research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′,N′′ versus N,N′,O imine-containing coordination motifs: ligand-directed synthesis of mononuclear and binuclear CuII compounds

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, University of Campinas - UNICAMP, Campinas – SP 13083-970, Brazil
*Correspondence e-mail: raphael.enoque@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 September 2017; accepted 22 September 2017; online 29 September 2017)

It is demonstrated here that tridentate imine ligands can control the nuclearity of copper(II) complexes based on the donor atoms present in the ligand. The N,N′,N′′-donating imine ligand led to a mononuclear compound, namely di­chlorido­[N,N-dimethyl-N′-(pyridin-2-yl­methyl­idene)ethane-1,2-di­amine]copper(II) monohydrate, [CuCl2(C10H15N3)]·H2O, 1, while the N,N′,O-donating imine ligand produced a binuclear metal complex, namely μ2-chlorido-di­chlorido­(μ2-2-{[2-(di­methyl­amino)­ethyl]imino­methyl}phenolato)(N,N-dimethyl­ethylene­di­amine)­dicopper(II) 0.11-hydrate, [Cu2(C11H15N2O)Cl3(C4H12N2)]·0.11H2O, 2. The structure of 2 is a remarkable example of a binuclear copper(II) complex containing a single substituted 2-imino­methyl­phenolate ligand that has two copper(II) sites in square-pyramidal coordination.

1. Chemical context

Copper(II) complexes with imine ligands have attracted much attention in the past few decades due to a variety of possible applications, including catalysis [aerobic oxidation of alcohols (Nairn et al., 2006[Nairn, A. K., Archibald, S. J., Bhalla, R., Gilbert, B. C., MacLean, E. J., Teat, S. J. & Walton, P. H. (2006). Dalton Trans. pp. 172-176.]; Alaji et al., 2014[Alaji, Z., Safaei, E., Chiang, L., Clarke, R. M., Mu, C. & Storr, T. (2014). Eur. J. Inorg. Chem. pp. 6066-6074.]), olefin epoxidation (Das et al., 1997[Das, G., Shukla, R., Mandal, S., Singh, R., Bharadwaj, P. K., van Hall, J. & Whitmire, K. H. (1997). Inorg. Chem. 36, 323-329.]) and ring-opening reactions (John et al., 2007[John, A., Katiyar, V., Pang, K., Shaikh, M. M., Nanavati, H. & Ghosh, P. (2007). Polyhedron, 26, 4033-4044.])], and also in medicinal chemistry for both anti­bacterial (Ali et al., 2015[Ali, O. A. M., El-Medani, S. M., Abu Serea, M. R. & Sayed, A. S. S. (2015). Spectrochim. Acta Part A, 136, 651-660.]) and anti­tumour applications (Creaven et al., 2010[Creaven, B. S., Czeglédi, E., Devereux, M., Enyedy, É. A., Foltyn-Arfa Kia, A., Karcz, D., Kellett, A., McClean, S., Nagy, N. V., Noble, A., Rockenbauer, A., Szabó-Plánka, T. & Walsh, M. (2010). Dalton Trans. 39, 10854-10865.]; Pervez et al., 2016[Pervez, H., Ahmad, M., Zaib, S., Yaqub, M., Naseer, M. M. & Iqbal, J. (2016). Med. Chem. Commun. 7, 914-923.]).

[Scheme 1]

Nonmacrocyclic binuclear copper compounds are of inter­est because they can serve as models for metalloproteins and metalloenzymes, as well as representing inter­esting subjects for studying mol­ecular magnetism. Strong magnetic exchange is present in the two copper(II) sites of haemocyanin (Chen & Solomon, 2004[Chen, P. & Solomon, E. I. (2004). Proc. Natl Acad. Sci. USA, 101, 13105-13110.]), which represents a challenge that must be considered when synthetic models are developed. One strategy, introduced by Robson (1970[Robson, R. (1970). Inorg. Nucl. Chem. Lett. 6, 125-128.]), makes use of symmetrical imino ligands containing a phenolate bridge to keep the CuII atoms close in space. Imines represent an inter­esting class of ligands because they can be easily synthesized and fine-tuned to the desired application by introducing extra donor atoms or groups with the desired steric properties into the side chains. A limited number of binuclear copper(II) compounds containing substituted 2-imino­methyl­phenole ligands have been reported in the literature (Gao et al., 2011[Gao, Y., Ji, Y., Ding, S., Liu, Z. & Tang, J. (2011). Z. Anorg. Allg. Chem. 637, 2300-2305.]; Tang et al., 2008[Tang, J., Sánchez Costa, J., Pevec, A., Kozlevčar, B., Massera, C., Roubeau, O., Mutikainen, I., Turpeinen, U., Gamez, P. & Reedijk, J. (2008). Cryst. Growth Des. 8, 1005-1012.]). This kind of structure, where the polydentate ligand has fewer donor atoms than the coordination number of the metal centre, is of inter­est for the design of more flexible binuclear model compounds.

We describe here the crystal structures of mononuclear (1) and binuclear (2) copper(II) complexes with tridentate imine-containing ligands obtained by a one-pot synthetic method. The nuclearity of the complexes was shown to be directed by the different donor atoms present in the imine ligand.

2. Structural commentary

The mononuclear compound 1 has the central CuII cation in a square-pyramidal coordination environment (Fig. 1[link]a). The CuII cation is displaced from the least-squares plane defined by the four coordinating atoms of the square base (N1, N2, N3 and Cl2) by 0.334 Å. The bond lengths to these atoms are: Cu—N1 = 2.060 (2), Cu—N2 = 1.978 (2), Cu—N3 = 2.058 (2) and Cu—Cl2 = 2.2639 (8) Å; the Cu—Cl bond length to the apical Cl1 atom that completes the first coordination sphere is considerably longer, at 2.5013 (8) Å. In order to assess the coordination geometry of copper(II) more qu­anti­tatively, the τ5 index as defined by Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) can be used. A perfect square-pyramidal coordination geometry is defined by τ5 = 0.0, while it is 1.0 for a perfect trigonal–bipyramidal coordination geometry. For compound 1, τ5 is 0.059, indicating an almost perfect square-pyramidal coordination geometry.

[Figure 1]
Figure 1
(a) Mol­ecular view of the structure of 1. Displacement ellipsoids are drawn at the 50% probability level. H atoms are not labelled for clarity. (b) Packing of the crystal structure of 1, viewed along the a axis, highlighting the hydrogen-bonded chain (comprising the water mol­ecules and the axial chloride ligand) as well as the π-stacking.

The binuclear compound 2 has two copper(II) cations, both in a square-pyramidal coordination environment (Fig. 2[link]a). The presence of the phenolate group in the structure of the imine ligand directs the reaction with copper(II) cations to form a binuclear coordination compound, in contrast with the mononuclear species 1 obtained when a pyridine group is present in the ligand. Atoms Cu1 and Cu2 in 2 are displaced from the least-squares plane defined by the four coordinating atoms of the square base (N1, N2, O1 and Cl2 for Cu1; N3, N4, O1 and Cl3 for Cu2) by 0.299 and 0.170 Å, respectively. The distances from the central copper(II) cations to these ligating atoms are: Cu1—N1 = 2.068 (2), Cu1—N2 = 1.959 (2), Cu1—O1 = 1.968 (1) and Cu1—Cl2 = 2.2958 (5) Å; Cu2—N3 = 2.021 (2), Cu2—N4 = 2.040 (2), Cu2—Cl3 = 2.2501 (5) and Cu2—O1 = 2.004 (1) Å. The two Cu—Cl distances to the apical Cl atoms are likewise longer, Cu1—Cl1 = 2.5476 (5) Å and Cu2—Cl2 = 2.5938 (5) Å. The Cu⋯Cu distance within the binuclear complex is 3.2525 (5) Å. In compound 2, the τ5 index for Cu1 is 0.294 and for Cu2 0.260, indicating more distorted square-pyramidal coordination environments for both central copper(II) cations.

[Figure 2]
Figure 2
(a) Mol­ecular structure of compound 2. Displacement ellipsoids are drawn at the 50% probability level. H atoms are not labelled for clarity. (b) Packing of the crystal structure of 2, highlighting the network of hydrogen bonds between the terminal amine group of the ligand and the chloride ligands as well as the C—H⋯π inter­actions. H atoms not participating in hydrogen bonding have been omitted for clarity.

After refining the structure of the binuclear compound 2, a solvent-accessible void of 42 Å3 was detected by a PLATON analysis (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). The highest residual electron-density peak fitted perfectly within this void. We have modelled the corresponding site as an O atom of a partially occupied water mol­ecule, showing an occupancy of 0.11. Given the low occupancy, this water mol­ecule is not represented in the mol­ecular view nor in the crystal packing (Fig. 2[link]).

3. Supra­molecular features

The presence of a water mol­ecule in the crystal structure of the mononuclear compound 1 leads to the formation of a hydrogen-bonded chain along [101] involving the apical ligand Cl1 (Fig. 1[link]b and Table 1[link]). In addition, a short contact between the C—H group of the imine group and the apical Cl1 ligand is observed (C5—H5⋯Cl1, Table 1[link]). Finally, a similar C—H⋯Cl inter­action between an aromatic H atom of the pyridine ring and the Cl2 ligand of the square base likewise contributes to the packing in the solid state (C9—H9⋯Cl2, Table 1[link]). Besides these hydrogen bonds, an offset ππ stacking is observed between adjacent pyridine rings [centroid-to-centroid distance of 3.5709 (18) Å; symmetry code: −x, −y, −z].

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1D⋯Cl1i 0.84 (1) 2.45 (1) 3.282 (3) 173 (5)
O1—H1C⋯Cl1ii 0.84 (1) 2.43 (1) 3.252 (3) 166 (4)
C5—H5⋯Cl1iii 0.95 2.73 3.669 (3) 171
C9—H9⋯Cl2iv 0.95 2.86 3.543 (3) 130
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z+1; (iii) x-1, y, z; (iv) -x+1, -y, -z.

In terms of inter­molecular contacts, a single set of hydrogen bonds is present in the crystal structure of 2, established between the non-substituted terminal amine group of N,N-di­methyl­ethylenedi­amine and the apical chloride ligand Cl1 (Fig. 2[link]b and Table 2[link]). Similar to compound 1, a nonclassical hydrogen bond between an aromatic H atom of the phenolic ring and the Cl2 ligand also contributes to the inter­molecular network (C8—H8⋯Cl2, Table 2[link]). Differing from the structure of 1, a C—H⋯π inter­action is observed for compound 2, with a C12—H12⋯centroid(phen­yl) distance of 3.393 (2) Å (symmetry code: −x + 1, −y + 1, −z + 1). The partly occupied water mol­ecule participates in a hydrogen bond with the μ2-bridging Cl2 ligand (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl1i 0.87 (2) 2.46 (2) 3.2543 (17) 153 (2)
N3—H3B⋯Cl1 0.84 (2) 2.74 (2) 3.5207 (1) 154 (2)
C8—H8⋯Cl2ii 0.95 2.81 3.6841 (19) 153
O1W⋯Cl2i     3.17 (2)  
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z-1.

4. Database survey

The structures of the mononuclear and binuclear copper(II) compounds 1 and 2 were compared with analogues found in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), using the queries shown in Fig. 3[link]. Only binuclear CuII compounds containing a single μ2-(mono­imino­methyl)­phenolate ligand were considered as analogues of 2. A total of 12 hits were found as analogues of 1, while 11 hits were found for analogues of 2, including both mono- and bis­(imino­methyl)­phenolate ligands. Averages of selected bond lengths (see representations in Fig. 3[link]) were obtained using ConQuest (Version 1.19) and the statistical analysis module in Mercury (Version 3.9) (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). The averaged values are collated in Table 3[link] and are in good agreement with the bond lengths in the structures of 1 and 2.

Table 3
Averages of selected bond lengths (as represented in Fig. 3[link]) obtained by searching the CSD for compounds analogous to 1 and 2

  1 Analogues of 1, average of 12 hits 2 Analogues of 2, average of 11 hits
D1 2.060 (2) 2.06 (7) 2.067 (2) 2.01 (4)
D2 1.978 (2) 1.99 (4) 1.959 (2) 1.98 (3)
D3 2.058 (2) 2.06 (6) 1.968 (1) 1.969 (19)
D4 2.2639 (8) 2.240 (11) 2.5477 (5) 2.28 (3)sb, 2.60 (5)ap
D5 2.5014 (9) 2.487 (17)    
D6 1.273 (3) 1.269 (15) 1.278 (3) 1.281 (6)
D7     2.004 (1) 2.01 (3)
D8     2.5939 (5) 2.287 (19)sb, 2.74 (12)ap
D9     3.2525 (5) 3.24 (10)
Notes: sb = ligands at the square base of the polyhedron; ap = ligands at the apical position.
[Figure 3]
Figure 3
Structures used as queries for the search of the CSD. Analogues of both the mononuclear and binuclear CuII compounds were searched for. NM represents any non-metal, dashed lines represent any bond type and D9 represents the Cu⋯Cu distance.

The closest relation to 1 is associated with the nonhydrated analogue (CCDC entry TAWMEK; Yuan & Zhang, 2005[Yuan, W.-B. & Zhang, Q. (2005). Acta Cryst. E61, m1883-m1884.]), which has the CuII cation in a more distorted square-pyramidal coordination geometry than 1, with the following bond lengths: Cu—N1 = 2.275 (2), Cu—N2 = 2.104 (2) and Cu—N3 = 2.236 (2) Å, and almost identical Cu—Cl1 = 2.2573 (5) and Cu—Cl2 = 2.22561 (6) Å distances. The CuII cation is displaced from the mean plane defined by the four coordinating atoms of the square base by 0.622 Å. While for 1 τ5 = 0.0593, for the structure of TAWMEK τ5 = 0.302. The differences in the coordination environment of copper(II) probably arise as a consequence of the presence of the hydrogen-bonded network established between the chloride ligands and the water mol­ecules in the crystal structure of 1. The coordination spheres around the CuII cations in 1 and TAWMEK are compared in Fig. 4[link].

[Figure 4]
Figure 4
Polyhedral representation of the coordination spheres of CuII in 1 and 2, compared with analogous compounds previously reported in the literature. Square-pyramidal coordination spheres (typical and distorted) are represented in blue and the octa­hedral coordination sphere in red.

Regarding the binuclear compound 2, the search returned only two examples of binuclear CuII complexes containing a single μ2-(mono­imino­methyl)­phenolate ligand [VAMJIE (Gao et al., 2011[Gao, Y., Ji, Y., Ding, S., Liu, Z. & Tang, J. (2011). Z. Anorg. Allg. Chem. 637, 2300-2305.]) and UFATEB (Tang et al., 2008[Tang, J., Sánchez Costa, J., Pevec, A., Kozlevčar, B., Massera, C., Roubeau, O., Mutikainen, I., Turpeinen, U., Gamez, P. & Reedijk, J. (2008). Cryst. Growth Des. 8, 1005-1012.])]. The two structures have one CuII cation in a square-pyramidal environment, comprising the tridentate imine ligand, and one octa­hedrally surrounded CuII site, bridged by the phenolate and a chloride ligand. Structure 2, on the other hand, comprises a binuclear copper(II) complex with a single μ2-(mono­imino­methyl)­phenolate ligand that has two CuII co­ordination sites in square-pyramidal environments. The co­ordination spheres around the two CuII cations in 2 and UFATEB are compared in Fig. 4[link].

5. Synthesis and crystallization

Copper(II) chloride dihydrate was purchased from Vetec (Brazil). N,N-di­methyl­ethylene­di­amine, pyridine-2-carbox­aldehyde and salicyl­aldehyde were purchased from Sigma–Aldrich and used without further purification.

Compound 1, C10H15Cl2CuN3·H2O, was obtained as follows. In a 10 ml beaker, N,N-di­methyl­ethylene­di­amine (0.10 mmol, 65.6 µl) was combined with pyridine-2-carbox­aldehyde (0.10 mmol, 10 µl) in methanol (200 µl). The reaction was carried out at room temperature for 24 h. Afterwards, solid CuCl2·2H2O (0.10 mmol, 2.8 mg) was added to the reaction mixture. A polycrystalline green compound was obtained, filtered off and washed with small amounts of cold methanol. Elemental analysis was performed on a Perkin–Elmer CHNS-O 2400. Analysis, calculated for C10H15Cl2CuN3·H2O: C 36.4, H 5.2, N 12.7%; found: C 36.8, H 4.8, N 13.0%. The supernatant was transferred to an amber flask and green crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation.

Compound 2 (C15H27Cl3Cu2N4O·0.11H2O) was obtained following the same synthetic procedure as used for 1, but replacing pyridine-2-carbox­aldehyde by salicyl­aldehyde (11 µl). Green needle-like crystals of 2 were obtained by slow evaporation of the supernatant. Since only a few crystals were obtained, no further analytical data were acquired.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were placed in calculated positions, with C—H = 0.99 (CH2) or 0.95 Å (CH), with Uiso(H) = 1.2Ueq(C), and C—H = 0.98 Å (CH3) and Uiso(H) = 1.5Ueq(C). For structure 1, the H atoms of the water mol­ecule were refined with an O—H distance restraint of 0.82 (1) Å and a H⋯H separation of 1.29 (2) Å, and with Uiso(H) = 1.5Ueq(O). For structure 2, the H atoms of the amine functionality (H3A and H3B) were refined freely. The occupancy of the partly occupied water solvent mol­ecule was refined to a value of 0.11 (1); for this mol­ecule, H atoms were not located and they were not considered in the final model.

Table 4
Experimental details

  1 2
Crystal data
Chemical formula [CuCl2(C10H15N3)]·H2O [Cu2(C11H15N2O)Cl3(C4H12N2)]·0.11H2O
Mr 329.70 514.77
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 150 150
a, b, c (Å) 6.9667 (5), 24.735 (2), 7.9294 (6) 11.0838 (4), 18.0949 (7), 10.6610 (4)
β (°) 103.693 (4) 101.474 (2)
V3) 1327.55 (18) 2095.44 (14)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 5.93 6.12
Crystal size (mm) 0.27 × 0.05 × 0.05 0.08 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker APEX CCD area-detector Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.522, 0.753 0.654, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 7065, 2361, 2199 11774, 3680, 3333
Rint 0.041 0.024
(sin θ/λ)max−1) 0.603 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.10 0.022, 0.056, 1.03
No. of reflections 2361 3680
No. of parameters 162 248
No. of restraints 3 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.65, −0.60 0.32, −0.28
Computer programs: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Dichlorido[N,N-dimethyl-N'-(pyridin-2-ylmethylidene)ethane-1,2-diamine]copper(II) monohydrate (1) top
Crystal data top
[CuCl2(C10H15N3)]·H2OF(000) = 676
Mr = 329.70Dx = 1.650 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 6.9667 (5) ÅCell parameters from 5700 reflections
b = 24.735 (2) Åθ = 6.0–68.2°
c = 7.9294 (6) ŵ = 5.93 mm1
β = 103.693 (4)°T = 150 K
V = 1327.55 (18) Å3Needle, green
Z = 40.27 × 0.05 × 0.05 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
2199 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.041
φ and ω scansθmax = 68.4°, θmin = 6.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 88
Tmin = 0.522, Tmax = 0.753k = 2929
7065 measured reflectionsl = 95
2361 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0521P)2 + 1.8713P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2361 reflectionsΔρmax = 0.65 e Å3
162 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25867 (6)0.11867 (2)0.18700 (5)0.01663 (17)
Cl10.36674 (10)0.19272 (3)0.01545 (9)0.0226 (2)
Cl20.52625 (10)0.06383 (3)0.25165 (9)0.0239 (2)
N10.3071 (3)0.15604 (10)0.4256 (3)0.0196 (5)
N20.0116 (3)0.14595 (10)0.1726 (3)0.0195 (5)
N30.1025 (3)0.07572 (10)0.0233 (3)0.0173 (5)
C10.0402 (4)0.18436 (13)0.3060 (4)0.0244 (7)
H1A0.10830.16660.38740.029*
H1B0.12030.21560.25180.029*
C20.1668 (4)0.20274 (13)0.4012 (4)0.0237 (6)
H2A0.21320.23140.33330.028*
H2B0.16240.21800.51570.028*
C30.2592 (5)0.11624 (13)0.5493 (4)0.0259 (7)
H3A0.12340.10340.50600.039*
H3B0.27210.13340.66280.039*
H3C0.35060.08560.56090.039*
C40.5104 (5)0.17632 (14)0.4964 (4)0.0289 (7)
H4A0.60380.14610.50990.043*
H4B0.51840.19320.60960.043*
H4C0.54350.20300.41640.043*
C50.1490 (4)0.12990 (12)0.0464 (4)0.0204 (6)
H50.28020.14330.02700.024*
C60.0916 (4)0.08948 (12)0.0667 (4)0.0195 (6)
C70.2231 (5)0.06563 (13)0.2042 (4)0.0240 (7)
H70.35860.07560.23150.029*
C80.1550 (5)0.02693 (13)0.3020 (4)0.0260 (7)
H80.24280.01030.39790.031*
C90.0427 (5)0.01288 (13)0.2578 (4)0.0240 (6)
H90.09300.01360.32290.029*
C100.1664 (4)0.03815 (12)0.1165 (4)0.0205 (6)
H100.30180.02820.08540.025*
O10.9383 (4)0.19474 (11)0.7408 (4)0.0429 (7)
H1D0.919 (6)0.2249 (10)0.692 (6)0.064*
H1C1.055 (3)0.1978 (17)0.799 (6)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0140 (3)0.0238 (3)0.0107 (2)0.00267 (15)0.00034 (16)0.00037 (15)
Cl10.0228 (4)0.0262 (4)0.0186 (3)0.0009 (3)0.0046 (3)0.0041 (3)
Cl20.0182 (4)0.0300 (4)0.0210 (4)0.0068 (3)0.0004 (3)0.0012 (3)
N10.0182 (12)0.0263 (13)0.0136 (11)0.0008 (10)0.0024 (9)0.0022 (10)
N20.0182 (12)0.0255 (13)0.0154 (11)0.0031 (10)0.0054 (9)0.0010 (10)
N30.0188 (12)0.0214 (12)0.0100 (10)0.0007 (9)0.0000 (9)0.0050 (9)
C10.0235 (15)0.0312 (16)0.0195 (14)0.0038 (13)0.0068 (12)0.0030 (13)
C20.0253 (16)0.0256 (16)0.0213 (14)0.0018 (12)0.0076 (12)0.0045 (12)
C30.0311 (17)0.0342 (18)0.0115 (13)0.0011 (13)0.0030 (12)0.0014 (12)
C40.0206 (15)0.0374 (18)0.0260 (16)0.0030 (13)0.0002 (12)0.0091 (14)
C50.0158 (14)0.0247 (15)0.0202 (14)0.0013 (11)0.0033 (11)0.0063 (12)
C60.0202 (14)0.0234 (15)0.0130 (12)0.0005 (11)0.0004 (11)0.0083 (11)
C70.0208 (15)0.0310 (17)0.0163 (13)0.0011 (12)0.0035 (11)0.0077 (12)
C80.0329 (17)0.0300 (17)0.0106 (13)0.0071 (13)0.0036 (12)0.0038 (12)
C90.0328 (17)0.0266 (16)0.0123 (13)0.0011 (13)0.0046 (12)0.0018 (12)
C100.0217 (14)0.0259 (15)0.0131 (13)0.0022 (12)0.0026 (11)0.0045 (11)
O10.0434 (15)0.0465 (16)0.0357 (14)0.0004 (12)0.0028 (12)0.0057 (12)
Geometric parameters (Å, º) top
Cu1—Cl12.5013 (8)C3—H3B0.9800
Cu1—Cl22.2639 (8)C3—H3C0.9800
Cu1—N12.060 (2)C4—H4A0.9800
Cu1—N21.978 (2)C4—H4B0.9800
Cu1—N32.058 (2)C4—H4C0.9800
N1—C21.496 (4)C5—H50.9500
N1—C31.482 (4)C5—C61.460 (4)
N1—C41.482 (4)C6—C71.380 (4)
N2—C11.469 (4)C7—H70.9500
N2—C51.274 (4)C7—C81.384 (5)
N3—C61.357 (4)C8—H80.9500
N3—C101.328 (4)C8—C91.383 (5)
C1—H1A0.9900C9—H90.9500
C1—H1B0.9900C9—C101.390 (4)
C1—C21.530 (4)C10—H100.9500
C2—H2A0.9900O1—H1D0.838 (10)
C2—H2B0.9900O1—H1C0.837 (10)
C3—H3A0.9800
Cl2—Cu1—Cl1102.95 (3)H2A—C2—H2B108.1
N1—Cu1—Cl199.55 (7)N1—C3—H3A109.5
N1—Cu1—Cl296.54 (7)N1—C3—H3B109.5
N2—Cu1—Cl197.12 (7)N1—C3—H3C109.5
N2—Cu1—Cl2159.89 (8)H3A—C3—H3B109.5
N2—Cu1—N181.17 (10)H3A—C3—H3C109.5
N2—Cu1—N379.40 (10)H3B—C3—H3C109.5
N3—Cu1—Cl196.13 (7)N1—C4—H4A109.5
N3—Cu1—Cl297.08 (7)N1—C4—H4B109.5
N3—Cu1—N1156.35 (10)N1—C4—H4C109.5
C2—N1—Cu1105.54 (17)H4A—C4—H4B109.5
C3—N1—Cu1107.23 (18)H4A—C4—H4C109.5
C3—N1—C2110.9 (2)H4B—C4—H4C109.5
C4—N1—Cu1115.69 (18)N2—C5—H5122.2
C4—N1—C2108.9 (2)N2—C5—C6115.6 (3)
C4—N1—C3108.6 (2)C6—C5—H5122.2
C1—N2—Cu1117.93 (18)N3—C6—C5114.7 (2)
C5—N2—Cu1117.8 (2)N3—C6—C7121.9 (3)
C5—N2—C1124.2 (3)C7—C6—C5123.4 (3)
C6—N3—Cu1112.31 (19)C6—C7—H7120.4
C10—N3—Cu1129.0 (2)C6—C7—C8119.1 (3)
C10—N3—C6118.7 (2)C8—C7—H7120.4
N2—C1—H1A110.5C7—C8—H8120.5
N2—C1—H1B110.5C9—C8—C7119.0 (3)
N2—C1—C2106.0 (2)C9—C8—H8120.5
H1A—C1—H1B108.7C8—C9—H9120.6
C2—C1—H1A110.5C8—C9—C10118.8 (3)
C2—C1—H1B110.5C10—C9—H9120.6
N1—C2—C1110.2 (2)N3—C10—C9122.5 (3)
N1—C2—H2A109.6N3—C10—H10118.7
N1—C2—H2B109.6C9—C10—H10118.7
C1—C2—H2A109.6H1D—O1—H1C102 (2)
C1—C2—H2B109.6
Cu1—N1—C2—C147.7 (3)C3—N1—C2—C168.1 (3)
Cu1—N2—C1—C212.6 (3)C4—N1—C2—C1172.5 (2)
Cu1—N2—C5—C64.5 (3)C5—N2—C1—C2165.9 (3)
Cu1—N3—C6—C51.8 (3)C5—C6—C7—C8178.8 (3)
Cu1—N3—C6—C7179.9 (2)C6—N3—C10—C90.8 (4)
Cu1—N3—C10—C9179.2 (2)C6—C7—C8—C90.6 (4)
N2—C1—C2—N139.5 (3)C7—C8—C9—C100.0 (4)
N2—C5—C6—N31.6 (4)C8—C9—C10—N30.8 (4)
N2—C5—C6—C7176.7 (3)C10—N3—C6—C5178.2 (2)
N3—C6—C7—C80.6 (4)C10—N3—C6—C70.1 (4)
C1—N2—C5—C6176.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···Cl1i0.84 (1)2.45 (1)3.282 (3)173 (5)
O1—H1C···Cl1ii0.84 (1)2.43 (1)3.252 (3)166 (4)
C5—H5···Cl1iii0.952.733.669 (3)171
C9—H9···Cl2iv0.952.863.543 (3)130
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x+1, y, z.
µ2-Chlorido-dichlorido(µ2-2-{[2-(dimethylamino)ethyl]iminomethyl}phenolato)(N,N-dimethylethylenediamine)dicopper(II) 0.11-hydrate (2) top
Crystal data top
[Cu2(C11H15N2O)Cl3(C4H12N2)]·0.11H2OF(000) = 1051
Mr = 514.77Dx = 1.631 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 11.0838 (4) ÅCell parameters from 6733 reflections
b = 18.0949 (7) Åθ = 4.8–68.2°
c = 10.6610 (4) ŵ = 6.12 mm1
β = 101.474 (2)°T = 150 K
V = 2095.44 (14) Å3Needle, clear green
Z = 40.08 × 0.06 × 0.04 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3333 reflections with I > 2σ(I)
φ and ω scansRint = 0.024
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
θmax = 68.2°, θmin = 4.1°
Tmin = 0.654, Tmax = 0.753h = 1113
11774 measured reflectionsk = 1921
3680 independent reflectionsl = 1112
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0287P)2 + 1.0606P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3680 reflectionsΔρmax = 0.32 e Å3
248 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.79793 (2)0.56169 (2)0.73980 (2)0.01442 (8)
Cu20.69862 (2)0.39361 (2)0.68114 (2)0.01267 (8)
Cl10.59567 (4)0.62588 (3)0.64539 (4)0.02241 (11)
Cl20.75397 (4)0.47616 (3)0.88333 (4)0.02295 (11)
Cl30.85942 (4)0.32302 (2)0.65652 (4)0.02100 (11)
O10.76725 (11)0.48317 (7)0.60963 (11)0.0151 (3)
N10.85544 (14)0.64035 (9)0.87958 (15)0.0189 (3)
N20.90614 (13)0.61412 (8)0.64520 (14)0.0161 (3)
N30.52655 (14)0.43584 (9)0.63814 (16)0.0165 (3)
H3A0.503 (2)0.4342 (12)0.556 (2)0.017 (5)*
H3B0.533 (2)0.4801 (15)0.663 (2)0.024 (6)*
N40.61771 (14)0.31151 (8)0.76637 (14)0.0157 (3)
C10.96901 (18)0.67789 (11)0.71453 (19)0.0213 (4)
H1A0.97910.71780.65390.026*
H1B1.05150.66340.76250.026*
C20.88892 (18)0.70405 (11)0.80598 (19)0.0219 (4)
H2A0.93410.74130.86550.026*
H2B0.81330.72750.75710.026*
C30.75991 (19)0.66273 (12)0.9508 (2)0.0273 (5)
H3C0.68650.67940.89040.041*
H3D0.79130.70311.00960.041*
H3E0.73850.62050.99970.041*
C40.96456 (18)0.61355 (12)0.97277 (19)0.0262 (4)
H4A0.94110.57101.01950.039*
H4B0.99550.65321.03330.039*
H4C1.02910.59880.92700.039*
C50.92226 (16)0.59984 (10)0.53223 (17)0.0161 (4)
H50.97860.63020.49930.019*
C60.86234 (15)0.54160 (10)0.45045 (17)0.0140 (3)
C70.88041 (17)0.54119 (11)0.32361 (18)0.0182 (4)
H70.93420.57660.29830.022*
C80.82217 (18)0.49076 (11)0.23504 (17)0.0206 (4)
H80.83450.49160.14940.025*
C90.74469 (18)0.43840 (11)0.27382 (18)0.0203 (4)
H90.70300.40380.21340.024*
C100.72765 (17)0.43609 (10)0.39835 (18)0.0173 (4)
H100.67570.39920.42260.021*
C110.78550 (15)0.48712 (10)0.48998 (16)0.0132 (3)
C120.43951 (17)0.39331 (11)0.6993 (2)0.0232 (4)
H12A0.38860.36060.63540.028*
H12B0.38390.42760.73290.028*
C130.51174 (18)0.34742 (11)0.80794 (19)0.0215 (4)
H13A0.54190.37950.88280.026*
H13B0.45750.30920.83370.026*
C140.57543 (19)0.25295 (11)0.67056 (19)0.0229 (4)
H14A0.52210.27470.59530.034*
H14B0.52940.21550.70800.034*
H14C0.64690.22990.64510.034*
C150.69955 (18)0.27786 (12)0.87843 (19)0.0240 (4)
H15A0.77010.25480.85120.036*
H15B0.65390.24030.91620.036*
H15C0.72880.31620.94210.036*
O1W0.4947 (19)0.4479 (16)0.081 (2)0.084 (11)0.108 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01696 (14)0.01273 (14)0.01364 (13)0.00351 (10)0.00323 (10)0.00212 (10)
Cu20.01273 (13)0.01071 (14)0.01505 (13)0.00016 (10)0.00394 (10)0.00254 (10)
Cl10.0169 (2)0.0237 (2)0.0246 (2)0.00368 (18)0.00074 (17)0.00630 (19)
Cl20.0342 (3)0.0210 (2)0.0129 (2)0.00864 (19)0.00281 (17)0.00016 (17)
Cl30.0164 (2)0.0176 (2)0.0312 (2)0.00427 (17)0.01032 (18)0.00640 (18)
O10.0210 (6)0.0116 (6)0.0139 (6)0.0022 (5)0.0063 (5)0.0001 (5)
N10.0182 (8)0.0187 (8)0.0193 (8)0.0027 (6)0.0027 (6)0.0053 (6)
N20.0148 (7)0.0136 (7)0.0200 (8)0.0019 (6)0.0032 (6)0.0018 (6)
N30.0167 (8)0.0148 (8)0.0174 (8)0.0000 (6)0.0018 (6)0.0006 (7)
N40.0170 (7)0.0149 (7)0.0163 (7)0.0014 (6)0.0062 (6)0.0041 (6)
C10.0219 (9)0.0170 (9)0.0254 (10)0.0089 (8)0.0059 (8)0.0049 (8)
C20.0234 (9)0.0145 (9)0.0275 (10)0.0032 (8)0.0046 (8)0.0054 (8)
C30.0266 (10)0.0310 (11)0.0258 (10)0.0024 (9)0.0087 (8)0.0123 (9)
C40.0241 (10)0.0290 (11)0.0227 (10)0.0022 (9)0.0024 (8)0.0021 (9)
C50.0132 (8)0.0149 (9)0.0206 (9)0.0008 (7)0.0046 (7)0.0033 (7)
C60.0120 (8)0.0132 (8)0.0168 (8)0.0015 (7)0.0028 (7)0.0014 (7)
C70.0172 (9)0.0187 (9)0.0201 (9)0.0005 (8)0.0074 (7)0.0026 (8)
C80.0251 (9)0.0226 (10)0.0155 (9)0.0024 (8)0.0070 (7)0.0003 (8)
C90.0241 (10)0.0180 (10)0.0179 (9)0.0009 (8)0.0018 (7)0.0032 (7)
C100.0191 (9)0.0133 (9)0.0195 (9)0.0018 (7)0.0038 (7)0.0005 (7)
C110.0131 (8)0.0114 (8)0.0153 (8)0.0036 (7)0.0034 (6)0.0020 (7)
C120.0162 (9)0.0239 (10)0.0312 (10)0.0017 (8)0.0087 (8)0.0043 (8)
C130.0206 (9)0.0229 (10)0.0238 (10)0.0015 (8)0.0114 (8)0.0025 (8)
C140.0267 (10)0.0170 (9)0.0264 (10)0.0066 (8)0.0086 (8)0.0000 (8)
C150.0240 (10)0.0247 (10)0.0240 (10)0.0030 (8)0.0067 (8)0.0105 (8)
O1W0.048 (13)0.12 (2)0.081 (17)0.002 (13)0.006 (11)0.024 (15)
Geometric parameters (Å, º) top
Cu1—Cl12.5476 (5)C3—H3D0.9800
Cu1—Cl22.2957 (5)C3—H3E0.9800
Cu1—O11.9679 (12)C4—H4A0.9800
Cu1—N12.0675 (15)C4—H4B0.9800
Cu1—N21.9589 (15)C4—H4C0.9800
Cu2—Cl22.5939 (5)C5—H50.9500
Cu2—Cl32.2500 (5)C5—C61.443 (3)
Cu2—O12.0042 (12)C6—C71.406 (3)
Cu2—N32.0209 (16)C6—C111.420 (2)
Cu2—N42.0399 (15)C7—H70.9500
O1—C111.333 (2)C7—C81.378 (3)
N1—C21.483 (3)C8—H80.9500
N1—C31.477 (2)C8—C91.395 (3)
N1—C41.486 (2)C9—H90.9500
N2—C11.469 (2)C9—C101.378 (3)
N2—C51.279 (2)C10—H100.9500
N3—H3A0.87 (2)C10—C111.403 (3)
N3—H3B0.84 (3)C12—H12A0.9900
N3—C121.483 (2)C12—H12B0.9900
N4—C131.485 (2)C12—C131.517 (3)
N4—C141.482 (3)C13—H13A0.9900
N4—C151.480 (2)C13—H13B0.9900
C1—H1A0.9900C14—H14A0.9800
C1—H1B0.9900C14—H14B0.9800
C1—C21.519 (3)C14—H14C0.9800
C2—H2A0.9900C15—H15A0.9800
C2—H2B0.9900C15—H15B0.9800
C3—H3C0.9800C15—H15C0.9800
Cl2—Cu1—Cl1106.496 (19)N1—C3—H3C109.5
O1—Cu1—Cl192.04 (4)N1—C3—H3D109.5
O1—Cu1—Cl287.33 (4)N1—C3—H3E109.5
O1—Cu1—N1172.12 (6)H3C—C3—H3D109.5
N1—Cu1—Cl195.27 (5)H3C—C3—H3E109.5
N1—Cu1—Cl293.42 (5)H3D—C3—H3E109.5
N2—Cu1—Cl199.01 (5)N1—C4—H4A109.5
N2—Cu1—Cl2154.49 (5)N1—C4—H4B109.5
N2—Cu1—O191.39 (6)N1—C4—H4C109.5
N2—Cu1—N184.55 (6)H4A—C4—H4B109.5
Cl3—Cu2—Cl2111.221 (19)H4A—C4—H4C109.5
O1—Cu2—Cl278.78 (4)H4B—C4—H4C109.5
O1—Cu2—Cl392.60 (4)N2—C5—H5117.2
O1—Cu2—N391.17 (6)N2—C5—C6125.67 (17)
O1—Cu2—N4172.78 (6)C6—C5—H5117.2
N3—Cu2—Cl291.56 (5)C7—C6—C5116.65 (16)
N3—Cu2—Cl3157.21 (5)C7—C6—C11119.36 (16)
N3—Cu2—N484.13 (6)C11—C6—C5123.97 (16)
N4—Cu2—Cl295.82 (4)C6—C7—H7119.1
N4—Cu2—Cl393.85 (4)C8—C7—C6121.71 (17)
Cu1—Cl2—Cu283.156 (16)C8—C7—H7119.1
Cu1—O1—Cu2109.94 (6)C7—C8—H8120.7
C11—O1—Cu1126.76 (11)C7—C8—C9118.59 (17)
C11—O1—Cu2123.29 (11)C9—C8—H8120.7
C2—N1—Cu1103.16 (11)C8—C9—H9119.5
C2—N1—C4110.58 (15)C10—C9—C8121.09 (18)
C3—N1—Cu1114.17 (12)C10—C9—H9119.5
C3—N1—C2109.84 (16)C9—C10—H10119.4
C3—N1—C4108.49 (15)C9—C10—C11121.29 (17)
C4—N1—Cu1110.53 (12)C11—C10—H10119.4
C1—N2—Cu1113.52 (12)O1—C11—C6122.37 (16)
C5—N2—Cu1126.99 (13)O1—C11—C10119.72 (16)
C5—N2—C1119.44 (16)C10—C11—C6117.91 (16)
Cu2—N3—H3A107.4 (14)N3—C12—H12A109.8
Cu2—N3—H3B105.4 (16)N3—C12—H12B109.8
H3A—N3—H3B110 (2)N3—C12—C13109.21 (15)
C12—N3—Cu2111.79 (12)H12A—C12—H12B108.3
C12—N3—H3A109.6 (14)C13—C12—H12A109.8
C12—N3—H3B112.5 (16)C13—C12—H12B109.8
C13—N4—Cu2104.96 (11)N4—C13—C12109.90 (15)
C14—N4—Cu2108.70 (11)N4—C13—H13A109.7
C14—N4—C13110.99 (15)N4—C13—H13B109.7
C15—N4—Cu2113.96 (11)C12—C13—H13A109.7
C15—N4—C13109.47 (14)C12—C13—H13B109.7
C15—N4—C14108.74 (15)H13A—C13—H13B108.2
N2—C1—H1A110.4N4—C14—H14A109.5
N2—C1—H1B110.4N4—C14—H14B109.5
N2—C1—C2106.76 (15)N4—C14—H14C109.5
H1A—C1—H1B108.6H14A—C14—H14B109.5
C2—C1—H1A110.4H14A—C14—H14C109.5
C2—C1—H1B110.4H14B—C14—H14C109.5
N1—C2—C1109.70 (16)N4—C15—H15A109.5
N1—C2—H2A109.7N4—C15—H15B109.5
N1—C2—H2B109.7N4—C15—H15C109.5
C1—C2—H2A109.7H15A—C15—H15B109.5
C1—C2—H2B109.7H15A—C15—H15C109.5
H2A—C2—H2B108.2H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl1i0.87 (2)2.46 (2)3.2543 (17)153 (2)
N3—H3B···Cl10.84 (2)2.74 (2)3.5207 (1)154 (2)
C8—H8···Cl2ii0.952.813.6841 (19)153
O1W···Cl2i3.17 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1.
Averages of selected bond lengths (as represented in Fig. 3) obtained by searching the CSD for compounds analogous to 1 and 2 top
1Analogues of 1, average of 12 hits2Analogues of 2, average of 11 hits
D12.060 (2)2.06 (7)2.067 (2)2.01 (4)
D21.978 (2)1.99 (4)1.959 (2)1.98 (3)
D32.058 (2)2.06 (6)1.968 (1)1.969 (19)
D42.2639 (8)2.240 (11)2.5477 (5)2.28 (3)sb 2.60 (5)ap
D52.5014 (9)2.487 (17)
D61.273 (3)1.269 (15)1.278 (3)1.281 (6)
D72.004 (1)2.01 (3)
D82.5939 (5)2.287 (19)sb 2.74 (12)ap
D93.2525 (5)3.24 (10)
Notes: sb = ligands at the square base of the polyhedron; ap = ligands at the apical position.
 

Acknowledgements

The authors are grateful to Dr Déborah de Alencar Simoni, technician of the Institutional Single-Crystal XRD Facility, UNICAMP, Brazil, for the data collection.

Funding information

Funding for this research was provided by: Conselho Nacional de Desenvolvimento Científico e Tecnológico (scholarship No. 140466/2014-2 to Raphael E. F. de Paiva; scholarship No. 140707/2013-1 to Fernando R. G. Bergamini); Fundação de Amparo à Pesquisa do Estado de São Paulo (grant No. 2015/ 25114-4 to Pedro P. Corbi; scholarship No. 2015/20882-3 to Douglas H. Nakahata).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science
First citationAlaji, Z., Safaei, E., Chiang, L., Clarke, R. M., Mu, C. & Storr, T. (2014). Eur. J. Inorg. Chem. pp. 6066–6074.  CrossRef
First citationAli, O. A. M., El-Medani, S. M., Abu Serea, M. R. & Sayed, A. S. S. (2015). Spectrochim. Acta Part A, 136, 651–660.  CrossRef CAS
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChen, P. & Solomon, E. I. (2004). Proc. Natl Acad. Sci. USA, 101, 13105–13110.  CrossRef PubMed CAS
First citationCreaven, B. S., Czeglédi, E., Devereux, M., Enyedy, É. A., Foltyn-Arfa Kia, A., Karcz, D., Kellett, A., McClean, S., Nagy, N. V., Noble, A., Rockenbauer, A., Szabó-Plánka, T. & Walsh, M. (2010). Dalton Trans. 39, 10854–10865.  CrossRef CAS PubMed
First citationDas, G., Shukla, R., Mandal, S., Singh, R., Bharadwaj, P. K., van Hall, J. & Whitmire, K. H. (1997). Inorg. Chem. 36, 323–329.  CrossRef CAS
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationGao, Y., Ji, Y., Ding, S., Liu, Z. & Tang, J. (2011). Z. Anorg. Allg. Chem. 637, 2300–2305.  CrossRef CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationJohn, A., Katiyar, V., Pang, K., Shaikh, M. M., Nanavati, H. & Ghosh, P. (2007). Polyhedron, 26, 4033–4044.  Web of Science CSD CrossRef CAS
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationNairn, A. K., Archibald, S. J., Bhalla, R., Gilbert, B. C., MacLean, E. J., Teat, S. J. & Walton, P. H. (2006). Dalton Trans. pp. 172–176.  CrossRef
First citationPervez, H., Ahmad, M., Zaib, S., Yaqub, M., Naseer, M. M. & Iqbal, J. (2016). Med. Chem. Commun. 7, 914–923.  CrossRef CAS
First citationRobson, R. (1970). Inorg. Nucl. Chem. Lett. 6, 125–128.  CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationTang, J., Sánchez Costa, J., Pevec, A., Kozlevčar, B., Massera, C., Roubeau, O., Mutikainen, I., Turpeinen, U., Gamez, P. & Reedijk, J. (2008). Cryst. Growth Des. 8, 1005–1012.  Web of Science CSD CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationYuan, W.-B. & Zhang, Q. (2005). Acta Cryst. E61, m1883–m1884.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds