research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-7-[(4-Nitro­phen­yl)diazen­yl]-3a-(p-tol­yl)-2,3,3a,4-tetra­hydro-1H-benzo[d]pyrrolo­[1,2-a]imidazol-1-one 0.58-di­methyl sulfoxide 0.42-aceto­nitrile solvate: crystal structure, Hirshfeld analysis and DFT estimation of the energy of inter­molecular inter­actions

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, N.G. Chernyshevsky National Research Saratov State University, Astrakhanskaya ul. 83, Saratov 410012, Russian Federation, and bInstitute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russian Federation
*Correspondence e-mail: grinev@ibppm.ru

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 14 August 2017; accepted 27 September 2017; online 29 September 2017)

In the crystal structure of the title compound, C23H19N5O3·0.58C2H6OS·0.42C2H3N, prepared by the azo coupling of the 4-nitro­phenyl­diazo­nium salt with 3a-(p-tol­yl)-2,3,3a,4-tetra­hydro-1H-benzo[d]pyrrolo­[1,2-a]imidazol-1-one, the azo mol­ecules are linked by N—H⋯O hydrogen bonds into chains along the a-axis direction, and by the ππ inter­action into [101] chains. The dimethyl sulfoxide and aceto­nitrile solvent mol­ecules occupy the same positions, with populations of 0.585 (3) and 0.415 (3), respectively. These mol­ecules take part in C—H⋯O(N) and C—H⋯π contacts. The energy of the ππ inter­actions was estimated using DFT calculations. The Hirshfeld mol­ecular surface analysis revealed the positions of the most important inter­molecular contacts, such as hydrogen bonds and ππ inter­actions.

1. Chemical context

Compounds prepared by azo coupling of aryl­diazo­nium salts with 3a-aryl-2,3,3a,4-tetra­hydro-1H-benzo[d]pyrrolo­[1,2-a]imidazol-1-one (1) are crystalline substances with deep color varying from yellow to red, depending on the structure of the initial diazo­nium cation. Since several nucleophilic centers in 1 can be attacked by the electrophilic diazo­nium cation, it was of inter­est to study the effect of heteroatoms, as well as other mol­ecular fragments, on the mol­ecular reactivity. The presence of the secondary amino group allows the formation of triazene derivatives. However, the most likely site of electrophilic attack is a fused aromatic ring activated by N heteroatoms. The azo dye mol­ecules constructed in this way can exist in two forms, E and Z, depending on the presence or absence of certain stabilizing factors: bulky substituents, intra­molecular hydrogen bonds, non-covalent inter­actions, etc. One of the representatives of the synthesized series is 7-[(4-nitro­phen­yl)diazen­yl]-3a-(p-tol­yl)-2,3,3a,4-tetra­hydro-1H-benzo[d]pyrrolo­[1,2-a]imidazol-1-one (2), which was prepared from 4-nitro­phenyl­diazo­nium chloride and 1. For the final determination of the structure of the azo product, an X-ray diffraction study of a crystal grown from DMSO–aceto­nitrile solution as a mixed DMSO/aceto­nitrile solvate of 2 was performed.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1[link]. The mol­ecules of 2 have the E-configuration that was expected because of the para position of the nitro group in the aryl­diazenyl fragment. Part of the mol­ecule of 2, including the 4-nitro­phenyl and benzimidazole fragments linked by the azo group, is close to planar, with the dihedral angle formed by two aromatic rings being 2.73 (7)°. The largest deviation from the mean plane of the benzimidazole ring system is 0.1300 (9) Å for C4. The 1H-imidazole ring adopts an envelope conformation with C4 atom as the flap, thus introducing some non-planarity into the conjugated part of the mol­ecule. The pyrrolidone ring is twisted with respect to the C2—C3 bond, thus the environment of the N2 amide atom becomes non-planar and this atom deviates by 0.267 (1) Å from the plane formed by the three neighboring C atoms. As as result, the C1—N2 distance [1.3737 (17) Å] is larger than average for γ-lactams [1.347 (14) Å; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]]. The relatively long N2—C10 distance [1.4091 (17) Å] indicates weak π-conjugation and gives an insight into why substitution takes place at the 8 position.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with overlapping solvent mol­ecules of DMSO and aceto­nitrile. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules of 2 are linked by N—H⋯O hydrogen bonds into chains along the a-axis direction (Table 1[link], Fig. 2[link]). These mol­ecules are also linked by ππ inter­actions between the aromatic rings of the benzimidazole fragments and 4-nitro­phenyl substituents as well as between p-tolyl substituents (Table 2[link], Fig. 3[link]), thus forming chains along the [101] direction. Comparing geometric parameters related to these ππ inter­actions (Table 2[link]), one can conclude that those involving p-tolyl substituents are weaker. The di­methyl­sulfoxide and aceto­nitrile solvent mol­ecules occupy the same positions with populations of 0.585 (3) and 0.415 (3), respectively. These mol­ecules participate in inter­molecular inter­actions as donors of H-atoms of the methyl groups of aceto­nitrile and DMSO, and as H-atom acceptors via the electronegative O and N atoms (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 (2) 2.04 (2) 2.8550 (15) 154.9 (19)
C2—H2A⋯N1SBii 0.99 2.52 3.43 (2) 153
C2—H2B⋯O1Siii 0.99 2.43 3.348 (14) 154
C2—H2B⋯N1SBiii 0.99 2.43 3.37 (3) 158
C2S—H2SACg1ii 0.96 2.93 3.766 (3) 146
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y+1, z.

Table 2
Experimental and calculated parameters of π–π inter­actions in 2

Rings Energy (kcal mol−1) Inter­centroid distance (Å)   Inter­planar distance (Å)   Ring offset (Å)   Angle (°)  
    exp  calcd exp  calcd exp  calcd exp  calcd
Benzimidazole/4-nitro­phen­yl −16.48 3.8290 (9) 3.876 3.5025 (12) 3.485 1.547 (2) 1.698 23.814 (5) 25.977
p-Tol­yl −3.07 4.3241 (13) 4.807 3.628 (2) 3.740 2.353 (3) 3.018 32.963 (3) 38.920
[Figure 2]
Figure 2
The packing diagram viewed along the b axis. N—H⋯O hydrogen bonds are represented by dotted lines.
[Figure 3]
Figure 3
Diagram showing ππ inter­actions between mol­ecules of 2 (a) between the aromatic rings of the benzimidazole group and the 4-nitro­phenyl substituent, (b) between the aromatic rings of two p-tolyl substituents.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) of the title crystal structure allows us to visualize inter­molecular inter­actions. The contribution of the H⋯H inter­molecular inter­actions amounts to 47.6%. The contributions of other important inter­actions are as follows: H⋯O (21.2%), H⋯C (11.2%) and H⋯N (5.1%). Other contacts C⋯O (3.9%), C⋯C (3.8%), C⋯N (3.6%), and H⋯S (2.1%) are less than 5%. The Hirshfeld surface diagram, dnorm, with transparency (Fig. 4[link]), indicates (in red) locations of the strongest inter­molecular contacts with participation of atoms H6A, H2A and H2B (Fig. 4[link]). The H⋯H, H⋯C, H⋯S and H⋯O contributions to the crystal packing are shown as two-dimensional fingerprint plots with blue dots (Fig. 5[link]). The de (y axis) and di (x axis) values represent the closest external and inter­nal distances (Å), respectively, from the given points on the Hirshfeld surface (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth, Australia.]). The inter­molecular hydrogen bonds are indicated by the H⋯O contacts (21.2%) on the dotted diagram (Fig. 5[link]c). Two sharp spikes with de + di = ∼2.0 Å visualize the experimentally obtained value of 2.04 (2) Å for the H⋯O distance corresponding to a hydrogen bond between azo mol­ecules. The C⋯C contacts (3.8%) reflect ππ inter­actions between the mentioned above aromatic rings (Figs. 4[link], 5[link]f). In addition, there are some H⋯π contacts (H⋯C), which are mostly located at hydrogen atoms of the CH3 group of the p-tolyl substituent of one mol­ecule and the π-system of the same substituent of the neighboring mol­ecule (Fig. 5[link]e).

[Figure 4]
Figure 4
Hirshfeld surface diagram for the asymmetric unit of the title compound.
[Figure 5]
Figure 5
Diagrams showing (a) the full two-dimensional fingerprint plot, and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) N⋯H/H⋯N, (e) C⋯H/H⋯C, and (f) C⋯C contacts.

5. Quantum chemical DFT calculations

To compare the energies of the two types of inter­molecular ππ inter­actions found in the title crystal, we performed quantum chemical modeling of this system at the level of Density Functional Theory (DFT). All DFT calculations were made using GAUSSIAN09 package (Frisch et al., 2010[Frisch, M. J., et al. (2010). GAUSSIAN09, Revision C. 01. Gaussian Inc., Wallingford, CT, USA.]) and high-performance computing cluster of National Research Saratov State University. Crystallographic coordinates were used as a starting point, and full geometry optimization of monomer and dimers was performed using an mPW1B95 functional with a 6-31g(d) basis set. This hybrid meta density functional theory (HMDFT) method based on the modified Perdew and Wang exchange functional (mPW) and Becke's 1995 correlation functional (B95) gives good results for the systems with non-covalent inter­actions, such as hydrogen bonding and weak van der Waals inter­actions (Zhao & Truhlar, 2004[Zhao, Y. & Truhlar, D. G. (2004). J. Phys. Chem. A, 108, 6908-6918.]). The energy of the ππ inter­action was estimated using the following simple equation:

Einter­action = Edimer – 2 × Emonomer

A comparison of some parameters of non-covalent inter­actions for the optimized geometry of 2 and for the crystallographic data is presented in Table 2[link]. The chosen level of theory reproduces the geometrical parameters of the inter­molecular inter­actions quite well. Thus, the energies of ππ inter­actions of both types, between the aromatic rings of the benzimidazole fragment and of the 4-nitro­phenyl substituent and between the two aromatic p-tolyl substituents at the 3a positions, can be estimated to be equal to −16.5 and −3.0 kcal mol-1, respectively.

6. Database survey

Mol­ecule 2 may be considered as being composed of two fragments, a heterocyclic core and the 4-nitro­phenyl­diazenyl substituent. The latter is relatively abundant and a search in the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) returned eight hits [CSD refcodes: EMAWUL (Yazıcı et al., 2011[Yazıcı, S., Albayrak, Ç., Gümrükçüoğlu, İ., Şenel, İ. & Büyükgüngör, O. (2011). J. Mol. Struct. 985, 292-298.]), KEMFUE (Centore et al., 2006[Centore, R., Carella, A., Pugliese, A., Sirigu, A. & Tuzi, A. (2006). Acta Cryst. C62, o531-o533.]), LEZXAQ and LEZXUK (Šimůnek et al., 2007[Šimůnek, P., Svobodová, M., Bertolasi, V., Pretto, L., Lyčka, A. & Macháček, V. (2007). New J. Chem. 31, 429-438.]), PIDVAA (Kasyan et al., 2007[Kasyan, O., Kalchenko, V., Böhmer, V. & Bolte, M. (2007). Acta Cryst. E63, o2346-o2348.]), ROMNIR (Lu et al., 2009[Lu, R., Han, L., Zhang, M., Wang, B. & Wang, H. (2009). Acta Cryst. E65, o344.]), TIVBOQ (Rodriguez et al., 2008[Rodriguez, M. A., Zifer, T., Vance, A. L., Wong, B. M. & Leonard, F. (2008). Acta Cryst. E64, o595.]), YEDYIQ (You et al., 2006[You, X.-L., Zhang, Y. & Zhang, D.-C. (2006). Acta Cryst. E62, o668-o670.])], but no heterocyclic compounds were found among them. The closest to the heterocyclic core of 2 is the previously reported 3a-phenyl-2,3,3a,4-tetra­hydro-1H-pyrrolo­[1,2-a]benz­imidazol-1-one (CSD refcode CIGPEN01; Grinev and Egorova, 2013[Grinev, V. S. & Egorova, A. Y. (2013). Acta Cryst. C69, 880-883.]). Other examples of compounds containing the same heterocyclic core are disubstituted at the 2 position: 2-(4-iso­butyl­phen­yl)-2,3a-dimethyl-2,3,3a,4-tetra­hydro-1H-pyrrolo[1,2-a]benzimidazol-1-one (CSD refcode AKURII; Patil et al., 2010[Patil, N. T., Mutyala, A. K., Lakshmi, P. G. V. V., Gajula, B., Sridhar, B., Pottireddygari, G. R. & Rao, T. P. (2010). J. Org. Chem. 75, 5963-5975.]) and 5a-p-tolyl-5a,5b,6,7,8,9,9a,10-octa­hydro-5H-isoindolo(2,1-a)benzimidazol-10-one – a substituted benzimidazolone ring fused with cyclo­hexane (CSD refcode ZENVUJ; Sillanpää et al., 1995[Sillanpää, R., Csende, F. & Stájer, G. (1995). Acta Cryst. C51, 2169-2171.]). From comparison of the reported structure with literature data, one can notice that the N1—C5 bond length in the title structure is shorter than in the related heterocycles CIGPEN01 and AKURII. This is related to the π-acceptor properties of the nitro­phenyl­diazenyl group.

7. Synthesis and crystallization

The synthesis of 2 was carried out according to the procedure, proposed by Gavkus et al., 2012[Gavkus, D. N., Maiorova, O. A., Borisov, M. Yu. & Egorova, A. Yu. (2012). Russ. J. Org. Chem. 48, 1229-1232.], starting from 4-nitro­aniline and 1. The product was isolated with 87% yield and recrystallized from aceto­nitrile as ruby-red prisms. A suitable single crystal was obtained by slow cooling of the saturated solution of 2 in DMSO–aceto­nitrile mixture at 1:1 ratio.

8. Refinement

Crystal data, details of data collection and structure refinement details are summarized in Table 3[link]. All non-H atoms, involving solvent mol­ecules, were refined anisotropically. The N—H hydrogen atom was located from a difference map and refined isotropically. The C—H hydrogen atoms were positioned geometrically and refined using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula C23H19N5O3·0.58C2H6OS·0.42C2H3N
Mr 476.17
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.1755 (5), 10.7013 (8), 16.2586 (11)
α, β, γ (°) 86.072 (3), 78.868 (2), 73.222 (3)
V3) 1172.71 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.27 × 0.22 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.963, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 15024, 6820, 5126
Rint 0.024
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.134, 1.00
No. of reflections 6820
No. of parameters 350
No. of restraints 25
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.50
Computer programs: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al. and 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(E)-7-[(4-Nitrophenyl)diazenyl]-3a-(p-tolyl)-2,3,3a,4-tetrahydro-1H-benzo[d]pyrrolo[1,2-a]imidazol-1-one 0.58-dimethyl sulfoxide 0.42-acetonitrile solvate top
Crystal data top
C23H19N5O3·0.58C2H6OS·0.42C2H3NZ = 2
Mr = 476.17F(000) = 499
Triclinic, P1Dx = 1.349 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1755 (5) ÅCell parameters from 679 reflections
b = 10.7013 (8) Åθ = 3–30°
c = 16.2586 (11) ŵ = 0.14 mm1
α = 86.072 (3)°T = 100 K
β = 78.868 (2)°Prism, red
γ = 73.222 (3)°0.27 × 0.22 × 0.21 mm
V = 1172.71 (14) Å3
Data collection top
Bruker APEXII CCD area detector
diffractometer
6820 independent reflections
Radiation source: fine-focus sealed tube5126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.963, Tmax = 0.971k = 1514
15024 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.525P]
where P = (Fo2 + 2Fc2)/3
6820 reflections(Δ/σ)max < 0.001
350 parametersΔρmax = 0.46 e Å3
25 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.17180 (14)0.76220 (11)0.30872 (7)0.0229 (2)
O20.2794 (2)0.02811 (13)0.10319 (9)0.0436 (4)
O30.5660 (2)0.01862 (13)0.17906 (8)0.0428 (3)
N10.76692 (17)0.79781 (11)0.29851 (7)0.0152 (2)
H1N0.876 (3)0.810 (2)0.3093 (13)0.035 (5)*
N20.48636 (16)0.73034 (11)0.33286 (7)0.0141 (2)
N30.70223 (19)0.43649 (12)0.08643 (7)0.0200 (2)
N40.54027 (19)0.40565 (12)0.10212 (7)0.0203 (2)
N50.4347 (3)0.05826 (14)0.11836 (9)0.0330 (3)
C10.28738 (19)0.79333 (14)0.34383 (8)0.0168 (3)
C20.2492 (2)0.90348 (15)0.40379 (9)0.0205 (3)
H2A0.21660.87490.46270.025*
H2B0.14030.97920.39140.025*
C30.44855 (19)0.93659 (13)0.38670 (9)0.0168 (3)
H3A0.45700.99660.33790.020*
H3B0.46860.97670.43620.020*
C40.59959 (18)0.80249 (13)0.36856 (8)0.0135 (2)
C50.77798 (19)0.70403 (13)0.24332 (8)0.0145 (2)
C60.9259 (2)0.65182 (14)0.17582 (8)0.0181 (3)
H6A1.04560.67630.16410.022*
C70.8930 (2)0.56275 (14)0.12611 (8)0.0189 (3)
H7A0.99220.52610.07970.023*
C80.7174 (2)0.52528 (13)0.14252 (8)0.0172 (3)
C90.5690 (2)0.57522 (13)0.21261 (8)0.0157 (3)
H9A0.45040.54940.22530.019*
C100.60410 (18)0.66223 (13)0.26114 (8)0.0138 (2)
C110.6773 (2)0.73681 (13)0.44615 (8)0.0166 (3)
C120.8005 (2)0.78988 (14)0.48057 (8)0.0169 (3)
H12A0.83050.86680.45640.020*
C130.8798 (2)0.73152 (15)0.54974 (9)0.0215 (3)
H13A0.96330.76920.57240.026*
C140.8394 (3)0.61915 (17)0.58628 (11)0.0332 (4)
C150.7196 (4)0.5662 (2)0.55122 (14)0.0515 (6)
H15A0.69170.48850.57490.062*
C160.6385 (3)0.62415 (19)0.48177 (12)0.0401 (5)
H16A0.55600.58580.45890.048*
C170.9234 (4)0.5562 (2)0.66234 (13)0.0463 (5)
H17A0.92250.46460.66660.069*
H17B0.84260.60220.71290.069*
H17C1.05960.56100.65680.069*
C180.5271 (2)0.31506 (14)0.04503 (9)0.0214 (3)
C190.6755 (3)0.26357 (16)0.02325 (9)0.0289 (3)
H19A0.79680.28590.03270.035*
C200.6442 (3)0.17971 (17)0.07702 (10)0.0320 (4)
H20A0.74240.14530.12430.038*
C210.4679 (3)0.14689 (15)0.06083 (10)0.0275 (3)
C220.3205 (3)0.19436 (15)0.00692 (10)0.0273 (3)
H22A0.20100.16960.01680.033*
C230.3516 (2)0.27924 (15)0.06024 (10)0.0249 (3)
H23A0.25270.31310.10740.030*
S1S0.77680 (10)0.20694 (10)0.31863 (5)0.0258 (3)0.585 (3)
O1S0.801 (2)0.0884 (12)0.3766 (7)0.0334 (17)0.585 (3)
C1S0.9536 (5)0.1596 (4)0.2247 (2)0.0525 (11)0.585 (3)
H1SA1.08050.16510.23210.079*0.585 (3)
H1SB0.91130.21670.17950.079*0.585 (3)
H1SC0.96340.07150.21180.079*0.585 (3)
C2S0.5644 (4)0.2154 (3)0.2752 (2)0.0233 (6)0.585 (3)
H2SA0.45070.22040.31850.035*0.585 (3)
H2SB0.58910.13970.24190.035*0.585 (3)
H2SC0.54030.29230.24020.035*0.585 (3)
N1SB0.804 (5)0.107 (2)0.3821 (14)0.036 (3)0.415 (3)
C1SB0.7529 (9)0.1442 (7)0.3226 (4)0.0437 (11)0.415 (3)
C2SB0.685 (2)0.2100 (8)0.2476 (6)0.101 (4)0.415 (3)
H2S10.79070.24240.21350.151*0.415 (3)
H2S20.56780.28350.26390.151*0.415 (3)
H2S30.65260.14830.21490.151*0.415 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0135 (5)0.0311 (6)0.0268 (5)0.0084 (4)0.0049 (4)0.0074 (4)
O20.0700 (10)0.0360 (7)0.0395 (7)0.0281 (7)0.0255 (7)0.0013 (6)
O30.0742 (10)0.0321 (7)0.0254 (6)0.0148 (7)0.0157 (6)0.0063 (5)
N10.0126 (5)0.0217 (6)0.0142 (5)0.0085 (4)0.0030 (4)0.0009 (4)
N20.0124 (5)0.0180 (5)0.0143 (5)0.0068 (4)0.0037 (4)0.0023 (4)
N30.0273 (6)0.0175 (6)0.0159 (5)0.0057 (5)0.0064 (5)0.0002 (4)
N40.0296 (6)0.0182 (6)0.0152 (5)0.0078 (5)0.0074 (5)0.0006 (4)
N50.0608 (10)0.0216 (7)0.0228 (7)0.0140 (7)0.0196 (7)0.0026 (5)
C10.0131 (6)0.0214 (7)0.0169 (6)0.0066 (5)0.0021 (5)0.0014 (5)
C20.0149 (6)0.0245 (7)0.0225 (7)0.0052 (5)0.0022 (5)0.0077 (6)
C30.0175 (6)0.0181 (6)0.0171 (6)0.0062 (5)0.0059 (5)0.0025 (5)
C40.0124 (5)0.0178 (6)0.0135 (6)0.0080 (5)0.0038 (4)0.0009 (5)
C50.0137 (6)0.0177 (6)0.0133 (6)0.0048 (5)0.0052 (4)0.0019 (5)
C60.0145 (6)0.0250 (7)0.0156 (6)0.0073 (5)0.0031 (5)0.0016 (5)
C70.0182 (6)0.0228 (7)0.0133 (6)0.0029 (5)0.0015 (5)0.0007 (5)
C80.0211 (6)0.0170 (6)0.0140 (6)0.0047 (5)0.0054 (5)0.0003 (5)
C90.0168 (6)0.0171 (6)0.0146 (6)0.0060 (5)0.0046 (5)0.0005 (5)
C100.0127 (5)0.0163 (6)0.0127 (6)0.0041 (5)0.0031 (4)0.0007 (5)
C110.0176 (6)0.0192 (6)0.0153 (6)0.0069 (5)0.0060 (5)0.0004 (5)
C120.0178 (6)0.0194 (6)0.0162 (6)0.0082 (5)0.0049 (5)0.0001 (5)
C130.0246 (7)0.0247 (7)0.0197 (7)0.0098 (6)0.0106 (5)0.0001 (5)
C140.0520 (11)0.0288 (8)0.0300 (8)0.0189 (8)0.0262 (8)0.0108 (7)
C150.0889 (17)0.0467 (11)0.0498 (12)0.0506 (12)0.0491 (12)0.0314 (10)
C160.0626 (12)0.0416 (10)0.0396 (10)0.0394 (10)0.0355 (9)0.0208 (8)
C170.0751 (15)0.0387 (10)0.0420 (11)0.0259 (10)0.0427 (11)0.0187 (8)
C180.0346 (8)0.0171 (6)0.0144 (6)0.0080 (6)0.0088 (6)0.0016 (5)
C190.0455 (10)0.0283 (8)0.0166 (7)0.0192 (7)0.0002 (6)0.0026 (6)
C200.0537 (11)0.0285 (8)0.0158 (7)0.0175 (8)0.0014 (7)0.0033 (6)
C210.0514 (10)0.0172 (7)0.0191 (7)0.0114 (7)0.0175 (7)0.0026 (5)
C220.0363 (9)0.0213 (7)0.0295 (8)0.0092 (6)0.0172 (7)0.0017 (6)
C230.0309 (8)0.0211 (7)0.0239 (7)0.0053 (6)0.0104 (6)0.0023 (6)
S1S0.0239 (4)0.0302 (5)0.0298 (4)0.0135 (3)0.0133 (3)0.0054 (3)
O1S0.0293 (17)0.039 (4)0.038 (3)0.015 (2)0.021 (2)0.020 (3)
C1S0.0248 (15)0.059 (2)0.056 (2)0.0019 (15)0.0106 (14)0.0246 (19)
C2S0.0258 (13)0.0254 (14)0.0225 (14)0.0121 (11)0.0089 (10)0.0073 (10)
N1SB0.040 (4)0.040 (5)0.035 (3)0.018 (3)0.017 (3)0.001 (3)
C1SB0.062 (3)0.036 (3)0.049 (3)0.027 (2)0.027 (2)0.009 (2)
C2SB0.212 (13)0.060 (5)0.073 (6)0.066 (7)0.095 (7)0.028 (4)
Geometric parameters (Å, º) top
O1—C11.2219 (16)C13—H13A0.9500
O2—N51.224 (2)C14—C151.378 (2)
O3—N51.228 (2)C14—C171.512 (2)
N1—C51.3670 (17)C15—C161.396 (2)
N1—C41.4787 (17)C15—H15A0.9500
N1—H1N0.88 (2)C16—H16A0.9500
N2—C11.3737 (17)C17—H17A0.9800
N2—C101.4091 (17)C17—H17B0.9800
N2—C41.4828 (16)C17—H17C0.9800
N3—N41.2728 (18)C18—C231.393 (2)
N3—C81.4012 (18)C18—C191.399 (2)
N4—C181.4214 (18)C19—C201.386 (2)
N5—C211.4727 (19)C19—H19A0.9500
C1—C21.5109 (19)C20—C211.381 (3)
C2—C31.5409 (19)C20—H20A0.9500
C2—H2A0.9900C21—C221.381 (2)
C2—H2B0.9900C22—C231.388 (2)
C3—C41.5354 (19)C22—H22A0.9500
C3—H3A0.9900C23—H23A0.9500
C3—H3B0.9900S1S—O1S1.517 (11)
C4—C111.5231 (18)S1S—C2S1.776 (3)
C5—C61.3912 (19)S1S—C1S1.785 (4)
C5—C101.4162 (18)C1S—H1SA0.9599
C6—C71.388 (2)C1S—H1SB0.9601
C6—H6A0.9500C1S—H1SC0.9600
C7—C81.4021 (19)C2S—H2SA0.9598
C7—H7A0.9500C2S—H2SB0.9600
C8—C91.4160 (19)C2S—H2SC0.9601
C9—C101.3659 (18)N1SB—C1SB1.108 (16)
C9—H9A0.9500C1SB—C2SB1.460 (8)
C11—C161.379 (2)C2SB—H2SB1.1778
C11—C121.3936 (18)C2SB—H2SC1.1738
C12—C131.3874 (19)C2SB—H2S10.9800
C12—H12A0.9500C2SB—H2S20.9800
C13—C141.386 (2)C2SB—H2S30.9800
C5—N1—C4109.49 (10)C15—C14—C13117.95 (14)
C5—N1—H1N120.1 (14)C15—C14—C17120.77 (16)
C4—N1—H1N118.6 (13)C13—C14—C17121.28 (15)
C1—N2—C10126.55 (11)C14—C15—C16121.51 (16)
C1—N2—C4112.88 (11)C14—C15—H15A119.2
C10—N2—C4110.00 (10)C16—C15—H15A119.2
N4—N3—C8114.52 (12)C11—C16—C15120.37 (15)
N3—N4—C18113.95 (12)C11—C16—H16A119.8
O2—N5—O3123.77 (14)C15—C16—H16A119.8
O2—N5—C21118.60 (16)C14—C17—H17A109.5
O3—N5—C21117.63 (16)C14—C17—H17B109.5
O1—C1—N2123.73 (13)H17A—C17—H17B109.5
O1—C1—C2129.41 (13)C14—C17—H17C109.5
N2—C1—C2106.85 (11)H17A—C17—H17C109.5
C1—C2—C3102.37 (11)H17B—C17—H17C109.5
C1—C2—H2A111.3C23—C18—C19120.23 (14)
C3—C2—H2A111.3C23—C18—N4115.52 (14)
C1—C2—H2B111.3C19—C18—N4124.25 (14)
C3—C2—H2B111.3C20—C19—C18119.51 (16)
H2A—C2—H2B109.2C20—C19—H19A120.2
C4—C3—C2102.76 (11)C18—C19—H19A120.2
C4—C3—H3A111.2C21—C20—C19118.97 (16)
C2—C3—H3A111.2C21—C20—H20A120.5
C4—C3—H3B111.2C19—C20—H20A120.5
C2—C3—H3B111.2C22—C21—C20122.72 (14)
H3A—C3—H3B109.1C22—C21—N5118.46 (15)
N1—C4—N2101.19 (10)C20—C21—N5118.82 (16)
N1—C4—C11109.81 (10)C21—C22—C23118.16 (15)
N2—C4—C11113.51 (11)C21—C22—H22A120.9
N1—C4—C3116.20 (11)C23—C22—H22A120.9
N2—C4—C3102.46 (10)C22—C23—C18120.39 (15)
C11—C4—C3112.96 (11)C22—C23—H23A119.8
N1—C5—C6129.84 (12)C18—C23—H23A119.8
N1—C5—C10110.23 (11)O1S—S1S—C2S105.3 (5)
C6—C5—C10119.90 (12)O1S—S1S—C1S106.9 (6)
C7—C6—C5117.82 (12)C2S—S1S—C1S96.38 (17)
C7—C6—H6A121.1S1S—C1S—H1SA109.8
C5—C6—H6A121.1S1S—C1S—H1SB109.3
C6—C7—C8121.87 (13)H1SA—C1S—H1SB109.5
C6—C7—H7A119.1S1S—C1S—H1SC109.3
C8—C7—H7A119.1H1SA—C1S—H1SC109.5
N3—C8—C7115.87 (12)H1SB—C1S—H1SC109.5
N3—C8—C9123.65 (12)S1S—C2S—H2SA111.1
C7—C8—C9120.48 (12)S1S—C2S—H2SB109.6
C10—C9—C8116.92 (12)H2SA—C2S—H2SB109.5
C10—C9—H9A121.5S1S—C2S—H2SC107.8
C8—C9—H9A121.5H2SA—C2S—H2SC109.5
C9—C10—N2130.64 (12)H2SB—C2S—H2SC109.5
C9—C10—C5122.94 (12)N1SB—C1SB—C2SB172.7 (15)
N2—C10—C5106.39 (11)C1SB—C2SB—H2SB93.7
C16—C11—C12118.43 (13)C1SB—C2SB—H2SC130.4
C16—C11—C4123.11 (12)H2SB—C2SB—H2SC83.6
C12—C11—C4118.40 (12)C1SB—C2SB—H2S1109.5
C13—C12—C11120.64 (13)C1SB—C2SB—H2S2109.5
C13—C12—H12A119.7H2S1—C2SB—H2S2109.5
C11—C12—H12A119.7C1SB—C2SB—H2S3109.5
C14—C13—C12121.10 (13)H2S1—C2SB—H2S3109.5
C14—C13—H13A119.5H2S2—C2SB—H2S3109.5
C12—C13—H13A119.5
C8—N3—N4—C18179.71 (11)N1—C5—C10—C9175.62 (12)
C10—N2—C1—O127.6 (2)C6—C5—C10—C92.8 (2)
C4—N2—C1—O1168.43 (13)N1—C5—C10—N22.58 (14)
C10—N2—C1—C2151.40 (13)C6—C5—C10—N2179.04 (11)
C4—N2—C1—C210.58 (15)N1—C4—C11—C16115.12 (17)
O1—C1—C2—C3150.17 (15)N2—C4—C11—C162.7 (2)
N2—C1—C2—C328.76 (14)C3—C4—C11—C16113.40 (17)
C1—C2—C3—C435.31 (13)N1—C4—C11—C1261.98 (16)
C5—N1—C4—N216.28 (13)N2—C4—C11—C12174.42 (12)
C5—N1—C4—C11103.95 (12)C3—C4—C11—C1269.49 (15)
C5—N1—C4—C3126.30 (12)C16—C11—C12—C130.9 (2)
C1—N2—C4—N1132.55 (11)C4—C11—C12—C13178.10 (13)
C10—N2—C4—N114.76 (13)C11—C12—C13—C140.2 (2)
C1—N2—C4—C11109.88 (13)C12—C13—C14—C150.7 (3)
C10—N2—C4—C11102.81 (12)C12—C13—C14—C17179.21 (18)
C1—N2—C4—C312.25 (14)C13—C14—C15—C160.9 (4)
C10—N2—C4—C3135.06 (11)C17—C14—C15—C16179.0 (2)
C2—C3—C4—N1138.38 (11)C12—C11—C16—C150.7 (3)
C2—C3—C4—N229.10 (12)C4—C11—C16—C15177.80 (19)
C2—C3—C4—C1193.40 (12)C14—C15—C16—C110.2 (4)
C4—N1—C5—C6169.39 (13)N3—N4—C18—C23179.91 (12)
C4—N1—C5—C1012.44 (14)N3—N4—C18—C190.5 (2)
N1—C5—C6—C7175.73 (13)C23—C18—C19—C201.9 (2)
C10—C5—C6—C72.29 (19)N4—C18—C19—C20177.45 (14)
C5—C6—C7—C80.1 (2)C18—C19—C20—C211.3 (3)
N4—N3—C8—C7179.04 (12)C19—C20—C21—C220.1 (3)
N4—N3—C8—C91.62 (19)C19—C20—C21—N5179.70 (15)
C6—C7—C8—N3178.86 (12)O2—N5—C21—C221.3 (2)
C6—C7—C8—C91.8 (2)O3—N5—C21—C22178.84 (14)
N3—C8—C9—C10179.31 (12)O2—N5—C21—C20179.07 (15)
C7—C8—C9—C101.4 (2)O3—N5—C21—C200.8 (2)
C8—C9—C10—N2178.58 (13)C20—C21—C22—C230.5 (2)
C8—C9—C10—C50.86 (19)N5—C21—C22—C23179.14 (13)
C1—N2—C10—C944.5 (2)C21—C22—C23—C180.2 (2)
C4—N2—C10—C9173.73 (13)C19—C18—C23—C221.3 (2)
C1—N2—C10—C5133.46 (13)N4—C18—C23—C22178.05 (13)
C4—N2—C10—C58.26 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (2)2.04 (2)2.8550 (15)154.9 (19)
C2—H2A···N1SBii0.992.523.43 (2)153
C2—H2B···O1Siii0.992.433.348 (14)154
C2—H2B···N1SBiii0.992.433.37 (3)158
C2S—H2SA···Cg1ii0.962.933.766 (3)146
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x1, y+1, z.
Experimental and calculated parameters of ππ interactions in 2 top
RingsEnergy (kcal mol-1Intercentroid distance (Å)Interplanar distance (Å)Ring offset (Å)Angle (°)
expcalcdexpcalcdexpcalcdexpcalcd
Benzimidazole/4-nitrophenyl-16.483.8290 (9)3.8763.5025 (12)3.4851.547 (2)1.69823.814 (5)25.977
p-Tolyl-3.074.3241 (13)4.8073.628 (2)3.7402.353 (3)3.01832.963 (3)38.920
 

Funding information

This work was supported by the Russian Science Foundation (grant No. 15-13-10007 to Alevtina Yegorova).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCentore, R., Carella, A., Pugliese, A., Sirigu, A. & Tuzi, A. (2006). Acta Cryst. C62, o531–o533.  Web of Science CSD CrossRef CAS IUCr Journals
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationFrisch, M. J., et al. (2010). GAUSSIAN09, Revision C. 01. Gaussian Inc., Wallingford, CT, USA.
First citationGavkus, D. N., Maiorova, O. A., Borisov, M. Yu. & Egorova, A. Yu. (2012). Russ. J. Org. Chem. 48, 1229–1232.  CrossRef CAS
First citationGrinev, V. S. & Egorova, A. Y. (2013). Acta Cryst. C69, 880–883.  CrossRef IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science
First citationKasyan, O., Kalchenko, V., Böhmer, V. & Bolte, M. (2007). Acta Cryst. E63, o2346–o2348.  Web of Science CSD CrossRef IUCr Journals
First citationLu, R., Han, L., Zhang, M., Wang, B. & Wang, H. (2009). Acta Cryst. E65, o344.  CrossRef IUCr Journals
First citationPatil, N. T., Mutyala, A. K., Lakshmi, P. G. V. V., Gajula, B., Sridhar, B., Pottireddygari, G. R. & Rao, T. P. (2010). J. Org. Chem. 75, 5963–5975.  CrossRef CAS PubMed
First citationRodriguez, M. A., Zifer, T., Vance, A. L., Wong, B. M. & Leonard, F. (2008). Acta Cryst. E64, o595.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSillanpää, R., Csende, F. & Stájer, G. (1995). Acta Cryst. C51, 2169–2171.  CSD CrossRef Web of Science IUCr Journals
First citationŠimůnek, P., Svobodová, M., Bertolasi, V., Pretto, L., Lyčka, A. & Macháček, V. (2007). New J. Chem. 31, 429–438.
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth, Australia.
First citationYazıcı, S., Albayrak, Ç., Gümrükçüoğlu, İ., Şenel, İ. & Büyükgüngör, O. (2011). J. Mol. Struct. 985, 292–298.
First citationYou, X.-L., Zhang, Y. & Zhang, D.-C. (2006). Acta Cryst. E62, o668–o670.  CrossRef IUCr Journals
First citationZhao, Y. & Truhlar, D. G. (2004). J. Phys. Chem. A, 108, 6908–6918.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds