research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A two-dimensional Zn coordination polymer with a three-dimensional supra­molecular architecture

CROSSMARK_Color_square_no_text.svg

aBasis Department, Jilin Business and Technology College, Changchun, Jilin, People's Republic of China
*Correspondence e-mail: liufh563@nenu.edu.cn

Edited by A. Van der Lee, Université de Montpellier II, France (Received 27 July 2017; accepted 29 August 2017; online 5 September 2017)

The title compound, poly[bis­{μ2-4,4′-bis­[(1,2,4-triazol-1-yl)meth­yl]biphenyl-κ2N4:N4′}bis­(nitrato-κO)zinc(II)], [Zn(NO3)2(C18H16N6)2]n, is a two-dimensional zinc coordination polymer constructed from 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The ZnII cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl ligands, forming a distorted octa­hedral {ZnN4O2} coordination geometry. The linear 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl ligand links two ZnII cations, generating two-dimensional layers parallel to the crystallographic (132) plane. The parallel layers are connected by C—H⋯O, C—H⋯N, C—H⋯π and ππ stacking inter­actions, resulting in a three-dimensional supra­molecular architecture.

1. Chemical context

Over the past few decades, the self-assembly of coordination polymers (CPs) or metal–organic frameworks (MOFs) based on metal ions or clusters and organic ligands has attracted much attention, owing to their intriguing mol­ecular topologies and potential applications. Multidentate ligands derived from 1,2,4-triazole that contain an aromatic core have been used for this purpose, examples being 1,4-bis­(1H-1,2,4-triazol-1-ylmeth­yl)benzene (Wang et al., 2007[Wang, W.-B., Wang, L.-Y., Li, B.-L. & Zhang, Y. (2007). Acta Cryst. E63, m2416-m2417.]; Ding & Zou, 2010[Ding, B. & Zou, H.-A. (2010). Acta Cryst. E66, m932.]; Zhu et al., 2010[Zhu, X., Guo, Y. & Zou, Y.-L. (2010). Acta Cryst. E66, m85.]), 1,3-bis­(1H-1,2,4-triazol-1-ylmeth­yl)benzene (Zhang et al., 2012[Zhang, H.-K., Wang, X., Wang, S. & Wang, X.-D. (2012). Acta Cryst. E68, m856.]; Ge et al., 2008[Ge, H., Liu, K., Yang, Y., Li, B. & Zhang, Y. (2008). Inorg. Chem. Commun. 11, 260-264.]; Zhu et al., 2015[Zhu, X., Yang, Y., Jiang, N., Li, B., Zhou, D., Fu, H. & Wang, N. (2015). Z. Anorg. Allg. Chem. 641, 699-703.]), 1,2-bis­(1H-1,2,4-triazol-1-ylmeth­yl)benzene (Yang et al., 2009[Yang, Y., Feng, Y.-F., Liang, N., Li, B.-L. & Zhang, Y. (2009). J. Coord. Chem. 62, 3819-3827.]; Zhao et al., 2017[Zhao, S., Zheng, T.-R., Zhang, Y.-Q., Lv, X.-X., Li, B.-L. & Zhang, Y. (2017). Polyhedron, 121, 61-69.]; Zhang et al., 2013[Zhang, Z., Ma, J.-F., Liu, Y.-Y., Kan, W.-Q. & Yang, J. (2013). CrystEngComm, 15, 2009-2018.]), 1,3,5-tris­(1H-1,2,4-triazol-1-ylmeth­yl)benzene (Li et al., 2012[Li, Q.-X., Shi, X.-J. & Chen, L.-C. (2012). Acta Cryst. E68, m1299.]; Yin et al., 2009[Yin, X.-J., Zhou, X.-H., Gu, Z.-G., Zuo, J.-L. & You, X.-Z. (2009). Inorg. Chem. Commun. 12, 548-551.]; Shi et al., 2011[Shi, X., Li, Q., Zhang, Y., Chang, X. & Hou, H. (2011). J. Coord. Chem. 64, 3918-3927.]), 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl (Mu et al., 2011[Mu, Y., Song, Y., Wang, C., Hou, H. & Fan, Y. (2011). Inorg. Chim. Acta, 365, 167-176.]; Ren et al., 2010[Ren, C., Liu, P., Wang, Y.-Y., Huang, W.-H. & Shi, Q.-Z. (2010). Eur. J. Inorg. Chem. pp. 5545-5555.]; Ni et al., 2010[Ni, T., Shao, M., Zhu, S., Zhao, Y., Xing, F. & Li, M. (2010). Cryst. Growth Des. 10, 943-951.]). Hydro­thermal synthesis has been proved to be an effective method for the construction of these new coordination polymers. In this study, a new two-dimensional CP, viz. poly[bis­{μ2-4,4′-bis­[(1,2,4-triazol-1-yl)meth­yl]biphenyl-κ2N4:N4′}bis­(nitrato-κO)zinc], [Zn(NO3)2(C18H16N6)2]n, was synthesized under hydro­thermal conditions by the reaction of Zn(NO3)2·6H2O and 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl at 313 K for 48 h. We report here its crystal structure and its elemental analysis.

2. Structural commentary

The title complex crystallizes in the triclinic space group P[\overline{1}]; the asymmetric unit of the structure consists of one ZnII cation (site symmetry [\overline 1]), one nitrate anion and one 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl ligand.

[Scheme 1]

As shown in Fig. 1[link], each ZnII cation exhibits a slightly distorted octa­hedral {ZnN4O2} coordination geometry and is coordinated by four N atoms (N1, N4, N1i and N4i) from four symmetry-related organic ligands and two O atoms (O3 and O3i) from two symmetry-related nitrate groups (see Fig. 1[link] for symmetry code). The Zn—O [2.191 (2) Å] and Zn—N bond lengths [2.124 (3)–2.168 (2) Å] are in agreement with corresponding bond lengths found in previously reported ZnII coordination polymers. For the title coordination polymer, the ZnII cation is coordinated by four 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl ligands and two nitrate anions, and each organic ligand in turn connects two ZnII cations to generate a two-dimensional layer parallel to the crystallographic (132) plane. The organic ligand adopts a cis,cis substituent conformation. The two distinct Zn⋯Zn distances are 18.397 (3) and 18.964 (3) Å (see Fig. 2[link]). The two benzene rings of the 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl ligand lie nearly in one plane [dihedral angle = 0.00 (2)°]. The two triazole groups of the 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl ligand are inclined to the plane of the central biphenyl groups, with dihedral angles of 80.050 (2) (C1/C2/N1/N2/N3) and 85.511 (2)° (C10/C11/N4/N5/N6). Four adjacent ZnII cations are connected by four linear organic ligands and form a 72-membered macrocyclic ring in the above-mentioned two-dimensional layer (see Fig. 2[link]).

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids drawn at the 25% probability level. [Symmetry code: (i) −x, 2 − y, −z.]
[Figure 2]
Figure 2
The two-dimensional layer parallel to the crystallographic (132) plane.

3. Supra­molecular features

Neighbouring layers are linked to each other by by weak interactions (Table 1[link]), including C—H⋯O, C—H⋯N, C—H⋯π [C11—H11⋯Cg1ii = 3.6756 (8) Å and C12—H12⋯Cg2iii = 3.5252 (7) Å; Cg1 and Cg2 are the centroids of the triazole (C1/C2/N1/N2/N3) and phenyl (C4–C9) rings, respectively; symmetry codes: (ii) 2 − x, −y, −z; (iii) 1 − x, 1 − y, −z] contacts and ππ stacking inter­actions [Cg1⋯Cg1ii = 3.6296 (10) Å]. These interactions, together with the covalent inter­actions in the infinite two-dimensional polymeric-like layer, make up a three-dimensional supra­molecular structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O1i 0.97 2.31 3.2728 (7) 170
C3—H3B⋯O1Ai 0.97 2.33 3.2765 (7) 165
C10—H10⋯O2Aii 0.93 2.53 3.0888 (6) 115
C14—H14⋯O2ii 0.93 2.46 3.5454 (7) 158
C15—H15⋯N6iii 0.93 2.58 3.482 (16) 162
Symmetry codes: (i) x-1, y+1, z; (ii) -x+1, -y, -z; (iii) x-1, y, z.

4. Database survey

A search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for zinc and the 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl moiety gave eight hits. Seven of them are con­structed by 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl units and different carboxyl­ate ligands. One example is a chain structure based on Zn and 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl (PUQWAA; Ni et al., 2010[Ni, T., Shao, M., Zhu, S., Zhao, Y., Xing, F. & Li, M. (2010). Cryst. Growth Des. 10, 943-951.]).

5. Synthesis and crystallization

Zn(NO3)2·6H2O (0.1 mmol), 4,4′-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1,1′-biphenyl (0.1 mmol) and water (6 ml) were mixed and placed in a thick Pyrex tube, which was sealed and heated to 413 K for 72 h. After cooling to room temperature, colourless block-shaped crystals (53% yield, based on Zn) suitable for X-ray analysis were obtained. Elemental analysis calculated for C36H32N14O6Zn: C 52.59, H 3.92, N 23.85%; found: C 52.23, H 3.74, N 23.49%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) for other H atoms. Atoms O1 and O2 of the nitrate group are disordered over two orientations, with occupancies of 0.511 (11) and 0.489 (11), and were refined through the use of SADI, RIGU and SIMU commands.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(NO3)2(C18H16N6)2]
Mr 822.12
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.3257 (15), 9.0188 (18), 15.578 (3)
α, β, γ (°) 81.70 (3), 77.64 (3), 68.90 (3)
V3) 935.4 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.72
Crystal size (mm) 0.24 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker APEXII Quazar
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.84, 0.86
No. of measured, independent and observed [I > 2σ(I)] reflections 7292, 3271, 2589
Rint 0.042
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.143, 1.05
No. of reflections 3271
No. of parameters 278
No. of restraints 85
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.54
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT-Plus (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-Plus (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[bis{µ2-4,4'-bis[(1,2,4-triazol-1-yl)methyl]biphenyl-κ2N4:N4'}bis(nitrato-κO)zinc(II)] top
Crystal data top
[Zn(NO3)2(C18H16N6)2]Z = 1
Mr = 822.12F(000) = 424
Triclinic, P1Dx = 1.459 Mg m3
a = 7.3257 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0188 (18) ÅCell parameters from 7292 reflections
c = 15.578 (3) Åθ = 1.6–25.1°
α = 81.70 (3)°µ = 0.72 mm1
β = 77.64 (3)°T = 293 K
γ = 68.90 (3)°Block, colorless
V = 935.4 (4) Å30.24 × 0.22 × 0.2 mm
Data collection top
Bruker APEXII Quazar
diffractometer
3271 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs2589 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.042
Detector resolution: 7.9 pixels mm-1θmax = 25.0°, θmin = 3.0°
0.5° ω and 0.5° φ scansh = 88
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 109
Tmin = 0.84, Tmax = 0.86l = 1818
7292 measured reflections
Refinement top
Refinement on F285 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.079P)2 + 0.2956P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3271 reflectionsΔρmax = 0.34 e Å3
278 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.0000001.0000000.0000000.0406 (2)
O30.1631 (4)1.1607 (3)0.00189 (17)0.0574 (7)
N10.2322 (4)0.8123 (3)0.05733 (18)0.0441 (7)
N20.4790 (5)0.6937 (4)0.1274 (2)0.0482 (7)
N30.4061 (6)0.5766 (4)0.1198 (2)0.0602 (9)
N40.1701 (4)0.9540 (4)0.12813 (18)0.0457 (7)
N50.3961 (5)0.8456 (4)0.23645 (19)0.0466 (7)
N60.2787 (6)0.9865 (5)0.2713 (2)0.0729 (11)
N70.1398 (5)1.2530 (4)0.0601 (2)0.0570 (8)
C10.2590 (6)0.6550 (5)0.0771 (3)0.0554 (10)
H10.1792950.6065140.0615380.066*
C20.3743 (6)0.8301 (4)0.0904 (2)0.0474 (8)
H20.3972170.9256600.0879580.057*
C30.6466 (6)0.6585 (5)0.1731 (3)0.0601 (10)
H3A0.6878400.7511860.1652790.072*
H3B0.7573230.5714420.1462960.072*
C40.5997 (6)0.6146 (4)0.2700 (3)0.0513 (9)
C50.7455 (7)0.5120 (7)0.3132 (4)0.0902 (17)
H50.8731790.4684130.2816850.108*
C60.7082 (8)0.4711 (8)0.4028 (4)0.0927 (17)
H60.8128840.4049780.4303180.111*
C70.5224 (6)0.5251 (4)0.4518 (3)0.0532 (9)
C80.3756 (8)0.6273 (6)0.4079 (3)0.0813 (16)
H80.2469450.6677460.4391470.098*
C90.4126 (8)0.6717 (6)0.3195 (3)0.0823 (16)
H90.3090140.7417210.2926020.099*
C100.3284 (6)0.8298 (5)0.1520 (2)0.0515 (9)
H100.3841620.7431980.1141620.062*
C110.1465 (6)1.0486 (5)0.2035 (2)0.0588 (10)
H110.0466861.1474370.2068040.071*
C120.5625 (7)0.7311 (5)0.2909 (3)0.0658 (13)
H12A0.5098060.6789160.3248610.079*
H12B0.6412310.6498980.2526150.079*
C130.6941 (6)0.8103 (4)0.3527 (3)0.0530 (10)
C140.8175 (7)0.8650 (6)0.3228 (3)0.0722 (13)
H140.8216520.8530570.2628250.087*
C150.9375 (7)0.9384 (6)0.3803 (3)0.0684 (13)
H151.0219170.9734750.3580880.082*
C160.9348 (5)0.9608 (4)0.4696 (2)0.0431 (8)
C170.8101 (7)0.9040 (6)0.4990 (3)0.0738 (14)
H170.8049650.9156310.5588600.089*
C180.6915 (8)0.8296 (6)0.4409 (3)0.0750 (14)
H180.6088130.7920840.4626880.090*
O10.0075 (14)1.3759 (11)0.0613 (8)0.0890 (19)0.500 (12)
O20.2754 (14)1.2075 (12)0.1048 (6)0.0792 (17)0.500 (12)
O1A0.0249 (12)1.3242 (11)0.1028 (7)0.0807 (18)0.500 (12)
O2A0.2775 (13)1.2743 (14)0.0828 (7)0.0812 (17)0.500 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0365 (3)0.0492 (4)0.0287 (3)0.0098 (2)0.0025 (2)0.0033 (2)
O30.0658 (17)0.0635 (16)0.0492 (15)0.0325 (14)0.0020 (13)0.0084 (13)
N10.0444 (16)0.0499 (17)0.0331 (15)0.0123 (13)0.0074 (13)0.0027 (13)
N20.0514 (18)0.0509 (17)0.0384 (16)0.0136 (14)0.0123 (14)0.0052 (13)
N30.077 (2)0.0481 (18)0.060 (2)0.0216 (17)0.0251 (19)0.0036 (16)
N40.0463 (17)0.0559 (18)0.0310 (15)0.0158 (14)0.0048 (13)0.0013 (13)
N50.0506 (17)0.0545 (17)0.0347 (16)0.0245 (15)0.0054 (14)0.0049 (14)
N60.072 (3)0.088 (3)0.042 (2)0.019 (2)0.0022 (19)0.0074 (19)
N70.0616 (17)0.0610 (18)0.0580 (19)0.0299 (14)0.0085 (15)0.0136 (15)
C10.065 (3)0.052 (2)0.052 (2)0.0185 (19)0.022 (2)0.0003 (18)
C20.052 (2)0.0469 (19)0.0385 (19)0.0165 (17)0.0040 (17)0.0047 (15)
C30.052 (2)0.071 (3)0.057 (3)0.020 (2)0.020 (2)0.009 (2)
C40.059 (2)0.048 (2)0.046 (2)0.0146 (17)0.0201 (18)0.0056 (17)
C50.044 (3)0.133 (5)0.070 (3)0.017 (3)0.018 (2)0.044 (3)
C60.057 (3)0.133 (5)0.070 (3)0.021 (3)0.028 (3)0.047 (3)
C70.071 (3)0.043 (2)0.047 (2)0.0121 (18)0.027 (2)0.0009 (16)
C80.083 (3)0.077 (3)0.041 (2)0.025 (2)0.010 (2)0.006 (2)
C90.091 (4)0.075 (3)0.045 (2)0.021 (3)0.027 (2)0.002 (2)
C100.052 (2)0.055 (2)0.0356 (19)0.0112 (17)0.0015 (17)0.0035 (16)
C110.049 (2)0.068 (2)0.036 (2)0.0013 (19)0.0002 (17)0.0047 (18)
C120.079 (3)0.055 (2)0.057 (3)0.033 (2)0.028 (2)0.017 (2)
C130.058 (2)0.047 (2)0.045 (2)0.0194 (18)0.0153 (18)0.0088 (17)
C140.087 (3)0.100 (3)0.034 (2)0.048 (3)0.002 (2)0.000 (2)
C150.075 (3)0.108 (4)0.039 (2)0.054 (3)0.004 (2)0.002 (2)
C160.0386 (18)0.0427 (18)0.0388 (18)0.0073 (14)0.0024 (15)0.0055 (15)
C170.087 (3)0.114 (4)0.038 (2)0.060 (3)0.007 (2)0.003 (2)
C180.085 (3)0.111 (4)0.051 (3)0.066 (3)0.002 (2)0.005 (2)
O10.091 (3)0.077 (3)0.080 (4)0.006 (3)0.008 (3)0.016 (3)
O20.094 (3)0.080 (4)0.075 (3)0.035 (3)0.032 (3)0.003 (3)
O1A0.080 (3)0.075 (3)0.074 (4)0.020 (3)0.009 (3)0.016 (3)
O2A0.085 (3)0.088 (4)0.087 (4)0.041 (3)0.030 (3)0.008 (3)
Geometric parameters (Å, º) top
Zn1—O32.191 (2)C4—C51.367 (6)
Zn1—O3i2.191 (2)C4—C91.376 (6)
Zn1—N1i2.167 (3)C5—H50.9300
Zn1—N12.167 (3)C5—C61.385 (7)
Zn1—N4i2.124 (3)C6—H60.9300
Zn1—N42.124 (3)C6—C71.363 (7)
O3—N71.263 (4)C7—C7ii1.505 (8)
N1—C11.359 (5)C7—C81.376 (6)
N1—C21.322 (5)C8—H80.9300
N2—N31.372 (4)C8—C91.375 (7)
N2—C21.318 (5)C9—H90.9300
N2—C31.465 (5)C10—H100.9300
N3—C11.314 (5)C11—H110.9300
N4—C101.318 (5)C12—H12A0.9700
N4—C111.353 (5)C12—H12B0.9700
N5—N61.365 (5)C12—C131.506 (5)
N5—C101.310 (5)C13—C141.359 (6)
N5—C121.475 (5)C13—C181.364 (6)
N6—C111.307 (5)C14—H140.9300
N7—O11.237 (8)C14—C151.387 (6)
N7—O21.249 (8)C15—H150.9300
N7—O1A1.237 (7)C15—C161.381 (5)
N7—O2A1.221 (8)C16—C16iii1.487 (7)
C1—H10.9300C16—C171.375 (5)
C2—H20.9300C17—H170.9300
C3—H3A0.9700C17—C181.390 (6)
C3—H3B0.9700C18—H180.9300
C3—C41.501 (6)
O3—Zn1—O3i180.0C5—C4—C3120.3 (4)
N1—Zn1—O3i92.22 (11)C5—C4—C9116.5 (4)
N1i—Zn1—O392.22 (11)C9—C4—C3123.2 (4)
N1i—Zn1—O3i87.78 (11)C4—C5—H5119.1
N1—Zn1—O387.78 (11)C4—C5—C6121.8 (5)
N1i—Zn1—N1180.0C6—C5—H5119.1
N4—Zn1—O3i94.65 (10)C5—C6—H6119.1
N4i—Zn1—O394.65 (10)C7—C6—C5121.9 (5)
N4—Zn1—O385.35 (10)C7—C6—H6119.1
N4i—Zn1—O3i85.35 (10)C6—C7—C7ii122.4 (5)
N4i—Zn1—N1i90.36 (12)C6—C7—C8116.2 (4)
N4i—Zn1—N189.64 (12)C8—C7—C7ii121.4 (5)
N4—Zn1—N190.36 (12)C7—C8—H8118.9
N4—Zn1—N1i89.64 (12)C9—C8—C7122.2 (4)
N4i—Zn1—N4180.0C9—C8—H8118.9
N7—O3—Zn1128.5 (2)C4—C9—H9119.3
C1—N1—Zn1130.5 (3)C8—C9—C4121.4 (4)
C2—N1—Zn1126.5 (2)C8—C9—H9119.3
C2—N1—C1102.7 (3)N4—C10—H10124.8
N3—N2—C3120.7 (3)N5—C10—N4110.5 (4)
C2—N2—N3109.9 (3)N5—C10—H10124.8
C2—N2—C3129.4 (3)N4—C11—H11123.6
C1—N3—N2102.0 (3)N6—C11—N4112.9 (4)
C10—N4—Zn1128.1 (3)N6—C11—H11123.6
C10—N4—C11103.9 (3)N5—C12—H12A109.2
C11—N4—Zn1128.0 (3)N5—C12—H12B109.2
N6—N5—C12122.6 (3)N5—C12—C13112.2 (3)
C10—N5—N6109.0 (3)H12A—C12—H12B107.9
C10—N5—C12128.3 (4)C13—C12—H12A109.2
C11—N6—N5103.8 (3)C13—C12—H12B109.2
O1—N7—O3115.4 (6)C14—C13—C12121.5 (4)
O1—N7—O2130.6 (7)C14—C13—C18118.1 (4)
O2—N7—O3114.0 (5)C18—C13—C12120.4 (4)
O1A—N7—O3122.8 (5)C13—C14—H14119.5
O2A—N7—O3123.5 (6)C13—C14—C15121.0 (4)
O2A—N7—O1A113.6 (7)C15—C14—H14119.5
N1—C1—H1122.6C14—C15—H15119.2
N3—C1—N1114.8 (3)C16—C15—C14121.7 (4)
N3—C1—H1122.6C16—C15—H15119.2
N1—C2—H2124.7C15—C16—C16iii120.9 (4)
N2—C2—N1110.7 (3)C17—C16—C15116.7 (3)
N2—C2—H2124.7C17—C16—C16iii122.4 (4)
N2—C3—H3A108.9C16—C17—H17119.4
N2—C3—H3B108.9C16—C17—C18121.2 (4)
N2—C3—C4113.5 (3)C18—C17—H17119.4
H3A—C3—H3B107.7C13—C18—C17121.4 (4)
C4—C3—H3A108.9C13—C18—H18119.3
C4—C3—H3B108.9C17—C18—H18119.3
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O1iv0.972.313.2728 (7)170
C3—H3B···O1Aiv0.972.333.2765 (7)165
C10—H10···O2Av0.932.533.0888 (6)115
C14—H14···O2v0.932.463.5454 (7)158
C15—H15···N6vi0.932.583.482 (16)162
Symmetry codes: (iv) x1, y+1, z; (v) x+1, y, z; (vi) x1, y, z.
 

Funding information

Funding for this research was provided by: Science and Technology Research Projects of Jilin Province Department of Education (JJKH20170186KJ) .

References

First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationDing, B. & Zou, H.-A. (2010). Acta Cryst. E66, m932.  Web of Science CSD CrossRef IUCr Journals
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationGe, H., Liu, K., Yang, Y., Li, B. & Zhang, Y. (2008). Inorg. Chem. Commun. 11, 260–264.  Web of Science CSD CrossRef CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals
First citationLi, Q.-X., Shi, X.-J. & Chen, L.-C. (2012). Acta Cryst. E68, m1299.  CSD CrossRef IUCr Journals
First citationMu, Y., Song, Y., Wang, C., Hou, H. & Fan, Y. (2011). Inorg. Chim. Acta, 365, 167–176.  Web of Science CSD CrossRef CAS
First citationNi, T., Shao, M., Zhu, S., Zhao, Y., Xing, F. & Li, M. (2010). Cryst. Growth Des. 10, 943–951.  Web of Science CSD CrossRef CAS
First citationRen, C., Liu, P., Wang, Y.-Y., Huang, W.-H. & Shi, Q.-Z. (2010). Eur. J. Inorg. Chem. pp. 5545–5555.  Web of Science CSD CrossRef
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShi, X., Li, Q., Zhang, Y., Chang, X. & Hou, H. (2011). J. Coord. Chem. 64, 3918–3927.  Web of Science CSD CrossRef CAS
First citationWang, W.-B., Wang, L.-Y., Li, B.-L. & Zhang, Y. (2007). Acta Cryst. E63, m2416–m2417.  Web of Science CSD CrossRef IUCr Journals
First citationYang, Y., Feng, Y.-F., Liang, N., Li, B.-L. & Zhang, Y. (2009). J. Coord. Chem. 62, 3819–3827.  Web of Science CSD CrossRef CAS
First citationYin, X.-J., Zhou, X.-H., Gu, Z.-G., Zuo, J.-L. & You, X.-Z. (2009). Inorg. Chem. Commun. 12, 548–551.  Web of Science CSD CrossRef CAS
First citationZhang, Z., Ma, J.-F., Liu, Y.-Y., Kan, W.-Q. & Yang, J. (2013). CrystEngComm, 15, 2009–2018.  Web of Science CSD CrossRef CAS
First citationZhang, H.-K., Wang, X., Wang, S. & Wang, X.-D. (2012). Acta Cryst. E68, m856.  CSD CrossRef IUCr Journals
First citationZhao, S., Zheng, T.-R., Zhang, Y.-Q., Lv, X.-X., Li, B.-L. & Zhang, Y. (2017). Polyhedron, 121, 61–69.  Web of Science CSD CrossRef CAS
First citationZhu, X., Guo, Y. & Zou, Y.-L. (2010). Acta Cryst. E66, m85.  Web of Science CSD CrossRef IUCr Journals
First citationZhu, X., Yang, Y., Jiang, N., Li, B., Zhou, D., Fu, H. & Wang, N. (2015). Z. Anorg. Allg. Chem. 641, 699–703.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds