research communications
(E)-7-[(4-Nitrophenyl)diazenyl]-3a-(p-tolyl)-2,3,3a,4-tetrahydro-1H-benzo[d]pyrrolo[1,2-a]imidazol-1-one 0.58-dimethyl sulfoxide 0.42-acetonitrile solvate: Hirshfeld analysis and DFT estimation of the energy of intermolecular interactions
aInstitute of Chemistry, N.G. Chernyshevsky National Research Saratov State University, Astrakhanskaya ul. 83, Saratov 410012, Russian Federation, and bInstitute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russian Federation
*Correspondence e-mail: grinev@ibppm.ru
In the 23H19N5O3·0.58C2H6OS·0.42C2H3N, prepared by the azo coupling of the 4-nitrophenyldiazonium salt with 3a-(p-tolyl)-2,3,3a,4-tetrahydro-1H-benzo[d]pyrrolo[1,2-a]imidazol-1-one, the azo molecules are linked by N—H⋯O hydrogen bonds into chains along the a-axis direction, and by the π–π interaction into [101] chains. The dimethyl sulfoxide and acetonitrile solvent molecules occupy the same positions, with populations of 0.585 (3) and 0.415 (3), respectively. These molecules take part in C—H⋯O(N) and C—H⋯π contacts. The energy of the π–π interactions was estimated using DFT calculations. The Hirshfeld molecular surface analysis revealed the positions of the most important intermolecular contacts, such as hydrogen bonds and π–π interactions.
of the title compound, CKeywords: crystal structure; X-ray diffraction analysis; π–π interactions; DFT calculations; energy of π–π interactions; Hirshfeld analysis; azo dye.
CCDC reference: 843227
1. Chemical context
Compounds prepared by azo coupling of aryldiazonium salts with 3a-aryl-2,3,3a,4-tetrahydro-1H-benzo[d]pyrrolo[1,2-a]imidazol-1-one (1) are crystalline substances with deep color varying from yellow to red, depending on the structure of the initial diazonium cation. Since several nucleophilic centers in 1 can be attacked by the electrophilic diazonium cation, it was of interest to study the effect of heteroatoms, as well as other molecular fragments, on the molecular reactivity. The presence of the secondary amino group allows the formation of triazene derivatives. However, the most likely site of electrophilic attack is a fused aromatic ring activated by N heteroatoms. The azo dye molecules constructed in this way can exist in two forms, E and Z, depending on the presence or absence of certain stabilizing factors: bulky substituents, intramolecular hydrogen bonds, non-covalent interactions, etc. One of the representatives of the synthesized series is 7-[(4-nitrophenyl)diazenyl]-3a-(p-tolyl)-2,3,3a,4-tetrahydro-1H-benzo[d]pyrrolo[1,2-a]imidazol-1-one (2), which was prepared from 4-nitrophenyldiazonium chloride and 1. For the final determination of the structure of the azo product, an X-ray diffraction study of a crystal grown from DMSO–acetonitrile solution as a mixed DMSO/acetonitrile solvate of 2 was performed.
2. Structural commentary
The . The molecules of 2 have the E-configuration that was expected because of the para position of the nitro group in the aryldiazenyl fragment. Part of the molecule of 2, including the 4-nitrophenyl and benzimidazole fragments linked by the azo group, is close to planar, with the dihedral angle formed by two aromatic rings being 2.73 (7)°. The largest deviation from the mean plane of the benzimidazole ring system is 0.1300 (9) Å for C4. The 1H-imidazole ring adopts an with C4 atom as the flap, thus introducing some non-planarity into the conjugated part of the molecule. The pyrrolidone ring is twisted with respect to the C2—C3 bond, thus the environment of the N2 amide atom becomes non-planar and this atom deviates by 0.267 (1) Å from the plane formed by the three neighboring C atoms. As as result, the C1—N2 distance [1.3737 (17) Å] is larger than average for γ-lactams [1.347 (14) Å; Allen et al., 1987]. The relatively long N2—C10 distance [1.4091 (17) Å] indicates weak π-conjugation and gives an insight into why substitution takes place at the 8 position.
of the title compound is shown in Fig. 13. Supramolecular features
In the crystal, molecules of 2 are linked by N—H⋯O hydrogen bonds into chains along the a-axis direction (Table 1, Fig. 2). These molecules are also linked by π–π interactions between the aromatic rings of the benzimidazole fragments and 4-nitrophenyl substituents as well as between p-tolyl substituents (Table 2, Fig. 3), thus forming chains along the [101] direction. Comparing geometric parameters related to these π–π interactions (Table 2), one can conclude that those involving p-tolyl substituents are weaker. The dimethylsulfoxide and acetonitrile solvent molecules occupy the same positions with populations of 0.585 (3) and 0.415 (3), respectively. These molecules participate in intermolecular interactions as donors of H-atoms of the methyl groups of acetonitrile and DMSO, and as H-atom acceptors via the electronegative O and N atoms (Table 1).
|
4. Hirshfeld surface analysis
Hirshfeld surface analysis (Hirshfeld, 1977) of the title allows us to visualize intermolecular interactions. The contribution of the H⋯H intermolecular interactions amounts to 47.6%. The contributions of other important interactions are as follows: H⋯O (21.2%), H⋯C (11.2%) and H⋯N (5.1%). Other contacts C⋯O (3.9%), C⋯C (3.8%), C⋯N (3.6%), and H⋯S (2.1%) are less than 5%. The Hirshfeld surface diagram, dnorm, with transparency (Fig. 4), indicates (in red) locations of the strongest intermolecular contacts with participation of atoms H6A, H2A and H2B (Fig. 4). The H⋯H, H⋯C, H⋯S and H⋯O contributions to the crystal packing are shown as two-dimensional fingerprint plots with blue dots (Fig. 5). The de (y axis) and di (x axis) values represent the closest external and internal distances (Å), respectively, from the given points on the Hirshfeld surface (Wolff et al., 2012). The intermolecular hydrogen bonds are indicated by the H⋯O contacts (21.2%) on the dotted diagram (Fig. 5c). Two sharp spikes with de + di = ∼2.0 Å visualize the experimentally obtained value of 2.04 (2) Å for the H⋯O distance corresponding to a hydrogen bond between azo molecules. The C⋯C contacts (3.8%) reflect π–π interactions between the mentioned above aromatic rings (Figs. 4, 5f). In addition, there are some H⋯π contacts (H⋯C), which are mostly located at hydrogen atoms of the CH3 group of the p-tolyl substituent of one molecule and the π-system of the same substituent of the neighboring molecule (Fig. 5e).
5. Quantum chemical DFT calculations
To compare the energies of the two types of intermolecular π–π interactions found in the title crystal, we performed quantum chemical modeling of this system at the level of Density Functional Theory (DFT). All DFT calculations were made using GAUSSIAN09 package (Frisch et al., 2010) and high-performance computing cluster of National Research Saratov State University. Crystallographic coordinates were used as a starting point, and full geometry optimization of monomer and dimers was performed using an mPW1B95 functional with a 6-31g(d) basis set. This hybrid meta density functional theory (HMDFT) method based on the modified Perdew and Wang exchange functional (mPW) and Becke's 1995 correlation functional (B95) gives good results for the systems with non-covalent interactions, such as hydrogen bonding and weak van der Waals interactions (Zhao & Truhlar, 2004). The energy of the π–π interaction was estimated using the following simple equation:
Einteraction = Edimer – 2 × Emonomer
A comparison of some parameters of non-covalent interactions for the optimized geometry of 2 and for the crystallographic data is presented in Table 2. The chosen level of theory reproduces the geometrical parameters of the intermolecular interactions quite well. Thus, the energies of π–π interactions of both types, between the aromatic rings of the benzimidazole fragment and of the 4-nitrophenyl substituent and between the two aromatic p-tolyl substituents at the 3a positions, can be estimated to be equal to −16.5 and −3.0 kcal mol-1, respectively.
6. Database survey
Molecule 2 may be considered as being composed of two fragments, a heterocyclic core and the 4-nitrophenyldiazenyl substituent. The latter is relatively abundant and a search in the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016) returned eight hits [CSD refcodes: EMAWUL (Yazıcı et al., 2011), KEMFUE (Centore et al., 2006), LEZXAQ and LEZXUK (Šimůnek et al., 2007), PIDVAA (Kasyan et al., 2007), ROMNIR (Lu et al., 2009), TIVBOQ (Rodriguez et al., 2008), YEDYIQ (You et al., 2006)], but no were found among them. The closest to the heterocyclic core of 2 is the previously reported 3a-phenyl-2,3,3a,4-tetrahydro-1H-pyrrolo[1,2-a]benzimidazol-1-one (CSD refcode CIGPEN01; Grinev and Egorova, 2013). Other examples of compounds containing the same heterocyclic core are disubstituted at the 2 position: 2-(4-isobutylphenyl)-2,3a-dimethyl-2,3,3a,4-tetrahydro-1H-pyrrolo[1,2-a]benzimidazol-1-one (CSD refcode AKURII; Patil et al., 2010) and 5a-p-tolyl-5a,5b,6,7,8,9,9a,10-octahydro-5H-isoindolo(2,1-a)benzimidazol-10-one – a substituted benzimidazolone ring fused with cyclohexane (CSD refcode ZENVUJ; Sillanpää et al., 1995). From comparison of the reported structure with literature data, one can notice that the N1—C5 bond length in the title structure is shorter than in the related heterocycles CIGPEN01 and AKURII. This is related to the π-acceptor properties of the nitrophenyldiazenyl group.
7. Synthesis and crystallization
The synthesis of 2 was carried out according to the procedure, proposed by Gavkus et al., 2012, starting from 4-nitroaniline and 1. The product was isolated with 87% yield and recrystallized from acetonitrile as ruby-red prisms. A suitable single crystal was obtained by slow cooling of the of 2 in DMSO–acetonitrile mixture at 1:1 ratio.
8. Refinement
Crystal data, details of data collection and structure . All non-H atoms, involving solvent molecules, were refined anisotropically. The N—H hydrogen atom was located from a difference map and refined isotropically. The C—H hydrogen atoms were positioned geometrically and refined using a riding model.
details are summarized in Table 3
|
Supporting information
CCDC reference: 843227
https://doi.org/10.1107/S2056989017013937/yk2109sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989017013937/yk2109Isup4.cdx
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C23H19N5O3·0.58C2H6OS·0.42C2H3N | Z = 2 |
Mr = 476.17 | F(000) = 499 |
Triclinic, P1 | Dx = 1.349 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1755 (5) Å | Cell parameters from 679 reflections |
b = 10.7013 (8) Å | θ = 3–30° |
c = 16.2586 (11) Å | µ = 0.14 mm−1 |
α = 86.072 (3)° | T = 100 K |
β = 78.868 (2)° | Prism, red |
γ = 73.222 (3)° | 0.27 × 0.22 × 0.21 mm |
V = 1172.71 (14) Å3 |
Bruker APEXII CCD area detector diffractometer | 6820 independent reflections |
Radiation source: fine-focus sealed tube | 5126 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ω scans | θmax = 30.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −10→10 |
Tmin = 0.963, Tmax = 0.971 | k = −15→14 |
15024 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0632P)2 + 0.525P] where P = (Fo2 + 2Fc2)/3 |
6820 reflections | (Δ/σ)max < 0.001 |
350 parameters | Δρmax = 0.46 e Å−3 |
25 restraints | Δρmin = −0.50 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.17180 (14) | 0.76220 (11) | 0.30872 (7) | 0.0229 (2) | |
O2 | 0.2794 (2) | 0.02811 (13) | −0.10319 (9) | 0.0436 (4) | |
O3 | 0.5660 (2) | 0.01862 (13) | −0.17906 (8) | 0.0428 (3) | |
N1 | 0.76692 (17) | 0.79781 (11) | 0.29851 (7) | 0.0152 (2) | |
H1N | 0.876 (3) | 0.810 (2) | 0.3093 (13) | 0.035 (5)* | |
N2 | 0.48636 (16) | 0.73034 (11) | 0.33286 (7) | 0.0141 (2) | |
N3 | 0.70223 (19) | 0.43649 (12) | 0.08643 (7) | 0.0200 (2) | |
N4 | 0.54027 (19) | 0.40565 (12) | 0.10212 (7) | 0.0203 (2) | |
N5 | 0.4347 (3) | 0.05826 (14) | −0.11836 (9) | 0.0330 (3) | |
C1 | 0.28738 (19) | 0.79333 (14) | 0.34383 (8) | 0.0168 (3) | |
C2 | 0.2492 (2) | 0.90348 (15) | 0.40379 (9) | 0.0205 (3) | |
H2A | 0.2166 | 0.8749 | 0.4627 | 0.025* | |
H2B | 0.1403 | 0.9792 | 0.3914 | 0.025* | |
C3 | 0.44855 (19) | 0.93659 (13) | 0.38670 (9) | 0.0168 (3) | |
H3A | 0.4570 | 0.9966 | 0.3379 | 0.020* | |
H3B | 0.4686 | 0.9767 | 0.4362 | 0.020* | |
C4 | 0.59959 (18) | 0.80249 (13) | 0.36856 (8) | 0.0135 (2) | |
C5 | 0.77798 (19) | 0.70403 (13) | 0.24332 (8) | 0.0145 (2) | |
C6 | 0.9259 (2) | 0.65182 (14) | 0.17582 (8) | 0.0181 (3) | |
H6A | 1.0456 | 0.6763 | 0.1641 | 0.022* | |
C7 | 0.8930 (2) | 0.56275 (14) | 0.12611 (8) | 0.0189 (3) | |
H7A | 0.9922 | 0.5261 | 0.0797 | 0.023* | |
C8 | 0.7174 (2) | 0.52528 (13) | 0.14252 (8) | 0.0172 (3) | |
C9 | 0.5690 (2) | 0.57522 (13) | 0.21261 (8) | 0.0157 (3) | |
H9A | 0.4504 | 0.5494 | 0.2253 | 0.019* | |
C10 | 0.60410 (18) | 0.66223 (13) | 0.26114 (8) | 0.0138 (2) | |
C11 | 0.6773 (2) | 0.73681 (13) | 0.44615 (8) | 0.0166 (3) | |
C12 | 0.8005 (2) | 0.78988 (14) | 0.48057 (8) | 0.0169 (3) | |
H12A | 0.8305 | 0.8668 | 0.4564 | 0.020* | |
C13 | 0.8798 (2) | 0.73152 (15) | 0.54974 (9) | 0.0215 (3) | |
H13A | 0.9633 | 0.7692 | 0.5724 | 0.026* | |
C14 | 0.8394 (3) | 0.61915 (17) | 0.58628 (11) | 0.0332 (4) | |
C15 | 0.7196 (4) | 0.5662 (2) | 0.55122 (14) | 0.0515 (6) | |
H15A | 0.6917 | 0.4885 | 0.5749 | 0.062* | |
C16 | 0.6385 (3) | 0.62415 (19) | 0.48177 (12) | 0.0401 (5) | |
H16A | 0.5560 | 0.5858 | 0.4589 | 0.048* | |
C17 | 0.9234 (4) | 0.5562 (2) | 0.66234 (13) | 0.0463 (5) | |
H17A | 0.9225 | 0.4646 | 0.6666 | 0.069* | |
H17B | 0.8426 | 0.6022 | 0.7129 | 0.069* | |
H17C | 1.0596 | 0.5610 | 0.6568 | 0.069* | |
C18 | 0.5271 (2) | 0.31506 (14) | 0.04503 (9) | 0.0214 (3) | |
C19 | 0.6755 (3) | 0.26357 (16) | −0.02325 (9) | 0.0289 (3) | |
H19A | 0.7968 | 0.2859 | −0.0327 | 0.035* | |
C20 | 0.6442 (3) | 0.17971 (17) | −0.07702 (10) | 0.0320 (4) | |
H20A | 0.7424 | 0.1453 | −0.1243 | 0.038* | |
C21 | 0.4679 (3) | 0.14689 (15) | −0.06083 (10) | 0.0275 (3) | |
C22 | 0.3205 (3) | 0.19436 (15) | 0.00692 (10) | 0.0273 (3) | |
H22A | 0.2010 | 0.1696 | 0.0168 | 0.033* | |
C23 | 0.3516 (2) | 0.27924 (15) | 0.06024 (10) | 0.0249 (3) | |
H23A | 0.2527 | 0.3131 | 0.1074 | 0.030* | |
S1S | 0.77680 (10) | 0.20694 (10) | 0.31863 (5) | 0.0258 (3) | 0.585 (3) |
O1S | 0.801 (2) | 0.0884 (12) | 0.3766 (7) | 0.0334 (17) | 0.585 (3) |
C1S | 0.9536 (5) | 0.1596 (4) | 0.2247 (2) | 0.0525 (11) | 0.585 (3) |
H1SA | 1.0805 | 0.1651 | 0.2321 | 0.079* | 0.585 (3) |
H1SB | 0.9113 | 0.2167 | 0.1795 | 0.079* | 0.585 (3) |
H1SC | 0.9634 | 0.0715 | 0.2118 | 0.079* | 0.585 (3) |
C2S | 0.5644 (4) | 0.2154 (3) | 0.2752 (2) | 0.0233 (6) | 0.585 (3) |
H2SA | 0.4507 | 0.2204 | 0.3185 | 0.035* | 0.585 (3) |
H2SB | 0.5891 | 0.1397 | 0.2419 | 0.035* | 0.585 (3) |
H2SC | 0.5403 | 0.2923 | 0.2402 | 0.035* | 0.585 (3) |
N1SB | 0.804 (5) | 0.107 (2) | 0.3821 (14) | 0.036 (3) | 0.415 (3) |
C1SB | 0.7529 (9) | 0.1442 (7) | 0.3226 (4) | 0.0437 (11) | 0.415 (3) |
C2SB | 0.685 (2) | 0.2100 (8) | 0.2476 (6) | 0.101 (4) | 0.415 (3) |
H2S1 | 0.7907 | 0.2424 | 0.2135 | 0.151* | 0.415 (3) |
H2S2 | 0.5678 | 0.2835 | 0.2639 | 0.151* | 0.415 (3) |
H2S3 | 0.6526 | 0.1483 | 0.2149 | 0.151* | 0.415 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0135 (5) | 0.0311 (6) | 0.0268 (5) | −0.0084 (4) | −0.0049 (4) | −0.0074 (4) |
O2 | 0.0700 (10) | 0.0360 (7) | 0.0395 (7) | −0.0281 (7) | −0.0255 (7) | 0.0013 (6) |
O3 | 0.0742 (10) | 0.0321 (7) | 0.0254 (6) | −0.0148 (7) | −0.0157 (6) | −0.0063 (5) |
N1 | 0.0126 (5) | 0.0217 (6) | 0.0142 (5) | −0.0085 (4) | −0.0030 (4) | −0.0009 (4) |
N2 | 0.0124 (5) | 0.0180 (5) | 0.0143 (5) | −0.0068 (4) | −0.0037 (4) | −0.0023 (4) |
N3 | 0.0273 (6) | 0.0175 (6) | 0.0159 (5) | −0.0057 (5) | −0.0064 (5) | 0.0002 (4) |
N4 | 0.0296 (6) | 0.0182 (6) | 0.0152 (5) | −0.0078 (5) | −0.0074 (5) | −0.0006 (4) |
N5 | 0.0608 (10) | 0.0216 (7) | 0.0228 (7) | −0.0140 (7) | −0.0196 (7) | 0.0026 (5) |
C1 | 0.0131 (6) | 0.0214 (7) | 0.0169 (6) | −0.0066 (5) | −0.0021 (5) | −0.0014 (5) |
C2 | 0.0149 (6) | 0.0245 (7) | 0.0225 (7) | −0.0052 (5) | −0.0022 (5) | −0.0077 (6) |
C3 | 0.0175 (6) | 0.0181 (6) | 0.0171 (6) | −0.0062 (5) | −0.0059 (5) | −0.0025 (5) |
C4 | 0.0124 (5) | 0.0178 (6) | 0.0135 (6) | −0.0080 (5) | −0.0038 (4) | −0.0009 (5) |
C5 | 0.0137 (6) | 0.0177 (6) | 0.0133 (6) | −0.0048 (5) | −0.0052 (4) | 0.0019 (5) |
C6 | 0.0145 (6) | 0.0250 (7) | 0.0156 (6) | −0.0073 (5) | −0.0031 (5) | 0.0016 (5) |
C7 | 0.0182 (6) | 0.0228 (7) | 0.0133 (6) | −0.0029 (5) | −0.0015 (5) | −0.0007 (5) |
C8 | 0.0211 (6) | 0.0170 (6) | 0.0140 (6) | −0.0047 (5) | −0.0054 (5) | 0.0003 (5) |
C9 | 0.0168 (6) | 0.0171 (6) | 0.0146 (6) | −0.0060 (5) | −0.0046 (5) | 0.0005 (5) |
C10 | 0.0127 (5) | 0.0163 (6) | 0.0127 (6) | −0.0041 (5) | −0.0031 (4) | 0.0007 (5) |
C11 | 0.0176 (6) | 0.0192 (6) | 0.0153 (6) | −0.0069 (5) | −0.0060 (5) | 0.0004 (5) |
C12 | 0.0178 (6) | 0.0194 (6) | 0.0162 (6) | −0.0082 (5) | −0.0049 (5) | −0.0001 (5) |
C13 | 0.0246 (7) | 0.0247 (7) | 0.0197 (7) | −0.0098 (6) | −0.0106 (5) | 0.0001 (5) |
C14 | 0.0520 (11) | 0.0288 (8) | 0.0300 (8) | −0.0189 (8) | −0.0262 (8) | 0.0108 (7) |
C15 | 0.0889 (17) | 0.0467 (11) | 0.0498 (12) | −0.0506 (12) | −0.0491 (12) | 0.0314 (10) |
C16 | 0.0626 (12) | 0.0416 (10) | 0.0396 (10) | −0.0394 (10) | −0.0355 (9) | 0.0208 (8) |
C17 | 0.0751 (15) | 0.0387 (10) | 0.0420 (11) | −0.0259 (10) | −0.0427 (11) | 0.0187 (8) |
C18 | 0.0346 (8) | 0.0171 (6) | 0.0144 (6) | −0.0080 (6) | −0.0088 (6) | 0.0016 (5) |
C19 | 0.0455 (10) | 0.0283 (8) | 0.0166 (7) | −0.0192 (7) | −0.0002 (6) | −0.0026 (6) |
C20 | 0.0537 (11) | 0.0285 (8) | 0.0158 (7) | −0.0175 (8) | −0.0014 (7) | −0.0033 (6) |
C21 | 0.0514 (10) | 0.0172 (7) | 0.0191 (7) | −0.0114 (7) | −0.0175 (7) | 0.0026 (5) |
C22 | 0.0363 (9) | 0.0213 (7) | 0.0295 (8) | −0.0092 (6) | −0.0172 (7) | 0.0017 (6) |
C23 | 0.0309 (8) | 0.0211 (7) | 0.0239 (7) | −0.0053 (6) | −0.0104 (6) | −0.0023 (6) |
S1S | 0.0239 (4) | 0.0302 (5) | 0.0298 (4) | −0.0135 (3) | −0.0133 (3) | 0.0054 (3) |
O1S | 0.0293 (17) | 0.039 (4) | 0.038 (3) | −0.015 (2) | −0.021 (2) | 0.020 (3) |
C1S | 0.0248 (15) | 0.059 (2) | 0.056 (2) | −0.0019 (15) | 0.0106 (14) | 0.0246 (19) |
C2S | 0.0258 (13) | 0.0254 (14) | 0.0225 (14) | −0.0121 (11) | −0.0089 (10) | 0.0073 (10) |
N1SB | 0.040 (4) | 0.040 (5) | 0.035 (3) | −0.018 (3) | −0.017 (3) | 0.001 (3) |
C1SB | 0.062 (3) | 0.036 (3) | 0.049 (3) | −0.027 (2) | −0.027 (2) | 0.009 (2) |
C2SB | 0.212 (13) | 0.060 (5) | 0.073 (6) | −0.066 (7) | −0.095 (7) | 0.028 (4) |
O1—C1 | 1.2219 (16) | C13—H13A | 0.9500 |
O2—N5 | 1.224 (2) | C14—C15 | 1.378 (2) |
O3—N5 | 1.228 (2) | C14—C17 | 1.512 (2) |
N1—C5 | 1.3670 (17) | C15—C16 | 1.396 (2) |
N1—C4 | 1.4787 (17) | C15—H15A | 0.9500 |
N1—H1N | 0.88 (2) | C16—H16A | 0.9500 |
N2—C1 | 1.3737 (17) | C17—H17A | 0.9800 |
N2—C10 | 1.4091 (17) | C17—H17B | 0.9800 |
N2—C4 | 1.4828 (16) | C17—H17C | 0.9800 |
N3—N4 | 1.2728 (18) | C18—C23 | 1.393 (2) |
N3—C8 | 1.4012 (18) | C18—C19 | 1.399 (2) |
N4—C18 | 1.4214 (18) | C19—C20 | 1.386 (2) |
N5—C21 | 1.4727 (19) | C19—H19A | 0.9500 |
C1—C2 | 1.5109 (19) | C20—C21 | 1.381 (3) |
C2—C3 | 1.5409 (19) | C20—H20A | 0.9500 |
C2—H2A | 0.9900 | C21—C22 | 1.381 (2) |
C2—H2B | 0.9900 | C22—C23 | 1.388 (2) |
C3—C4 | 1.5354 (19) | C22—H22A | 0.9500 |
C3—H3A | 0.9900 | C23—H23A | 0.9500 |
C3—H3B | 0.9900 | S1S—O1S | 1.517 (11) |
C4—C11 | 1.5231 (18) | S1S—C2S | 1.776 (3) |
C5—C6 | 1.3912 (19) | S1S—C1S | 1.785 (4) |
C5—C10 | 1.4162 (18) | C1S—H1SA | 0.9599 |
C6—C7 | 1.388 (2) | C1S—H1SB | 0.9601 |
C6—H6A | 0.9500 | C1S—H1SC | 0.9600 |
C7—C8 | 1.4021 (19) | C2S—H2SA | 0.9598 |
C7—H7A | 0.9500 | C2S—H2SB | 0.9600 |
C8—C9 | 1.4160 (19) | C2S—H2SC | 0.9601 |
C9—C10 | 1.3659 (18) | N1SB—C1SB | 1.108 (16) |
C9—H9A | 0.9500 | C1SB—C2SB | 1.460 (8) |
C11—C16 | 1.379 (2) | C2SB—H2SB | 1.1778 |
C11—C12 | 1.3936 (18) | C2SB—H2SC | 1.1738 |
C12—C13 | 1.3874 (19) | C2SB—H2S1 | 0.9800 |
C12—H12A | 0.9500 | C2SB—H2S2 | 0.9800 |
C13—C14 | 1.386 (2) | C2SB—H2S3 | 0.9800 |
C5—N1—C4 | 109.49 (10) | C15—C14—C13 | 117.95 (14) |
C5—N1—H1N | 120.1 (14) | C15—C14—C17 | 120.77 (16) |
C4—N1—H1N | 118.6 (13) | C13—C14—C17 | 121.28 (15) |
C1—N2—C10 | 126.55 (11) | C14—C15—C16 | 121.51 (16) |
C1—N2—C4 | 112.88 (11) | C14—C15—H15A | 119.2 |
C10—N2—C4 | 110.00 (10) | C16—C15—H15A | 119.2 |
N4—N3—C8 | 114.52 (12) | C11—C16—C15 | 120.37 (15) |
N3—N4—C18 | 113.95 (12) | C11—C16—H16A | 119.8 |
O2—N5—O3 | 123.77 (14) | C15—C16—H16A | 119.8 |
O2—N5—C21 | 118.60 (16) | C14—C17—H17A | 109.5 |
O3—N5—C21 | 117.63 (16) | C14—C17—H17B | 109.5 |
O1—C1—N2 | 123.73 (13) | H17A—C17—H17B | 109.5 |
O1—C1—C2 | 129.41 (13) | C14—C17—H17C | 109.5 |
N2—C1—C2 | 106.85 (11) | H17A—C17—H17C | 109.5 |
C1—C2—C3 | 102.37 (11) | H17B—C17—H17C | 109.5 |
C1—C2—H2A | 111.3 | C23—C18—C19 | 120.23 (14) |
C3—C2—H2A | 111.3 | C23—C18—N4 | 115.52 (14) |
C1—C2—H2B | 111.3 | C19—C18—N4 | 124.25 (14) |
C3—C2—H2B | 111.3 | C20—C19—C18 | 119.51 (16) |
H2A—C2—H2B | 109.2 | C20—C19—H19A | 120.2 |
C4—C3—C2 | 102.76 (11) | C18—C19—H19A | 120.2 |
C4—C3—H3A | 111.2 | C21—C20—C19 | 118.97 (16) |
C2—C3—H3A | 111.2 | C21—C20—H20A | 120.5 |
C4—C3—H3B | 111.2 | C19—C20—H20A | 120.5 |
C2—C3—H3B | 111.2 | C22—C21—C20 | 122.72 (14) |
H3A—C3—H3B | 109.1 | C22—C21—N5 | 118.46 (15) |
N1—C4—N2 | 101.19 (10) | C20—C21—N5 | 118.82 (16) |
N1—C4—C11 | 109.81 (10) | C21—C22—C23 | 118.16 (15) |
N2—C4—C11 | 113.51 (11) | C21—C22—H22A | 120.9 |
N1—C4—C3 | 116.20 (11) | C23—C22—H22A | 120.9 |
N2—C4—C3 | 102.46 (10) | C22—C23—C18 | 120.39 (15) |
C11—C4—C3 | 112.96 (11) | C22—C23—H23A | 119.8 |
N1—C5—C6 | 129.84 (12) | C18—C23—H23A | 119.8 |
N1—C5—C10 | 110.23 (11) | O1S—S1S—C2S | 105.3 (5) |
C6—C5—C10 | 119.90 (12) | O1S—S1S—C1S | 106.9 (6) |
C7—C6—C5 | 117.82 (12) | C2S—S1S—C1S | 96.38 (17) |
C7—C6—H6A | 121.1 | S1S—C1S—H1SA | 109.8 |
C5—C6—H6A | 121.1 | S1S—C1S—H1SB | 109.3 |
C6—C7—C8 | 121.87 (13) | H1SA—C1S—H1SB | 109.5 |
C6—C7—H7A | 119.1 | S1S—C1S—H1SC | 109.3 |
C8—C7—H7A | 119.1 | H1SA—C1S—H1SC | 109.5 |
N3—C8—C7 | 115.87 (12) | H1SB—C1S—H1SC | 109.5 |
N3—C8—C9 | 123.65 (12) | S1S—C2S—H2SA | 111.1 |
C7—C8—C9 | 120.48 (12) | S1S—C2S—H2SB | 109.6 |
C10—C9—C8 | 116.92 (12) | H2SA—C2S—H2SB | 109.5 |
C10—C9—H9A | 121.5 | S1S—C2S—H2SC | 107.8 |
C8—C9—H9A | 121.5 | H2SA—C2S—H2SC | 109.5 |
C9—C10—N2 | 130.64 (12) | H2SB—C2S—H2SC | 109.5 |
C9—C10—C5 | 122.94 (12) | N1SB—C1SB—C2SB | 172.7 (15) |
N2—C10—C5 | 106.39 (11) | C1SB—C2SB—H2SB | 93.7 |
C16—C11—C12 | 118.43 (13) | C1SB—C2SB—H2SC | 130.4 |
C16—C11—C4 | 123.11 (12) | H2SB—C2SB—H2SC | 83.6 |
C12—C11—C4 | 118.40 (12) | C1SB—C2SB—H2S1 | 109.5 |
C13—C12—C11 | 120.64 (13) | C1SB—C2SB—H2S2 | 109.5 |
C13—C12—H12A | 119.7 | H2S1—C2SB—H2S2 | 109.5 |
C11—C12—H12A | 119.7 | C1SB—C2SB—H2S3 | 109.5 |
C14—C13—C12 | 121.10 (13) | H2S1—C2SB—H2S3 | 109.5 |
C14—C13—H13A | 119.5 | H2S2—C2SB—H2S3 | 109.5 |
C12—C13—H13A | 119.5 | ||
C8—N3—N4—C18 | −179.71 (11) | N1—C5—C10—C9 | 175.62 (12) |
C10—N2—C1—O1 | 27.6 (2) | C6—C5—C10—C9 | −2.8 (2) |
C4—N2—C1—O1 | 168.43 (13) | N1—C5—C10—N2 | −2.58 (14) |
C10—N2—C1—C2 | −151.40 (13) | C6—C5—C10—N2 | 179.04 (11) |
C4—N2—C1—C2 | −10.58 (15) | N1—C4—C11—C16 | −115.12 (17) |
O1—C1—C2—C3 | −150.17 (15) | N2—C4—C11—C16 | −2.7 (2) |
N2—C1—C2—C3 | 28.76 (14) | C3—C4—C11—C16 | 113.40 (17) |
C1—C2—C3—C4 | −35.31 (13) | N1—C4—C11—C12 | 61.98 (16) |
C5—N1—C4—N2 | −16.28 (13) | N2—C4—C11—C12 | 174.42 (12) |
C5—N1—C4—C11 | 103.95 (12) | C3—C4—C11—C12 | −69.49 (15) |
C5—N1—C4—C3 | −126.30 (12) | C16—C11—C12—C13 | −0.9 (2) |
C1—N2—C4—N1 | −132.55 (11) | C4—C11—C12—C13 | −178.10 (13) |
C10—N2—C4—N1 | 14.76 (13) | C11—C12—C13—C14 | 0.2 (2) |
C1—N2—C4—C11 | 109.88 (13) | C12—C13—C14—C15 | 0.7 (3) |
C10—N2—C4—C11 | −102.81 (12) | C12—C13—C14—C17 | −179.21 (18) |
C1—N2—C4—C3 | −12.25 (14) | C13—C14—C15—C16 | −0.9 (4) |
C10—N2—C4—C3 | 135.06 (11) | C17—C14—C15—C16 | 179.0 (2) |
C2—C3—C4—N1 | 138.38 (11) | C12—C11—C16—C15 | 0.7 (3) |
C2—C3—C4—N2 | 29.10 (12) | C4—C11—C16—C15 | 177.80 (19) |
C2—C3—C4—C11 | −93.40 (12) | C14—C15—C16—C11 | 0.2 (4) |
C4—N1—C5—C6 | −169.39 (13) | N3—N4—C18—C23 | −179.91 (12) |
C4—N1—C5—C10 | 12.44 (14) | N3—N4—C18—C19 | −0.5 (2) |
N1—C5—C6—C7 | −175.73 (13) | C23—C18—C19—C20 | 1.9 (2) |
C10—C5—C6—C7 | 2.29 (19) | N4—C18—C19—C20 | −177.45 (14) |
C5—C6—C7—C8 | −0.1 (2) | C18—C19—C20—C21 | −1.3 (3) |
N4—N3—C8—C7 | −179.04 (12) | C19—C20—C21—C22 | 0.1 (3) |
N4—N3—C8—C9 | 1.62 (19) | C19—C20—C21—N5 | 179.70 (15) |
C6—C7—C8—N3 | 178.86 (12) | O2—N5—C21—C22 | −1.3 (2) |
C6—C7—C8—C9 | −1.8 (2) | O3—N5—C21—C22 | 178.84 (14) |
N3—C8—C9—C10 | −179.31 (12) | O2—N5—C21—C20 | 179.07 (15) |
C7—C8—C9—C10 | 1.4 (2) | O3—N5—C21—C20 | −0.8 (2) |
C8—C9—C10—N2 | 178.58 (13) | C20—C21—C22—C23 | 0.5 (2) |
C8—C9—C10—C5 | 0.86 (19) | N5—C21—C22—C23 | −179.14 (13) |
C1—N2—C10—C9 | −44.5 (2) | C21—C22—C23—C18 | 0.2 (2) |
C4—N2—C10—C9 | 173.73 (13) | C19—C18—C23—C22 | −1.3 (2) |
C1—N2—C10—C5 | 133.46 (13) | N4—C18—C23—C22 | 178.05 (13) |
C4—N2—C10—C5 | −8.26 (14) |
Cg1 is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.88 (2) | 2.04 (2) | 2.8550 (15) | 154.9 (19) |
C2—H2A···N1SBii | 0.99 | 2.52 | 3.43 (2) | 153 |
C2—H2B···O1Siii | 0.99 | 2.43 | 3.348 (14) | 154 |
C2—H2B···N1SBiii | 0.99 | 2.43 | 3.37 (3) | 158 |
C2S—H2SA···Cg1ii | 0.96 | 2.93 | 3.766 (3) | 146 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1; (iii) x−1, y+1, z. |
Rings | Energy (kcal mol-1 | Intercentroid distance (Å) | Interplanar distance (Å) | Ring offset (Å) | Angle (°) | ||||
exp | calcd | exp | calcd | exp | calcd | exp | calcd | ||
Benzimidazole/4-nitrophenyl | -16.48 | 3.8290 (9) | 3.876 | 3.5025 (12) | 3.485 | 1.547 (2) | 1.698 | 23.814 (5) | 25.977 |
p-Tolyl | -3.07 | 4.3241 (13) | 4.807 | 3.628 (2) | 3.740 | 2.353 (3) | 3.018 | 32.963 (3) | 38.920 |
Funding information
This work was supported by the Russian Science Foundation (grant No. 15-13-10007 to Alevtina Yegorova).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Centore, R., Carella, A., Pugliese, A., Sirigu, A. & Tuzi, A. (2006). Acta Cryst. C62, o531–o533. Web of Science CSD CrossRef CAS IUCr Journals
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals
Frisch, M. J., et al. (2010). GAUSSIAN09, Revision C. 01. Gaussian Inc., Wallingford, CT, USA.
Gavkus, D. N., Maiorova, O. A., Borisov, M. Yu. & Egorova, A. Yu. (2012). Russ. J. Org. Chem. 48, 1229–1232. CrossRef CAS
Grinev, V. S. & Egorova, A. Y. (2013). Acta Cryst. C69, 880–883. CrossRef IUCr Journals
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science
Kasyan, O., Kalchenko, V., Böhmer, V. & Bolte, M. (2007). Acta Cryst. E63, o2346–o2348. Web of Science CSD CrossRef IUCr Journals
Lu, R., Han, L., Zhang, M., Wang, B. & Wang, H. (2009). Acta Cryst. E65, o344. CrossRef IUCr Journals
Patil, N. T., Mutyala, A. K., Lakshmi, P. G. V. V., Gajula, B., Sridhar, B., Pottireddygari, G. R. & Rao, T. P. (2010). J. Org. Chem. 75, 5963–5975. CrossRef CAS PubMed
Rodriguez, M. A., Zifer, T., Vance, A. L., Wong, B. M. & Leonard, F. (2008). Acta Cryst. E64, o595. Web of Science CSD CrossRef IUCr Journals
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sillanpää, R., Csende, F. & Stájer, G. (1995). Acta Cryst. C51, 2169–2171. CSD CrossRef Web of Science IUCr Journals
Šimůnek, P., Svobodová, M., Bertolasi, V., Pretto, L., Lyčka, A. & Macháček, V. (2007). New J. Chem. 31, 429–438.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth, Australia.
Yazıcı, S., Albayrak, Ç., Gümrükçüoğlu, İ., Şenel, İ. & Büyükgüngör, O. (2011). J. Mol. Struct. 985, 292–298.
You, X.-L., Zhang, Y. & Zhang, D.-C. (2006). Acta Cryst. E62, o668–o670. CrossRef IUCr Journals
Zhao, Y. & Truhlar, D. G. (2004). J. Phys. Chem. A, 108, 6908–6918. Web of Science CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.