0.5178 (6) | 0.2625 (10) | 0.2228 (4) | 0.106 (3) | 0.567 (11) |
F4 | 0.4273 (13) | 0.060 (3) | 0.1615 (8) | 0.133 (6) | 0.567 (11) |
F5 | 0.4615 (6) | 0.3036 (14) | 0.1156 (4) | 0.100 (3) | 0.567 (11) |
F6 | 0.5453 (8) | 0.0508 (11) | 0.0998 (4) | 0.119 (3) | 0.567 (11) |
F1' | 0.5583 (12) | −0.0286 (12) | 0.1587 (9) | 0.149 (7) | 0.433 (11) |
F2' | 0.6253 (9) | 0.2192 (19) | 0.1252 (6) | 0.106 (4) | 0.433 (11) |
F3' | 0.5773 (14) | 0.211 (2) | 0.2223 (5) | 0.184 (7) | 0.433 (11) |
F4' | 0.4247 (14) | 0.101 (3) | 0.1739 (9) | 0.128 (7) | 0.433 (11) |
F5' | 0.4867 (8) | 0.3671 (11) | 0.1435 (6) | 0.086 (3) | 0.433 (11) |
F6' | 0.4650 (11) | 0.1392 (17) | 0.0770 (4) | 0.125 (5) | 0.433 (11) |
N4 | 0.6922 (3) | 0.6394 (5) | 0.53962 (16) | 0.0733 (10) | |
C12 | 0.7722 (3) | 0.6996 (5) | 0.53960 (16) | 0.0538 (9) | |
C13 | 0.8750 (3) | 0.7783 (6) | 0.5397 (2) | 0.0756 (12) | |
H13A | 0.8918 | 0.7604 | 0.4969 | 0.113* | |
H13B | 0.9298 | 0.7219 | 0.5736 | 0.113* | |
H13C | 0.8727 | 0.9057 | 0.5487 | 0.113* | |
N5 | 0.7553 (3) | 0.1622 (7) | 0.45595 (18) | 0.0922 (14) | |
C14 | 0.7749 (3) | 0.1581 (5) | 0.40711 (19) | 0.0566 (9) | |
C15 | 0.7958 (4) | 0.1556 (6) | 0.3423 (2) | 0.0749 (12) | |
H15A | 0.7287 | 0.1410 | 0.3098 | 0.112* | |
H15B | 0.8435 | 0.0566 | 0.3388 | 0.112* | |
H15C | 0.8295 | 0.2675 | 0.3343 | 0.112* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.05358 (16) | 0.04805 (15) | 0.02636 (12) | 0.01328 (11) | 0.00167 (9) | 0.01001 (10) |
N1 | 0.0354 (12) | 0.0327 (12) | 0.0226 (10) | −0.0052 (10) | −0.0003 (9) | 0.0008 (9) |
N2 | 0.0343 (12) | 0.0324 (12) | 0.0246 (11) | 0.0031 (10) | −0.0010 (9) | 0.0005 (9) |
N3 | 0.0288 (12) | 0.0498 (15) | 0.0335 (12) | 0.0031 (11) | 0.0000 (10) | −0.0170 (11) |
C1 | 0.0309 (14) | 0.0348 (14) | 0.0245 (12) | 0.0000 (11) | 0.0037 (10) | −0.0022 (10) |
C2 | 0.0296 (13) | 0.0307 (13) | 0.0227 (12) | −0.0005 (11) | 0.0026 (10) | 0.0000 (10) |
C3 | 0.0349 (14) | 0.0309 (14) | 0.0273 (13) | 0.0024 (11) | 0.0039 (11) | −0.0011 (10) |
C4 | 0.0310 (14) | 0.0341 (14) | 0.0373 (15) | 0.0061 (11) | 0.0040 (11) | 0.0072 (12) |
C5 | 0.0276 (13) | 0.0356 (14) | 0.0295 (13) | −0.0035 (11) | −0.0055 (10) | 0.0081 (11) |
C6 | 0.0337 (15) | 0.0436 (16) | 0.0268 (13) | 0.0037 (12) | −0.0034 (11) | −0.0095 (11) |
C7 | 0.0325 (14) | 0.0291 (13) | 0.0221 (12) | 0.0020 (11) | 0.0005 (10) | −0.0053 (10) |
C8 | 0.0316 (14) | 0.0283 (13) | 0.0273 (12) | −0.0023 (11) | 0.0042 (10) | −0.0036 (10) |
C9 | 0.0292 (14) | 0.0393 (16) | 0.0347 (14) | 0.0019 (12) | 0.0005 (11) | −0.0060 (12) |
C10 | 0.0355 (15) | 0.0484 (17) | 0.0369 (15) | −0.0087 (13) | 0.0101 (12) | −0.0023 (13) |
C11 | 0.0451 (16) | 0.0419 (16) | 0.0246 (13) | −0.0021 (13) | 0.0066 (11) | 0.0027 (11) |
P1 | 0.0471 (5) | 0.0444 (5) | 0.0736 (6) | 0.0043 (4) | 0.0254 (5) | −0.0012 (4) |
F1 | 0.086 (4) | 0.064 (3) | 0.087 (4) | 0.018 (3) | 0.007 (3) | 0.016 (3) |
F2 | 0.052 (3) | 0.092 (5) | 0.175 (8) | −0.015 (3) | 0.027 (5) | 0.043 (5) |
F3 | 0.103 (5) | 0.094 (4) | 0.119 (5) | 0.022 (4) | 0.022 (4) | −0.057 (4) |
F4 | 0.115 (10) | 0.173 (10) | 0.102 (7) | −0.101 (9) | 0.007 (6) | −0.010 (6) |
F5 | 0.069 (4) | 0.118 (6) | 0.110 (6) | 0.038 (4) | 0.014 (4) | 0.051 (5) |
F6 | 0.159 (7) | 0.143 (7) | 0.065 (4) | 0.024 (6) | 0.044 (4) | −0.022 (4) |
F1' | 0.171 (11) | 0.056 (5) | 0.24 (2) | 0.039 (6) | 0.097 (12) | 0.046 (7) |
F2' | 0.049 (5) | 0.153 (10) | 0.123 (8) | 0.030 (6) | 0.036 (5) | 0.007 (7) |
F3' | 0.183 (14) | 0.256 (18) | 0.076 (7) | 0.038 (13) | −0.048 (8) | −0.028 (8) |
F4' | 0.083 (9) | 0.215 (18) | 0.105 (10) | −0.012 (9) | 0.063 (8) | 0.054 (10) |
F5' | 0.077 (5) | 0.063 (4) | 0.129 (7) | 0.016 (3) | 0.047 (5) | −0.005 (4) |
F6' | 0.154 (10) | 0.152 (10) | 0.059 (4) | −0.049 (8) | 0.002 (5) | −0.006 (5) |
N4 | 0.084 (3) | 0.080 (3) | 0.0521 (19) | −0.026 (2) | 0.0085 (17) | −0.0043 (17) |
C12 | 0.067 (2) | 0.051 (2) | 0.0397 (18) | −0.0057 (18) | 0.0052 (16) | −0.0009 (15) |
C13 | 0.068 (3) | 0.068 (3) | 0.088 (3) | −0.002 (2) | 0.013 (2) | 0.013 (2) |
N5 | 0.067 (2) | 0.156 (4) | 0.057 (2) | 0.044 (3) | 0.0217 (18) | 0.025 (2) |
C14 | 0.0406 (18) | 0.071 (2) | 0.060 (2) | 0.0125 (17) | 0.0159 (16) | 0.0091 (19) |
C15 | 0.092 (3) | 0.071 (3) | 0.074 (3) | −0.001 (2) | 0.044 (3) | 0.003 (2) |
Ag1—N1i | 2.163 (2) | C9—H9 | 0.9500 |
Ag1—N2 | 2.166 (2) | C10—C11 | 1.385 (4) |
Ag1—Ag1ii | 3.3023 (5) | C10—H10 | 0.9500 |
N1—C1 | 1.338 (3) | C11—H11 | 0.9500 |
N1—C5 | 1.341 (4) | P1—F3' | 1.435 (10) |
N1—Ag1iii | 2.163 (2) | P1—F1' | 1.495 (8) |
N2—C8 | 1.342 (3) | P1—F5 | 1.501 (6) |
N2—C9 | 1.343 (4) | P1—F6 | 1.512 (5) |
N3—C2 | 1.379 (3) | P1—F4' | 1.532 (14) |
N3—C6 | 1.435 (3) | P1—F4 | 1.539 (12) |
N3—H3A | 0.84 (3) | P1—F2 | 1.570 (7) |
C1—C2 | 1.401 (3) | P1—F2' | 1.596 (11) |
C1—H1 | 0.9500 | P1—F3 | 1.617 (6) |
C2—C3 | 1.396 (4) | P1—F5' | 1.629 (9) |
C3—C4 | 1.387 (4) | P1—F1 | 1.669 (5) |
C3—H3 | 0.9500 | P1—F6' | 1.687 (8) |
C4—C5 | 1.380 (4) | N4—C12 | 1.127 (5) |
C4—H4 | 0.9500 | C12—C13 | 1.452 (6) |
C5—H5 | 0.9500 | C13—H13A | 0.9800 |
C6—C7 | 1.500 (4) | C13—H13B | 0.9800 |
C6—H6A | 0.9900 | C13—H13C | 0.9800 |
C6—H6B | 0.9900 | N5—C14 | 1.110 (5) |
C7—C8 | 1.383 (4) | C14—C15 | 1.445 (5) |
C7—C11 | 1.387 (4) | C15—H15A | 0.9800 |
C8—H8 | 0.9500 | C15—H15B | 0.9800 |
C9—C10 | 1.375 (4) | C15—H15C | 0.9800 |
N1i—Ag1—N2 | 170.55 (8) | C10—C11—H11 | 120.5 |
N1i—Ag1—Ag1ii | 100.46 (6) | C7—C11—H11 | 120.5 |
N2—Ag1—Ag1ii | 84.17 (6) | F3'—P1—F1' | 98.8 (9) |
C1—N1—C5 | 119.3 (2) | F5—P1—F6 | 96.7 (5) |
C1—N1—Ag1iii | 119.39 (18) | F3'—P1—F4' | 93.7 (10) |
C5—N1—Ag1iii | 121.31 (17) | F1'—P1—F4' | 86.1 (10) |
C8—N2—C9 | 117.9 (2) | F5—P1—F4 | 90.8 (9) |
C8—N2—Ag1 | 121.18 (18) | F6—P1—F4 | 92.8 (7) |
C9—N2—Ag1 | 120.91 (17) | F5—P1—F2 | 94.0 (5) |
C2—N3—C6 | 121.4 (2) | F6—P1—F2 | 90.7 (5) |
C2—N3—H3A | 117 (2) | F4—P1—F2 | 173.7 (8) |
C6—N3—H3A | 121 (2) | F3'—P1—F2' | 96.2 (8) |
N1—C1—C2 | 122.6 (2) | F1'—P1—F2' | 92.7 (6) |
N1—C1—H1 | 118.7 | F4'—P1—F2' | 170.1 (8) |
C2—C1—H1 | 118.7 | F5—P1—F3 | 91.0 (4) |
N3—C2—C3 | 122.6 (2) | F6—P1—F3 | 172.3 (4) |
N3—C2—C1 | 119.6 (2) | F4—P1—F3 | 86.5 (6) |
C3—C2—C1 | 117.8 (2) | F2—P1—F3 | 89.3 (5) |
C4—C3—C2 | 118.8 (2) | F3'—P1—F5' | 88.8 (8) |
C4—C3—H3 | 120.6 | F1'—P1—F5' | 172.5 (8) |
C2—C3—H3 | 120.6 | F4'—P1—F5' | 93.3 (11) |
C5—C4—C3 | 120.0 (3) | F2'—P1—F5' | 86.6 (6) |
C5—C4—H4 | 120.0 | F5—P1—F1 | 173.5 (4) |
C3—C4—H4 | 120.0 | F6—P1—F1 | 89.4 (4) |
N1—C5—C4 | 121.5 (2) | F4—P1—F1 | 91.3 (9) |
N1—C5—H5 | 119.2 | F2—P1—F1 | 83.5 (4) |
C4—C5—H5 | 119.2 | F3—P1—F1 | 82.9 (3) |
N3—C6—C7 | 111.4 (2) | F3'—P1—F6' | 171.5 (8) |
N3—C6—H6A | 109.3 | F1'—P1—F6' | 89.8 (8) |
C7—C6—H6A | 109.3 | F4'—P1—F6' | 87.3 (8) |
N3—C6—H6B | 109.3 | F2'—P1—F6' | 82.9 (5) |
C7—C6—H6B | 109.3 | F5'—P1—F6' | 82.7 (5) |
H6A—C6—H6B | 108.0 | N4—C12—C13 | 179.6 (5) |
C8—C7—C11 | 118.0 (2) | C12—C13—H13A | 109.5 |
C8—C7—C6 | 120.1 (3) | C12—C13—H13B | 109.5 |
C11—C7—C6 | 121.9 (2) | H13A—C13—H13B | 109.5 |
N2—C8—C7 | 123.4 (2) | C12—C13—H13C | 109.5 |
N2—C8—H8 | 118.3 | H13A—C13—H13C | 109.5 |
C7—C8—H8 | 118.3 | H13B—C13—H13C | 109.5 |
N2—C9—C10 | 122.4 (3) | N5—C14—C15 | 177.5 (4) |
N2—C9—H9 | 118.8 | C14—C15—H15A | 109.5 |
C10—C9—H9 | 118.8 | C14—C15—H15B | 109.5 |
C9—C10—C11 | 119.3 (3) | H15A—C15—H15B | 109.5 |
C9—C10—H10 | 120.3 | C14—C15—H15C | 109.5 |
C11—C10—H10 | 120.3 | H15A—C15—H15C | 109.5 |
C10—C11—C7 | 119.0 (3) | H15B—C15—H15C | 109.5 |
C5—N1—C1—C2 | 0.5 (4) | N3—C6—C7—C8 | −102.6 (3) |
Ag1iii—N1—C1—C2 | −179.21 (19) | N3—C6—C7—C11 | 79.0 (3) |
C6—N3—C2—C3 | −6.3 (4) | C9—N2—C8—C7 | −0.1 (4) |
C6—N3—C2—C1 | 176.2 (3) | Ag1—N2—C8—C7 | 178.53 (19) |
N1—C1—C2—N3 | 176.7 (3) | C11—C7—C8—N2 | −0.6 (4) |
N1—C1—C2—C3 | −0.9 (4) | C6—C7—C8—N2 | −179.0 (2) |
N3—C2—C3—C4 | −176.8 (3) | C8—N2—C9—C10 | 0.3 (4) |
C1—C2—C3—C4 | 0.7 (4) | Ag1—N2—C9—C10 | −178.3 (2) |
C2—C3—C4—C5 | −0.3 (4) | N2—C9—C10—C11 | 0.1 (4) |
C1—N1—C5—C4 | 0.0 (4) | C9—C10—C11—C7 | −0.8 (4) |
Ag1iii—N1—C5—C4 | 179.7 (2) | C8—C7—C11—C10 | 1.0 (4) |
C3—C4—C5—N1 | −0.1 (4) | C6—C7—C11—C10 | 179.4 (3) |
C2—N3—C6—C7 | 174.7 (3) |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x−1/2, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···F3 | 0.84 (3) | 2.49 (3) | 3.208 (8) | 144 (3) |
N3—H3A···F5 | 0.84 (3) | 2.46 (3) | 3.273 (10) | 162 (3) |
N3—H3A···F5′ | 0.84 (3) | 2.18 (3) | 2.999 (10) | 167 (3) |
C8—H8···N4ii | 0.95 | 2.63 | 3.478 (5) | 149 |
C10—H10···F2iv | 0.95 | 2.39 | 3.176 (9) | 140 |
C13—H13A···F2′iv | 0.98 | 2.54 | 3.487 (13) | 163 |
C13—H13B···F6i | 0.98 | 2.53 | 3.365 (10) | 144 |
C13—H13B···F1′i | 0.98 | 2.59 | 3.57 (2) | 171 |
C15—H15A···F1 | 0.98 | 2.52 | 3.441 (9) | 157 |
C15—H15A···F3′ | 0.98 | 2.42 | 3.356 (13) | 160 |
C15—H15B···F2v | 0.98 | 2.23 | 3.088 (10) | 146 |
C15—H15B···F5′v | 0.98 | 2.57 | 3.509 (11) | 160 |
C15—H15C···F1iv | 0.98 | 2.36 | 3.329 (8) | 168 |
C15—H15C···F1′iv | 0.98 | 2.09 | 3.037 (9) | 161 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iv) −x+3/2, y+1/2, −z+1/2; (v) −x+3/2, y−1/2, −z+1/2. |
Funding information
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020410 and NRF-2016R1D1A1B01012630).
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532–1535. Web of Science CrossRef CAS
Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477–3480. Web of Science CSD CrossRef CAS
Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764. Web of Science CrossRef CAS PubMed
Moon, B., Jeon, Y., Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, 507–509. CSD CrossRef IUCr Journals
Moon, S.-H., Kang, Y. & Park, K.-M. (2015). Acta Cryst. E71, 1287–1289. Web of Science CSD CrossRef IUCr Journals
Moon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513–1516. CSD CrossRef IUCr Journals
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104. Web of Science CrossRef CAS PubMed
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.