research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Lithium tetra­chlorido­aluminate, LiAlCl4: a new polymorph (oP12, Pmn21) with Li+ in tetra­hedral inter­stices

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: wfrank@hhu.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 July 2017; accepted 25 August 2017; online 8 September 2017)

Dissolving lithium chloride and aluminium chloride in boiling para- or meta-xylene and keeping the colourless solution at room temperature led to crystal growth of a new modification of lithium tetra­chlorido­aluminate, LiAlCl4, which represents a second modification (oP12, Pmn21) of the ternary salt besides the long known monoclinic form [LiAlCl4(mP24, P21/c); Mairesse et al. (1977[Mairesse, G., Barbier, P. & Vignacourt, J.-P. (1977). Cryst. Struct. Commun. 6, 15-18.]). Cryst. Struct. Commun. 6, 15–18]. The crystal structures of both modifications can be described as slightly distorted hexa­gonal closest packings of chloride anions. While the lithium cations in LiAlCl4(mP24) are in octa­hedral coordination and the aluminium and lithium ions in the solid of ortho­rhom­bic LiAlCl4 occupy tetra­hedral inter­stices with site symmetries m and 1, respectively, the lithium cation site being half-occupied (defect wurtz-stannite-type structure). From differential scanning calorimetry (DSC) measurements, no evidence for a phase transition of the ortho­rhom­bic modification is found until the material melts at 148 °C (Tpeak = 152 °C). The melting point is nearly identical to the literature data for LiAlCl4(mP24) [146 °C; Weppner & Huggins (1976[Weppner, W. & Huggins, R. A. (1976). Phys. Lett. A, 58, 245-248.]). J. Electrochem. Soc. 124, 35–38]. From the melts of both polymorphs, the monoclinic modification recrystallizes.

1. Chemical context

The series of known crystal structures of alkali metal tetra­chlorido­aluminates MAlCl4, with M = Li (Mairesse et al., 1977[Mairesse, G., Barbier, P. & Vignacourt, J.-P. (1977). Cryst. Struct. Commun. 6, 15-18.]), Na (Baenziger, 1951[Baenziger, N. C. (1951). Acta Cryst. 4, 216-219.]), K (Mairesse et al., 1978a[Mairesse, G., Barbier, P. & Wignacourt, J.-P. (1978a). Acta Cryst. B34, 1328-1330.]), Rb (Mairesse et al., 1979[Mairesse, G., Barbier, P. & Wignacourt, J.-P. (1979). Acta Cryst. B35, 1573-1580.]) and Cs (Gearhart et al., 1975[Gearhart, R. C. Jr, Beck, J. D. & Wood, R. H. (1975). Inorg. Chem. 14, 2413-2416.]; Mairesse et al., 1979[Mairesse, G., Barbier, P. & Wignacourt, J.-P. (1979). Acta Cryst. B35, 1573-1580.]) was completed about 40 years ago and comparative structural studies were made (Mairesse et al., 1979[Mairesse, G., Barbier, P. & Wignacourt, J.-P. (1979). Acta Cryst. B35, 1573-1580.]; Meyer & Schwan, 1980[Meyer, G. & Schwan, E. (1980). Z. Naturforsch. Teil B, 35, 117-118.]). With respect to ionic conductivity, both solid lithium tetra­chlorido­aluminate [LiAlCl4(mP24, P21/c); Mairesse et al., 1977[Mairesse, G., Barbier, P. & Vignacourt, J.-P. (1977). Cryst. Struct. Commun. 6, 15-18.]] and melts of the salt were investigated (Weppner & Huggins, 1976[Weppner, W. & Huggins, R. A. (1976). Phys. Lett. A, 58, 245-248.], 1977[Weppner, W. & Huggins, R. A. (1977). J. Electrochem. Soc. 124, 35-38.]). Besides the importance of common commercial lithium–thionyl chloride battery systems (Winter & Brodd, 2004[Winter, M. & Brodd, R. J. (2004). Chem. Rev. 104, 4245-4269.]), recently published studies on the conductivity of LiAlCl4 in dimethyl carbonate or mixtures with ethyl­ene carbonate (Scholz et al., 2015[Scholz, F., Unkrig, W., Eiden, P., Schmidt, M. A., Garsuch, A. & Krossing, I. (2015). Eur. J. Inorg. Chem. 3128-3138.]) indicate that the substance is of continous inter­est. In the course of our on-going studies on arene complexation of main group metals (Frank, 1990[Frank, W. (1990). Z. Anorg. Allg. Chem. 585, 121-141.]; Frank et al., 1987[Frank, W., Weber, J. & Fuchs, E. (1987). Angew. Chem. Int. Ed. Engl. 26, 74-75.], 1996[Frank, W., Korrell, G. & Reiss, G. J. (1996). J. Organomet. Chem. 506, 293-300.]; Frank & Wittmer, 1997[Frank, W. & Wittmer, F.-G. (1997). Chem. Ber. 130, 1731-1732.]; Kugel, 2004[Kugel, B. (2004). PhD thesis, Heinrich-Heine-Universität, Düsseldorf, Germany.]; Bredenhagen, 2014[Bredenhagen, B. (2014). Strukturchemische Untersuchungen an Systemen der Typen BiCl3/Aren und BiCl3/AlCl3/Aren. Aachen: Shaker Verlag GmbH.]), we isolated a new polymorph of LiAlCl4(oP12, Pmn21) from mixtures of lithium chloride and aluminium chloride in boiling para- or meta-xylene, determined its crystal structure by single-crystal X-ray diffraction and unequivocally proved polymorphism of this ternary compound.

2. Structural commentary

LiAlCl4(oP12, Pmn21) crystallizes in a defect wurtz-stannite-type structure, an ortho­rhom­bic superstructure of the wurtzite-type structure, known from quaternary compounds of the type Cu2MIIMIVM4VI (MII = Mn, Fe, Co, Zn, Cd, Hg; MIV = Si, Ge, Sn; MVI = S, Se; except selenides of cobalt; Schäfer & Nitsche, 1977[Schäfer, W. & Nitsche, R. (1977). Z. Kristallogr. 145, 356-370.]). The unit cell of the title compound contains four chloride anions and two aluminium cations, located in special positions (Wyckoff position 2a), as well as two lithium cations and another four chloride anions in general positions (4b), with the lithium site being half occupied, i.e. the asymmetric unit of the crystal structure is defined by half a tetra­chlorido­aluminate anion and one half-occupied lithium ion (Fig. 1[link]a).

[Figure 1]
Figure 1
(a) The unit cell of the crystal structure of the title compound, with displacement ellipsoids drawn at the 50% probability level; (b) a view of the crystal structure in polyhedral representation perpendicular to a stacking direction ([010]) of the slightly distorted hexa­gonal closest packing of chloride anions; (c) a view of the crystal structure along [00[\overline{1}]].

The crystal structures of the title compound, as well as of the monoclinic modification of lithium tetra­chlorido­aluminate, can be described as slightly distorted hexa­gonal closest packings of chloride anions. While the lithium cations in LiAlCl4(mP24) are in octa­hedral coordination (Mairesse et al., 1977[Mairesse, G., Barbier, P. & Vignacourt, J.-P. (1977). Cryst. Struct. Commun. 6, 15-18.]), the aluminium and lithium ions in the solid of ortho­rhom­bic LiAlCl4 occupy tetra­hedral inter­stices with site symmetries m and 1, respectively, the lithium cation site being half-occupied (Figs. 1[link]b and 1c). Hence, the solid state of the title compound represents a three-dimensional network of corner-sharing tetra­hedra, while in LiAlCl4(mP24), the octa­hedral and tetra­hedral polyhedra are connected via corners as well as edges. LiAlCl4(oP12) exhibits, as expected, shorter Li—Cl bonds (coordination number 4) as compared to corresponding bonds in monoclinic LiAlCl4 (coordination number 6). Using the Brown formalism (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]), in both cases, bond orders which differ significantly from the expected value in view of the monovalent cation are computed (Table 1[link]). In the case of ortho­rhom­bic LiAlCl4, the strong deviation is based on the statistical disorder mentioned above and corresponding averaged geometric parameters obtained for occupied and non-occupied tetra­hedral inter­stices, leading to higher Li—Cl bond orders in view of the exponential relationship between bond length and bond order.

Table 1
Selected bond lengths (Å) in LiAlCl4(oP12) and LiAlCl4(mP24) (Perenthaler et al., 1982[Perenthaler, E., Schulz, H. & Rabenau, A. (1982). Z. Anorg. Allg. Chem. 491, 259-265.]) in the left and right column, respectively, and corresponding sums of bond orders, calculated using the Brown formalism (r0 = 1.91, B = 0.37; Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.])

Li1—Cl1 2.322 (17) Li—Cl1 2.475 (7)
Li1—Cl2 2.381 (21) Li1—Cl2x 2.729 (7)
Li1—Cl2i 2.356 (14) Li1—Cl2xi 2.841 (7)
Li1—Cl3 2.413 (17) Li1—Cl3 2.594 (7)
    Li1—Cl3xii 2.769 (7)
    Li1—Cl4xiii 2.493 (7)
Σs(Li—Cl) 1.17 Σs(Li—Cl) 0.87
Symmetry codes: (i) −x + [{1\over 2}], −y, z − [{1\over 2}]; (x) −x, y − [{1\over 2}], −z + [{1\over 2}]; (xi) x, −y + [{1\over 2}], z + [{1\over 2}]; (xii) −x, y − [{1\over 2}], −z + [{1\over 2}]; (xiii) 1 − x, y − [{1\over 2}], −z + [{1\over 2}].

3. Raman spectra

Raman bands in the vibrational spectrum of the title compound (Fig. 2[link]) can be assigned to the four normal modes of vibration of a five atomic tetra­hedral moiety of composition AX4 (Nakamoto, 1986[Nakamoto, K. (1986). Infrared and Raman Spectra of Inorganic and Coordination Compounds, pp. 130-137. New York: John Wiley & Sons.]) νs(A1: 350 cm−1), δd(E: 136 and 126 cm−1), νd(F2: 523, 502, 487 and 478 cm−1) and δd(F2: 180 and 170 cm−1). As in the Raman spectra of other alkali metal tetra­chlorido­aluminates (Rytter & Øye, 1973[Rytter, E. & Øye, H. A. (1973). J. Inorg. Nucl. Chem. 35, 4311-4313.]; Rubbens et al., 1978[Rubbens, A., Wallart, F., Barbier, P., Mairesse, G. & Wignacourt, J.-P. (1978). J. Raman Spectrosc. 7, 249-253.]) or NH4AlCl4 (Mairesse et al., 1978b[Mairesse, G., Barbier, P., Wignacourt, J.-P., Rubbens, A. & Wallart, F. (1978b). Can. J. Chem. 56, 764-771.]), splitting of the bands is observed corresponding to the site effect and perturbation of the ideal tetra­hedral symmetry of free AlCl4 anions caused by cation inter­actions.

[Figure 2]
Figure 2
Raman spectrum of the title compound.

4. Thermal analysis and X-ray powder diffraction

From DSC measurements of the title compound (Fig. 3[link]), no evidence for a phase transition is found until the material melts at 148 °C (Tpeak = 152 °C). The melting point is nearly identical to literature data for LiAlCl4(mP24) (146 °C; Weppner & Huggins, 1976[Weppner, W. & Huggins, R. A. (1976). Phys. Lett. A, 58, 245-248.]), which seems to be the only modification that recrystallizes from the melts of both modifications. This is demonstrated by high-quality X-ray powder diffraction patterns of the title compound, crystallized from para-xylene solution, and of the crystalline solid obtained by recrystallization from the melt (Fig. 4[link]). In view of the current data, we suppose LiAlCl4(oP12) to represent a metastable phase of lithium tetra­chlorido­aluminate whose melting point probably is nearly identical to that of monoclinic LiAlCl4 because it is very unlikely that a phase transition would not have been observed with the chosen DSC methods. The lower density of ortho­rhom­bic LiAlCl4 (1.89 g cm−3) compared to monoclinic LiAlCl4 (1.98 g cm−3; Mairesse et al., 1979[Mairesse, G., Barbier, P. & Wignacourt, J.-P. (1979). Acta Cryst. B35, 1573-1580.]) supports the assumption of its metastability.

[Figure 3]
Figure 3
DSC curves of multiple runs of the title compound.
[Figure 4]
Figure 4
X-ray powder diffraction pattern of the title compound before (top) and after (bottom) melting and corresponding simulations. [a] Single-crystal data for LiAlCl4(mP24) are taken from the literature (Perenthaler et al., 1982[Perenthaler, E., Schulz, H. & Rabenau, A. (1982). Z. Anorg. Allg. Chem. 491, 259-265.]).

5. Synthesis and crystallization

All sample preparations and manipulations were carried out in an atmosphere of dry argon (argon 5.0) using either Schlenk techniques or an MBraun LABstar glove-box. LiCl (beads, 99.9+%, anhydrous) and AlCl3 (powder, 99.99%) were purchased from Sigma–Aldrich and while LiCl was used as received, AlCl3 was first overlayed with elemental aluminium (grit, ≥97%, Sigma–Aldrich) and sublimed in a sealed ampoule in vacuo at 190 °C. p-Xylene (99%, Sigma–Aldrich) and m-xylene (99%, TCI) were refluxed with aluminium chloride, washed with 0.2 M NaOH, as well as distilled water, and distilled on mol­ecular sieve 4 Å afterwards. In a typical reaction, 0.112 g (2.64 mmol) lithium chloride and 0.268 g (2.01 mmol) aluminium chloride were treated with 5 ml p-xylene and the mixture was refluxed for 30 min. Seperation of the warm colourless solution from residual LiCl and removal of 4 ml of the solvent under reduced pressure at room temperature led to the formation of colourless crystals of the title compound. LiAlCl4(oP12, Pmn21) was isolated in 60% yield after washing the crystalline material with p-xylene and drying the solid in vacuo at room temperature.

The FT–Raman spectrum was recorded using a Bruker MultiRam spectrometer (OPUS; Bruker, 2006[Bruker (2006). OPUS. Bruker Optik GmbH, Ettlingen, Germany.]) equipped with an RT-InGaAs-detector and an Nd:YAG-Laser at 1064 nm (Stokes: 3500–70 cm−1; resolution: 2 cm−1): νd(F2, AlCl4): 523 (w), 502 (w), 487 (m), 478 (w); νs(A1, AlCl4): 350 (vs); δd(F2, AlCl4): 180 (s), 170 (s); δd(E, AlCl4): 136 (m), 126 (s), 104 (m).

Thermal analysis (differential scanning calorimetry) was carried out with a Mettler Toledo DSC 1 calorimeter (STARe; Mettler-Toledo, 2008[Mettler-Toledo (2008). STARe. Mettler-Toledo AG, Schwerzenbach, Switzerland.]) equipped with an FRS 5 sensor using medium pressure steel crucibles without sealing rings. Measurements were carried out in an atmosphere of dry nitro­gen at a heating/cooling rate of 5 °C min−1 between 0 and 170 °C. First measurement heating: Tonset = 148 °C (Tpeak = 152 °C), endothermic, melting; first measurement cooling: Tonset = 132 °C (Tpeak = 132 °C), exothermic, crystallization; second measurement heating: Tonset = 149 °C (Tpeak = 152 °C), endothermic, melting; second measurement cooling: Tonset = 139 °C (Tpeak = 138 °C), exothermic, crystallization; third measurement heating: Tonset = 148 °C (Tpeak = 152 °C), endothermic, melting; third measurement cooling: Tonset = 139 °C (Tpeak = 139 °C), exothermic, crystallization. An alternative melting-point determination was carried out with a Mettler Toledo MP 90 Melting Point System: Tmp = 149 °C.

X-ray powder diffraction patterns were measured using a Stoe & Cie STADI P (WinXPOW; Stoe & Cie, 2003[Stoe & Cie (2003). WinXPOW. Stoe & Cie GmbH, Darmstadt, Germany.]) Debye–Scherrer diffractometer working in transmission mode with Cu Kα1 radiation [Ge(111) monochromator]. Simulations of powder patterns from single-crystal data were carried out using the computer program PowderCell (Kraus & Nolze, 2000[Kraus, W. & Nolze, G. (2000). PowderCell. Federal Institute for Materials Research and Testing, Berlin, Germany.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The lithium cation site (general position, Wyckoff site 4b) is half occupied.

Table 2
Experimental details

Crystal data
Chemical formula LiAlCl4
Mr 175.72
Crystal system, space group Orthorhombic, Pmn21
Temperature (K) 173
a, b, c (Å) 7.8273 (10), 6.4466 (10), 6.1304 (8)
V3) 309.34 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.90
Crystal size (mm) 0.65 × 0.10 × 0.03
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.431, 0.583
No. of measured, independent and observed [I > 2σ(I)] reflections 3388, 880, 870
Rint 0.092
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.21
No. of reflections 880
No. of parameters 37
No. of restraints 1
Δρmax, Δρmin (e Å−3) 0.48, −0.46
Absolute structure Flack x determined using 386 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.1 (2)
Computer programs: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2016[Brandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2016); software used to prepare material for publication: publCIF (Westrip, 2010).

Lithium tetrachloridoaluminate top
Crystal data top
LiAlCl4Dx = 1.887 Mg m3
Mr = 175.72Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pmn21Cell parameters from 6814 reflections
a = 7.8273 (10) Åθ = 3.0–29.7°
b = 6.4466 (10) ŵ = 1.90 mm1
c = 6.1304 (8) ÅT = 173 K
V = 309.34 (7) Å3Needle-shaped, colorless
Z = 20.65 × 0.10 × 0.03 mm
F(000) = 168
Data collection top
Stoe IPDS 2T
diffractometer
870 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.092
φ–scansθmax = 29.1°, θmin = 3.2°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2009)
h = 1010
Tmin = 0.431, Tmax = 0.583k = 88
3388 measured reflectionsl = 88
880 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.022P)2 + 0.166P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max < 0.001
wR(F2) = 0.075Δρmax = 0.48 e Å3
S = 1.21Δρmin = 0.46 e Å3
880 reflectionsAbsolute structure: Flack x determined using 386 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
37 parametersAbsolute structure parameter: 0.1 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Li10.246 (2)0.1671 (19)0.493 (3)0.035 (3)0.5
Cl10.00000.31452 (19)0.34835 (19)0.0305 (3)
Cl20.22483 (12)0.18042 (11)0.88033 (12)0.0317 (2)
Cl30.50000.35454 (16)0.3896 (3)0.0295 (3)
Al10.00000.3312 (2)0.0004 (3)0.0229 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.043 (8)0.033 (6)0.029 (8)0.001 (6)0.002 (6)0.000 (4)
Cl10.0300 (5)0.0405 (6)0.0208 (7)0.0000.0000.0010 (4)
Cl20.0313 (4)0.0314 (4)0.0324 (5)0.0078 (3)0.0067 (5)0.0017 (5)
Cl30.0300 (5)0.0226 (4)0.0360 (6)0.0000.0000.0055 (6)
Al10.0244 (8)0.0212 (6)0.0233 (8)0.0000.0000.0008 (5)
Geometric parameters (Å, º) top
Li1—Cl12.322 (17)Cl2—Li1iv2.356 (14)
Li1—Cl2i2.356 (14)Cl3—Al1v2.1354 (18)
Li1—Cl22.38 (2)Cl3—Li1vi2.413 (17)
Li1—Cl32.413 (17)Al1—Cl3vii2.1354 (18)
Cl1—Al12.1404 (19)Al1—Cl2viii2.1392 (11)
Cl1—Li1ii2.322 (17)Al1—Cl2ix2.1392 (11)
Cl2—Al1iii2.1392 (11)
Cl1—Li1—Cl2i111.0 (7)Li1iv—Cl2—Li1104.6 (5)
Cl1—Li1—Cl2108.0 (7)Al1v—Cl3—Li1vi113.1 (4)
Cl2i—Li1—Cl2109.5 (6)Al1v—Cl3—Li1113.1 (4)
Cl1—Li1—Cl3112.2 (6)Li1vi—Cl3—Li1111.1 (7)
Cl2i—Li1—Cl3108.6 (7)Cl3vii—Al1—Cl2viii108.85 (6)
Cl2—Li1—Cl3107.5 (7)Cl3vii—Al1—Cl2ix108.85 (6)
Al1—Cl1—Li1ii113.7 (5)Cl2viii—Al1—Cl2ix110.70 (8)
Al1—Cl1—Li1113.7 (5)Cl3vii—Al1—Cl1111.28 (9)
Li1ii—Cl1—Li1111.9 (9)Cl2viii—Al1—Cl1108.58 (6)
Al1iii—Cl2—Li1iv114.3 (4)Cl2ix—Al1—Cl1108.58 (6)
Al1iii—Cl2—Li1114.4 (4)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x, y, z; (iii) x, y, z+1; (iv) x+1/2, y, z+1/2; (v) x+1/2, y+1, z+1/2; (vi) x+1, y, z; (vii) x+1/2, y+1, z1/2; (viii) x, y, z1; (ix) x, y, z1.
Selected bond lengths (Å) in LiAlCl4(oP12) and LiAlCl4(mP24) (Perenthaler et al., 1982) in the left and right column, respectively, and corresponding sums of bond orders, calculated using the Brown formalism (r0 = 1.91, B = 0.37; Brese &amp; O'Keeffe, 1991). top
Li1—Cl12.322 (17)Li—Cl12.475 (7)
Li1—Cl22.381 (21)Li1—Cl2x2.729 (7)
Li1—Cl2i2.356 (14)Li1—Cl2xi2.841 (7)
Li1—Cl32.413 (17)Li1—Cl32.594 (7)
Li1—Cl3xii2.769 (7)
Li1—Cl4xiii2.493 (7)
Σs(Li—Cl)1.17Σs(Li—Cl)0.87
Symmetry codes: (i) -x+1/2, -y, z-1/2; (x) -x, y-1/2, -z+1/2; (xi) x, -y+1/2, z+1/2; (xii) -x, y-1/2, -z+1/2; (xiii) 1-x, y-1/2, -z+1/2.
 

Acknowledgements

We thank E. Hammes and P. Roloff for technical support.

References

First citationBaenziger, N. C. (1951). Acta Cryst. 4, 216–219.  CrossRef IUCr Journals Web of Science
First citationBrandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBredenhagen, B. (2014). Strukturchemische Untersuchungen an Systemen der Typen BiCl3/Aren und BiCl3/AlCl3/Aren. Aachen: Shaker Verlag GmbH.
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals
First citationBruker (2006). OPUS. Bruker Optik GmbH, Ettlingen, Germany.
First citationFrank, W. (1990). Z. Anorg. Allg. Chem. 585, 121–141.  CSD CrossRef CAS Web of Science
First citationFrank, W., Korrell, G. & Reiss, G. J. (1996). J. Organomet. Chem. 506, 293–300.  CSD CrossRef CAS Web of Science
First citationFrank, W., Weber, J. & Fuchs, E. (1987). Angew. Chem. Int. Ed. Engl. 26, 74–75.  CSD CrossRef Web of Science
First citationFrank, W. & Wittmer, F.-G. (1997). Chem. Ber. 130, 1731–1732.  CSD CrossRef CAS Web of Science
First citationGearhart, R. C. Jr, Beck, J. D. & Wood, R. H. (1975). Inorg. Chem. 14, 2413–2416.  CrossRef CAS Web of Science
First citationKraus, W. & Nolze, G. (2000). PowderCell. Federal Institute for Materials Research and Testing, Berlin, Germany.
First citationKugel, B. (2004). PhD thesis, Heinrich-Heine-Universität, Düsseldorf, Germany.
First citationMairesse, G., Barbier, P. & Vignacourt, J.-P. (1977). Cryst. Struct. Commun. 6, 15–18.  CAS
First citationMairesse, G., Barbier, P. & Wignacourt, J.-P. (1978a). Acta Cryst. B34, 1328–1330.  CrossRef CAS IUCr Journals Web of Science
First citationMairesse, G., Barbier, P. & Wignacourt, J.-P. (1979). Acta Cryst. B35, 1573–1580.  CrossRef CAS IUCr Journals Web of Science
First citationMairesse, G., Barbier, P., Wignacourt, J.-P., Rubbens, A. & Wallart, F. (1978b). Can. J. Chem. 56, 764–771.  CrossRef CAS Web of Science
First citationMettler-Toledo (2008). STARe. Mettler-Toledo AG, Schwerzenbach, Switzerland.
First citationMeyer, G. & Schwan, E. (1980). Z. Naturforsch. Teil B, 35, 117–118.
First citationNakamoto, K. (1986). Infrared and Raman Spectra of Inorganic and Coordination Compounds, pp. 130–137. New York: John Wiley & Sons.
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals
First citationPerenthaler, E., Schulz, H. & Rabenau, A. (1982). Z. Anorg. Allg. Chem. 491, 259–265.  CrossRef CAS Web of Science
First citationRubbens, A., Wallart, F., Barbier, P., Mairesse, G. & Wignacourt, J.-P. (1978). J. Raman Spectrosc. 7, 249–253.  CrossRef CAS Web of Science
First citationRytter, E. & Øye, H. A. (1973). J. Inorg. Nucl. Chem. 35, 4311–4313.  CrossRef CAS Web of Science
First citationSchäfer, W. & Nitsche, R. (1977). Z. Kristallogr. 145, 356–370.
First citationScholz, F., Unkrig, W., Eiden, P., Schmidt, M. A., Garsuch, A. & Krossing, I. (2015). Eur. J. Inorg. Chem. 3128–3138.
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationStoe & Cie (2003). WinXPOW. Stoe & Cie GmbH, Darmstadt, Germany.
First citationStoe & Cie (2009). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.
First citationWeppner, W. & Huggins, R. A. (1976). Phys. Lett. A, 58, 245–248.  CrossRef Web of Science
First citationWeppner, W. & Huggins, R. A. (1977). J. Electrochem. Soc. 124, 35–38.  CrossRef CAS Web of Science
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationWinter, M. & Brodd, R. J. (2004). Chem. Rev. 104, 4245–4269.  Web of Science CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds