research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Manganese(II) chloride complexes with pyridine N-oxide (PNO) derivatives and their solid-state structures

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Physics, Armstrong State University, Savannah, Georgia 31419, USA, and bSt Vincent's Academy, Savannah, Georgia 31401, USA
*Correspondence e-mail: will.lynch@armstrong.edu

Edited by M. Zeller, Purdue University, USA (Received 1 July 2017; accepted 21 August 2017; online 12 September 2017)

Three manganese(II) N-oxide complexes have been synthesized from the reaction of manganese(II) chloride with either pyridine N-oxide (PNO), 2-methyl­pyridine N-oxide (2MePNO) or 3-methyl­pyridine N-oxide (3MePNO). The compounds were synthesized from methano­lic solutions of MnCl2·4H2O and the respective N-oxide, and subsequently characterized structurally by single-crystal X-ray diffraction. The compounds are catena-poly[[aqua­chlorido­manganese(II)]-di-μ-chlorido-[aqua­chlorido­manganese(II)]-bis­(μ-pyridine N-oxide)], [MnCl2(C5H5NO)(H2O)]n or [MnCl2(PNO)(H2O)]n (I), catena-poly[[aqua­chlorido­man­gan­ese(II)]-di-μ-chlorido-[aqua­chlorido­manganese(II)]-bis­(μ-2-methyl­pyridine N-oxide)], [MnCl2(C6H7NO)(H2O)]n or [MnCl2(2MePNO)(H2O)]n (II), and bis­(μ-3-methyl­pyridine N-oxide)bis­[di­aqua­dichlorido­manganese(II)], [Mn2Cl4(C6H7NO)2(H2O)4] or [MnCl2(3MePNO)(H2O)2]2 (III). The MnII atoms are found in pseudo-octa­hedral environments for each of the three complexes. Compound I forms a coordination polymer with alternating pairs of bridging N-oxide and chloride ligands. The coordination environment is defined by two PNO bridging O atoms, two chloride bridging atoms, a terminal chloride, and a terminal water. Compound II also forms a coordination polymer with a similar metal cation; however, the coordination polymer is bridged between MnII atoms by both a single chloride and 2MePNO. The distorted octahedrally coordinated metal cation is defined by two bridging 2MePNO trans to each other, two chlorides, also trans to one another in the equatorial (polymeric) plane, and a terminal chloride and terminal water. Finally, complex III forms a dimer with two bridging 3MePNOs, two terminal chlorides and two terminal waters forming the six-coordinate metal environment. All three compounds exhibit hydrogen bonding between the coordinating water(s) and terminal chlorides.

1. Chemical context

The utility of aromatic N-oxides to facilitate organic oxo-transfer reactions has been well documented over the years (see, for example, Eppenson, 2003[Eppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157-202.]). Many of these reactions are actually catalyzed by transition metal inter­actions with the N-oxide ligands (see, for example, Moustafa et al., 2014[Moustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402-5413.]). Furthermore, N-oxide metal inter­actions have recently attracted much inter­est in a variety of other areas, including metal organic frameworks (MOFs) (Hu et al., 2014[Hu, Z. C., Deibert, B. J. & Li, J. (2014). Chem. Soc. Rev. 43, 5815-5840.]). These MOFs synthesized using N-oxide derivatives take advantage of the multiple binding modes of the sp3 O atom and the ease of modification of the organic backbone of the N-oxide. The utility of the MOFs has been examined in areas such as catalysis (Liu et al., 2014[Liu, J., Chen, L., Cui, H., Zhang, Y., Zhang, L. & Su, C.-Y. (2014). Chem. Soc. Rev. 43, 6011-6061.]) and sensors (Hu et al., 2014[Hu, Z. C., Deibert, B. J. & Li, J. (2014). Chem. Soc. Rev. 43, 5815-5840.]). The constructs extend to the supra­molecular study of coordination polymers that have been found in this type of complex because of their incredible versatility as ligands (Sarma & Baruah, 2011[Sarma, R. & Baruah, J. B. (2011). Solid State Sci. 13, 1692-1700.]).

In this context, we report the synthesis and solid-state structures of three pyridine N-oxide manganese(II) com­plexes. Notably, we used the ligands pyridine N-oxide, 2-methyl­pyridine N-oxide, and 3-methyl­pyridine N-oxide to study the impact of substitution of the pyridine on the two- and three-dimensional solid-state structures. The pyridine N-oxide (PNO) and 2-methyl­pyridine N-oxide (2MePNO) complexes form coordination polymers with subtle differences. The 3-methyl­pyridine N-oxide (3MePNO), however, forms a dimeric complex.

[Scheme 1]

2. Structural commentary

Complex I exhibits the repeating motif of [MnCl2(PNO)(H2O)]n and crystallizes in the triclinic space group P[\overline{1}], containing two formula units per unit cell (Fig. 1[link]). The coordination sphere around each MnII atom is a distorted octa­hedron, with the equatorial atoms being two bridging chlorides alternating with two bridging pyridine N-oxide (PNO) mol­ecules (Fig. 2[link]). In the equatorial plane, the bridging chlorides and the bridging pyridine N-oxides are cis to one another. The axial positions are a terminal chloride and a water molecule. The Mn1—O1 bond length is 2.177 (3) Å, whereas the Mn1—O1vii bond length is slightly longer at 2.182 (3) Å for the bridging PNO [symmetry code (vii) −x + 1, −y + 1, −z + 1]. The bridging chlorides are found to have Mn—Cl2 distances of 2.5240 (19) and 2.532 (19) Å, respectively. Axially, the water is located 2.250 (3) Å from the MnII cation and the terminal chloride is at 2.479 (2) Å. The bond angles around the equator are severely compressed at the two bridging N-oxides, with the O1—Mn1—O1i angle observed at 72.03 (10)°. The remaining three angles are found to all be similar at 95.58 (7) (Cl2—Mn1—Cl2i), 96.80 (8) (O1—Mn1—Cl2), and 94.69 (9)° (O1vii—Mn1—Cl2vii). Axially, the bond angle from the water through manganese(II) and the terminal chloride (O2—Mn1—Cl1) is nearly linear at 177.36 (8)°.

[Figure 1]
Figure 1
A view of compound I, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x, -y+1, −z + 1]
[Figure 2]
Figure 2
Crystal packing diagram of compound I, viewed along the b axis. H atoms have been omitted for clarity.

Complex II, [MnCl2(2MePNO)(H2O)]n, posseses a metal environment similar to complex I and crystallizes in the ortho­rhom­bic space group P212121. The major difference in structure II is in the bridging network, where the chlorides and N-oxides are trans to one another rather than cis as in I (Figs. 3[link] and 4[link]). The pseudo-octa­hedral environment includes an Mn1—Cl1 bond length of 2.516 (4) Å and an Mn1—O1 (N-oxide) bond length of 2.170 (6) Å, with a Cl1—Mn1—O1 bond angle of 84.37 (19)°. The bond angle across the Cl atoms, Cl1—Mn1—Cl1viii, is 174.02 (5)° and across the O atoms of 2MePNO, O1—Mn1—O1ix, is 173.12 (6)°; a slight compression is observed across the bridges [symmetry codes: (viii) −x − 1, y + [{3\over 2}], −z + [{3\over 2}]; (ix) −x, y + [{3\over 2}], −z + [{3\over 2}]]. The axial (non-bridging) Mn1—Cl2 bond length is 2.503 (4) Å, while the axial water is found at a distance of 2.268 (6) Å from the metal center.

[Figure 3]
Figure 3
A view of compound II, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x − 1, y + [{3\over 2}], −z + [{3\over 2}]; (ii) −x, y + [{3\over 2}], −z + [{3\over 2}].]
[Figure 4]
Figure 4
Crystal packing diagram of compound II, viewed along the b axis. H atoms have been omitted for clarity.

The dimeric complex III, [MnCl2(3MePNO)(OH2)2]2, crystallizes in the triclinic P[\overline{1}] space group, with the inversion center sitting in the center of the dimer (Fig. 5[link]). The 3-methyl derivative does not form a coordination polymer but discrete dimeric mol­ecules. The structure possesses two bridging 3MePNO ligands, four terminal chlorides, and four terminal waters. Two waters and two chlorides are in the equatorial plane coincident with the N-oxide bridge, and the other equivalents are axial in the pseudo-octa­hedral geometry around the MnII atoms. The Mn1—Cl1 and Mn1—Cl2 bond lengths are 2.4601 (5) and 2.4903 (19) Å, respectively, with a Cl1—Mn1—Cl2 bond angle of 98.32 (4)°. The bridging N-oxide is at a distance of 2.1791 (18) Å from Mn1—O1, with an O1—Mn1—O1vii bond angle of 71.86 (7)° [symmetry code: (vii) −x + 1, −y + 1, −z + 1]. The Mn1—O2(water) and Mn1—O3(water) bond lengths are 2.245 (2) and 2.1696 (17) Å, respectively, with an O2—Mn1—O3 bond angle of 85.83 (7)°.

[Figure 5]
Figure 5
A view of the mol­ecular structure of compound III, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) −x − 1, −y + 1, −z + 1.]

The formation of the polymeric structure in I and II versus the dimer in III is likely due to the steric influence of the methyl group in the 3-position in 3MePNO and the core constituents. One can define the Mn2 `N-oxide diamond core' in each of the structures as follows: I is alternating Mn2Cl2 and Mn2O2 (oxygen bridges via PNO) cores, II is Mn2ClO (oxygen bridge via 2MePNO) and III Mn2O2 (oxygen bridges via 3MePNO). In I, the unsubstituted pyridine N-oxide group does not generate as much steric strain, allowing for polymer formation. In II, the core is formed to permit alternating up and down pyridine N-oxides with the 2-methyl substituents also facing in opposite directions. This limits the steric inter­actions and the N-oxide slightly tilts out of the polymeric core line to allow the methyl group to effect less steric inter­actions. In III, the methyl group appears to inhibit polymer formation due to the position of this bulky substituent. Subsequently, when the polymer is not formed, an extra water mol­ecule is required to fill the sixth coordination site on the metal cation occupied by a bridging atom in I and II.

3. Supra­molecular features

The packing of I forms a coordination polymer of alternating bis-bridges of two chlorides and two pyridine N-oxides in the a-axis direction (Fig. 2[link]). The aromatic rings stack at 6.860 (7) Å, outside of π-stacking distance due to the alternating chloride and pyridine N-oxide bridges. The single water mol­ecule is locked into weak hydrogen-bonding inter­actions in two different modes. One hydrogen-bond inter­action (H2A) is located down the bridge to the terminal chloride (Cl1), on the adjacent MnII atom, and the O2—H2A⋯Cl1i distance is 2.53 (2) Å. The other hydrogen-bond inter­action (H2B) is across to the next polymeric chain with Cl1; the O2—H2B⋯Cl1ii distance is 2.52 (3) Å (see Table 1[link] for hydrogen-bond details and symmetry codes).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯Cl1i 0.83 (2) 2.53 (2) 3.348 (4) 168 (4)
O2—H2B⋯Cl1ii 0.82 (2) 2.52 (3) 3.232 (4) 147 (4)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y-1, z.

Complex II packs as a coordination polymer in the a direction similar to I (Fig. 4[link]). However, as I has alternating pyridine N-oxide and chloride bridges (placing these ligands cis to one another), II has a single 2-methyl­pyridine N-oxide and a single chloride in each bridge. Similar to I, the hydrogen-bonding inter­actions are to a terminal chloride (Cl2) on the adjacent MnII atom. There are two observed inter­actions, viz. O2—H2A⋯Cl2iii with a distance of 2.49 Å and O2—H2B⋯Cl2iv with a distance of 2.26 Å (see Table 2[link] for hydrogen-bond details and symmetry codes). The H2A⋯ Cl2 inter­action is in the coordination polymer and the H2B⋯Cl2 inter­action is across the polymeric chains. Similar to I, the aromatic rings stack too far apart to be inter­acting in the a direction, at a distance of 6.862 (11) Å.

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯Cl2iii 0.90 2.49 3.205 (7) 137
O2—H2B⋯Cl2iv 0.89 2.26 3.145 (7) 169
Symmetry codes: (iii) x, y+1, z; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

As noted above, compound III does not form a coordination polymer but is observed in the solid state as a dimer with two water mol­ecules for each MnII atom (versus one aqua equivalent in I and II) (Fig. 5[link]). The aromatic inter-centroid distance is longer than in the other two mol­ecules, at 7.902 (7) Å. In compound III, a single water mol­ecule hydrogen bonds from the equatorial plane of one dimer to an axial chloride on another dimer. Conversely, the axial water hydrogen bonds to an equatorial chloride on a different dimer. These inter­actions are found to be O2—H2B⋯Cl1v [distance 2.38 (2) Å] and O3—H3A⋯Cl2vi [distance 2.28 (2) Å] (see Table 3[link] for hydrogen-bond details and symmetry codes).

Table 3
Hydrogen-bond geometry (Å, °) for III[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯Cl1v 0.80 (2) 2.38 (2) 3.147 (3) 161 (2)
O3—H3A⋯Cl2vi 0.86 (2) 2.28 (2) 3.120 (2) 167 (2)
Symmetry codes: (v) -x, -y+1, -z+1; (vi) -x, -y, -z+1.

4. Database survey

A search in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for aromatic N-oxides bound to manganese returned 87 entries. Similar N-oxides with simple counter-ions in the list include 4,4′-di­pyridine N,N′-dioxide [FIVHAU (Ma et al., 2005[Ma, B.-Q., Sun, H.-L. & Gao, S. (2005). Inorg. Chem. 44, 837-839.]) and XOHQUH (Jiu et al., 2008[Jiu, J., Blake, A. J., Champness, N. R., Hubberstey, P., Wilson, C. & Schröder, M. (2008). Inorg. Chem. 47, 8652-8664.])], 1,2-bis­(4-pyrid­yl)ethane N,N′-dioxide (TOJDAY and TOJDIG; Sun et al., 2008[Sun, H.-L., Wang, Z.-M., Gao, S. & Batten, S. R. (2008). CrystEngComm, 10, 1796-1802.]), and 1,3-bis­(4-pyrid­yl)propane N,N′-dioxide (Zhang et al., 2003[Zhang, L.-P., Lu, W.-J. & Mak, T. C. (2003). Chem. Commun. 22, 2830-2831.]). Similarly, two derivatives of 3,5-di­methyl­pyridine N-oxide are found in the CSD (GIWQAF and GIWQEJ; Shi et al., 2007[Shi, J.-M., Liu, Z., Li, W.-N., Zhao, H. Y. & Liu, L.-D. (2007). J. Coord. Chem. 60, 1077-1082.])

5. Synthesis and crystallization

The title compounds were all synthesized in a similar manner. 0.200 g of MnCl2·4H2O (1.01 mmol) was dissolved in a minimal amount of methanol, approximately 10 ml. Two stoichiometric equivalents of the appropriate N-oxide were also dissolved in approximately 20 ml of methanol (PNO: 0.191 g, 2.02 mmol; 2MePNO: 0.220 g, 2.02 mmol; 3MePNO: 0.220 g, 2.02 mmol). The solutions were stirred for approximately 10 min; during each reaction, a brown solution was observed upon mixing. The reaction solution was then allowed to sit and brown crystals were grown by slow evaporation in the near qu­anti­tative yields reported below based on the manganese(II) chloride starting material. The FT–IR spectra of the complexes all exhibit broad absorbances in the 3400–3000 cm−1 region due to the ν(O—H) of the coordinating water mol­ecules, as well as the characteristic ν(N—O) of the N-oxide pyridyl moiety in the 1250–1150 cm−1 region noted previously (Mautner et al., 2017[Mautner, F. A., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2017). Polyhedron, 134, 126-134.]).

Compound I, Mn(PNO)Cl2·H2O, yield 0.215 g (90.3%). Selected IR bands (ATR, FT–IR, KBr composite, cm−1): 3364 (m, br), 3235 (m, br), 3068 (m, br), 1660 (w), 1471 (w), 1214 (m), 1205 (m), 1023 (s), 831 (s), 780 (s), 674 (s), 556 (s). Elemental analysis for MnCl2C5H7NO2, calculated (%): C 25.13, H 2.95, N 5.86; found (%): C 25.22, H 2.96, N 5.87.

Compound II, Mn(2MePNO)Cl2·H2O, yield 0.227 g (87.9%). Selected IR bands (ATR, FT–IR, KBr composite, cm−1): 3410 (m, br), 3247(m, br), 3073(m, br), 1716 (w), 1619 (w), 1578 (w), 1421 (m), 1264 (m), 1154 (m), 1029 (s), 831 (s), 799 (s), 684 (s), 584 (s). Elemental analysis for MnCl2C6H9NO2, calculated (%): C 28.48, H 3.59, N 5.53; found (%): C 28.75, H 3.53, N 5.28.

Compound III, Mn2(3MePNO)2Cl4·4H2O, yield 0.231 g (89.5%). Selected IR bands (ATR, FT–IR, KBr composite, cm−1): 3374 (m, br), 3251 (m, br), 3094 (m, br), 1663 (w), 1614(w), 1492 (m), 1261 (m), 1164 (m), 1019 (s), 946 (s), 750 (s), 672 (s). Elemental analysis for Mn2Cl4C12H22N2O6, calculated (%): C 26.59, H 4.09, N 5.16; found (%): C 26.53, H 4.04, N 5.21.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All carbon-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.95 or 0.98 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for C(H) and CH3 groups, respectively. In order to ensure chemically meaningful O—H distances for the bound water mol­ecules in compound I, the H2A—O2 and H2B—O2 distances were restrained to a target value of 0.84 (2) Å (using a DFIX command in SHELXL2017; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). In compound II, water H atoms were refined as riding, with the O—H distance constrained to 0.892 Å and Uiso(H) = 1.5Ueq(O) using an AFIX 7 command, and in compound III, H2A—O2, H2B—O2, H3A—O3, and H3B—O3 were restrained using DFIX as for compound I. A rotating-group model was applied for the methyl groups. Structure refinement of II exhibits inversion twinning. Several crystals were tried and the centrosymmetric space group Pnma was tested. In all cases, there was a significant reduction in the R value for the inversion twinning P212121 solution.

Table 4
Experimental details

  I II III
Crystal data
Chemical formula [MnCl2(C5H5NO)(H2O)] [MnCl2(C6H7NO)(H2O)] [Mn2Cl4(C6H7NO)2(H2O)4]
Mr 238.96 252.98 541.99
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, P212121 Triclinic, P[\overline{1}]
Temperature (K) 173 173 173
a, b, c (Å) 6.897 (2), 7.050 (1), 9.853 (3) 6.862 (2), 7.491 (2), 18.047 (5) 7.902 (7), 8.026 (7), 9.893 (8)
α, β, γ (°) 101.042 (7), 109.559 (10), 94.196 (6) 90, 90, 90 98.033 (1), 99.272 (7), 113.634 (11)
V3) 438.2 (2) 927.7 (4) 552.6 (8)
Z 2 4 1
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.06 1.96 1.65
Crystal size (mm) 0.29 × 0.18 × 0.13 0.2 × 0.2 × 0.1 0.85 × 0.50 × 0.28
 
Data collection
Diffractometer Rigaku XtalLab mini CCD Rigaku XtalLab mini CCD Rigaku XtalLab mini CCD
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.613, 0.765 0.563, 0.737 0.482, 0.630
No. of measured, independent and observed [I > 2σ(I)] reflections 4655, 2004, 1770 8438, 2109, 1800 5837, 2553, 2375
Rint 0.040 0.051 0.072
(sin θ/λ)max−1) 0.651 0.649 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.14 0.051, 0.100, 1.12 0.031, 0.087, 1.07
No. of reflections 2004 2109 2553
No. of parameters 108 112 135
No. of restraints 2 0 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.44 0.95, −0.73 0.56, −0.41
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.44 (8)
Computer programs: CrystalClearSM Expert (Rigaku, 2011[Rigaku (2011). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: CrystalClearSM Expert (Rigaku, 2011); cell refinement: CrystalClearSM Expert (Rigaku, 2011); data reduction: CrystalClearSM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-poly[[aquachloridomanganese(II)]-di-µ-chlorido-[aquachloridomanganese(II)]-bis(µ-pyridine N-oxide)] (I) top
Crystal data top
[MnCl2(C5H5NO)(H2O)]Z = 2
Mr = 238.96F(000) = 238
Triclinic, P1Dx = 1.811 Mg m3
a = 6.897 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.050 (1) ÅCell parameters from 1189 reflections
c = 9.853 (3) Åθ = 2.3–27.5°
α = 101.042 (7)°µ = 2.06 mm1
β = 109.559 (10)°T = 173 K
γ = 94.196 (6)°Prism, clear brown
V = 438.2 (2) Å30.29 × 0.18 × 0.13 mm
Data collection top
Rigaku XtalLab mini CCD
diffractometer
1770 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
θmax = 27.6°, θmin = 2.3°
Tmin = 0.613, Tmax = 0.765h = 88
4655 measured reflectionsk = 99
2004 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + 0.444P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
2004 reflectionsΔρmax = 0.40 e Å3
108 parametersΔρmin = 0.44 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.24478 (6)0.51944 (6)0.49588 (4)0.02748 (12)
Cl10.21608 (12)0.81797 (10)0.39668 (9)0.04150 (19)
O10.5727 (3)0.6094 (3)0.63106 (19)0.0327 (4)
N10.6425 (3)0.6894 (3)0.7767 (2)0.0283 (5)
C10.6940 (6)0.5762 (5)0.8731 (3)0.0493 (8)
H10.6819400.4415950.8401100.059*
Cl20.10246 (10)0.65268 (10)0.69397 (7)0.03317 (16)
O20.2634 (4)0.2541 (3)0.5927 (3)0.0447 (5)
H2A0.146 (4)0.218 (6)0.594 (5)0.081 (16)*
H2B0.305 (7)0.162 (5)0.551 (5)0.087 (16)*
C20.7655 (7)0.6608 (6)1.0222 (4)0.0655 (11)
H20.8022540.5828001.0903130.079*
C30.7826 (6)0.8564 (6)1.0704 (3)0.0543 (9)
H30.8296780.9133071.1712270.065*
C40.7299 (6)0.9692 (5)0.9693 (4)0.0532 (9)
H40.7427601.1040371.0010680.064*
C50.6577 (5)0.8836 (5)0.8203 (3)0.0421 (7)
H50.6199740.9595660.7508080.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0228 (2)0.0328 (2)0.0259 (2)0.00479 (16)0.00858 (16)0.00467 (16)
Cl10.0478 (4)0.0329 (4)0.0481 (4)0.0073 (3)0.0188 (4)0.0156 (3)
O10.0230 (9)0.0460 (12)0.0238 (9)0.0052 (8)0.0062 (8)0.0006 (8)
N10.0232 (11)0.0371 (12)0.0233 (10)0.0033 (9)0.0078 (9)0.0052 (9)
C10.076 (2)0.0386 (17)0.0325 (15)0.0152 (16)0.0152 (16)0.0124 (13)
Cl20.0307 (3)0.0377 (4)0.0267 (3)0.0016 (3)0.0102 (3)0.0016 (3)
O20.0553 (16)0.0394 (13)0.0420 (13)0.0117 (11)0.0186 (12)0.0115 (10)
C20.094 (3)0.073 (3)0.0290 (16)0.031 (2)0.0135 (19)0.0204 (17)
C30.057 (2)0.071 (3)0.0249 (15)0.0074 (18)0.0091 (15)0.0009 (15)
C40.067 (2)0.0425 (19)0.0391 (17)0.0022 (17)0.0151 (17)0.0064 (15)
C50.054 (2)0.0388 (17)0.0325 (15)0.0027 (14)0.0149 (14)0.0075 (13)
Geometric parameters (Å, º) top
Mn1—Cl12.479 (2)C1—C21.376 (5)
Mn1—O12.177 (3)O2—H2A0.833 (19)
Mn1—O1i2.182 (2)O2—H2B0.819 (19)
Mn1—Cl2ii2.5324 (19)C2—H20.9300
Mn1—Cl22.5240 (19)C2—C31.353 (5)
Mn1—O22.250 (3)C3—H30.9300
O1—N11.341 (3)C3—C41.364 (5)
N1—C11.331 (4)C4—H40.9300
N1—C51.339 (4)C4—C51.377 (4)
C1—H10.9300C5—H50.9300
Cl1—Mn1—Cl293.43 (6)C5—N1—O1118.0 (2)
Cl1—Mn1—Cl2ii92.57 (6)N1—C1—H1120.4
O1i—Mn1—Cl195.12 (8)N1—C1—C2119.1 (3)
O1—Mn1—Cl193.65 (7)C2—C1—H1120.4
O1—Mn1—O1i72.02 (10)Mn1—Cl2—Mn1ii84.42 (7)
O1—Mn1—Cl2ii165.77 (6)Mn1—O2—H2A108 (3)
O1i—Mn1—Cl2ii94.69 (9)Mn1—O2—H2B116 (3)
O1i—Mn1—Cl2166.32 (5)H2A—O2—H2B110 (4)
O1—Mn1—Cl296.81 (8)C1—C2—H2119.7
O1—Mn1—O286.96 (9)C3—C2—C1120.5 (3)
O1i—Mn1—O287.46 (10)C3—C2—H2119.7
Cl2—Mn1—Cl2ii95.58 (7)C2—C3—H3120.4
O2—Mn1—Cl1177.42 (7)C2—C3—C4119.1 (3)
O2—Mn1—Cl2ii87.40 (8)C4—C3—H3120.4
O2—Mn1—Cl284.01 (9)C3—C4—H4120.0
Mn1—O1—Mn1i107.98 (10)C3—C4—C5120.1 (3)
N1—O1—Mn1123.78 (14)C5—C4—H4120.0
N1—O1—Mn1i126.50 (16)N1—C5—C4119.1 (3)
C1—N1—O1119.9 (2)N1—C5—H5120.5
C1—N1—C5122.0 (3)C4—C5—H5120.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Cl1ii0.83 (2)2.53 (2)3.348 (4)168 (4)
O2—H2B···Cl1iii0.82 (2)2.52 (3)3.232 (4)147 (4)
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y1, z.
catena-Poly[[aquachloridomanganese(II)]-di-µ-chlorido-[aquachloridomanganese(II)]-bis(µ-2-methylpyridine N-oxide)] (II) top
Crystal data top
[MnCl2(C6H7NO)(H2O)]Dx = 1.811 Mg m3
Mr = 252.98Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, P212121Cell parameters from 2686 reflections
a = 6.862 (2) Åθ = 2.7–27.5°
b = 7.491 (2) ŵ = 1.96 mm1
c = 18.047 (5) ÅT = 173 K
V = 927.7 (4) Å3Prism, colorless
Z = 40.2 × 0.2 × 0.1 mm
F(000) = 508
Data collection top
Rigaku XtalLab mini CCD
diffractometer
1800 reflections with I > 2σ(I)
ω scansRint = 0.051
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
θmax = 27.5°, θmin = 2.3°
Tmin = 0.563, Tmax = 0.737h = 88
8438 measured reflectionsk = 99
2109 independent reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.004P)2 + 2.3909P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.95 e Å3
2109 reflectionsΔρmin = 0.73 e Å3
112 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.44 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.5059 (2)0.73290 (15)0.50137 (7)0.0197 (2)
Cl10.2537 (3)0.6800 (2)0.40260 (8)0.0226 (3)
O10.7561 (8)0.7085 (6)0.42855 (19)0.0179 (9)
N10.7503 (11)0.7249 (7)0.3544 (2)0.0199 (11)
C10.7553 (14)0.5782 (9)0.3112 (3)0.0276 (15)
Cl20.5309 (3)0.4110 (3)0.53742 (11)0.0325 (5)
O20.4833 (8)1.0223 (7)0.4655 (3)0.0265 (12)
H2A0.5468951.0938110.4970040.040*
H2B0.3586011.0568800.4640950.040*
C20.7532 (15)0.6041 (10)0.2345 (3)0.0321 (16)
H20.7586600.5038910.2023420.038*
C30.7436 (16)0.7719 (11)0.2056 (4)0.0370 (18)
H30.7407660.7878490.1533770.044*
C40.7378 (16)0.9180 (10)0.2515 (4)0.0371 (19)
H40.7311591.0351410.2314950.044*
C50.7418 (15)0.8925 (9)0.3261 (3)0.0283 (16)
H50.7386250.9923590.3584790.034*
C60.7629 (17)0.4059 (10)0.3484 (4)0.040 (2)
H6A0.7575340.3101580.3115200.048*
H6B0.6518450.3950590.3822650.048*
H6C0.8845830.3966600.3766290.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0171 (4)0.0266 (5)0.0154 (4)0.0028 (5)0.0017 (4)0.0008 (4)
Cl10.0212 (7)0.0300 (9)0.0167 (6)0.0003 (10)0.0004 (8)0.0069 (6)
O10.020 (2)0.025 (3)0.0089 (16)0.005 (3)0.002 (2)0.0013 (16)
N10.019 (2)0.029 (3)0.012 (2)0.002 (3)0.002 (3)0.001 (2)
C10.028 (4)0.028 (4)0.026 (3)0.003 (5)0.001 (4)0.005 (3)
Cl20.0377 (12)0.0234 (10)0.0365 (11)0.0021 (10)0.0037 (9)0.0050 (8)
O20.015 (3)0.048 (3)0.016 (2)0.009 (3)0.002 (2)0.003 (2)
C20.036 (4)0.046 (5)0.015 (3)0.007 (6)0.002 (4)0.004 (3)
C30.048 (5)0.046 (5)0.017 (3)0.004 (6)0.001 (4)0.001 (3)
C40.060 (5)0.027 (4)0.024 (4)0.002 (6)0.003 (5)0.005 (3)
C50.042 (4)0.026 (4)0.017 (3)0.007 (5)0.004 (4)0.002 (3)
C60.061 (6)0.029 (4)0.029 (4)0.007 (6)0.001 (5)0.000 (3)
Geometric parameters (Å, º) top
Mn1—Cl1i2.514 (3)O2—H2B0.8947
Mn1—Cl12.516 (4)C2—H20.9500
Mn1—O1ii2.174 (5)C2—C31.363 (10)
Mn1—O12.171 (6)C3—H30.9500
Mn1—Cl22.503 (4)C3—C41.374 (10)
Mn1—O22.268 (6)C4—H40.9500
O1—N11.345 (6)C4—C51.360 (9)
N1—C11.348 (8)C5—H50.9500
N1—C51.357 (8)C6—H6A0.9800
C1—C21.397 (9)C6—H6B0.9800
C1—C61.456 (10)C6—H6C0.9800
O2—H2A0.8951
Cl1i—Mn1—Cl1174.01 (5)N1—C1—C6117.1 (6)
O1ii—Mn1—Cl184.38 (18)C2—C1—C6125.5 (7)
O1—Mn1—Cl1i84.49 (18)Mn1—O2—H2A110.9
O1ii—Mn1—Cl1i94.57 (18)Mn1—O2—H2B110.5
O1—Mn1—Cl195.84 (18)H2A—O2—H2B108.1
O1—Mn1—O1ii173.11 (6)C1—C2—H2119.7
O1—Mn1—Cl291.26 (14)C3—C2—C1120.5 (7)
O1ii—Mn1—Cl295.58 (14)C3—C2—H2119.7
O1ii—Mn1—O285.39 (19)C2—C3—H3119.8
O1—Mn1—O287.78 (19)C2—C3—C4120.3 (6)
Cl2—Mn1—Cl1i91.40 (9)C4—C3—H3119.8
Cl2—Mn1—Cl194.57 (9)C3—C4—H4120.5
O2—Mn1—Cl184.34 (16)C5—C4—C3119.0 (7)
O2—Mn1—Cl1i89.71 (16)C5—C4—H4120.5
O2—Mn1—Cl2178.46 (15)N1—C5—C4120.3 (6)
Mn1ii—Cl1—Mn186.32 (13)N1—C5—H5119.9
Mn1—O1—Mn1i104.73 (19)C4—C5—H5119.9
N1—O1—Mn1i125.7 (5)C1—C6—H6A109.5
N1—O1—Mn1124.9 (5)C1—C6—H6B109.5
O1—N1—C1120.1 (5)C1—C6—H6C109.5
O1—N1—C5117.4 (5)H6A—C6—H6B109.5
C1—N1—C5122.5 (5)H6A—C6—H6C109.5
N1—C1—C2117.4 (7)H6B—C6—H6C109.5
Mn1—O1—N1—C1102.4 (8)C1—N1—C5—C40.0 (15)
Mn1i—O1—N1—C1105.6 (8)C1—C2—C3—C40.7 (17)
Mn1—O1—N1—C578.4 (9)C2—C3—C4—C50.0 (17)
Mn1i—O1—N1—C573.7 (9)C3—C4—C5—N10.3 (17)
O1—N1—C1—C2178.6 (8)C5—N1—C1—C20.6 (14)
O1—N1—C1—C61.2 (13)C5—N1—C1—C6179.6 (10)
O1—N1—C5—C4179.3 (9)C6—C1—C2—C3179.2 (11)
N1—C1—C2—C31.0 (16)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Cl2iii0.902.493.205 (7)137
O2—H2B···Cl2ii0.892.263.145 (7)169
Symmetry codes: (ii) x1/2, y+3/2, z+1; (iii) x, y+1, z.
Bis(µ-3-methylpyridine N-oxide)bis[diaquadichloridomanganese(II)] (III) top
Crystal data top
[Mn2Cl4(C6H7NO)2(H2O)4]Z = 1
Mr = 541.99F(000) = 274
Triclinic, P1Dx = 1.629 Mg m3
a = 7.902 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.026 (7) ÅCell parameters from 5886 reflections
c = 9.893 (8) Åθ = 2.8–27.5°
α = 98.033 (1)°µ = 1.65 mm1
β = 99.272 (7)°T = 173 K
γ = 113.634 (11)°Prism, clear brown
V = 552.6 (8) Å30.85 × 0.5 × 0.28 mm
Data collection top
Rigaku XtalLab mini CCD
diffractometer
2375 reflections with I > 2σ(I)
ω scansRint = 0.072
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
θmax = 27.6°, θmin = 2.8°
Tmin = 0.482, Tmax = 0.630h = 1010
5837 measured reflectionsk = 1010
2553 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.031P)2 + 0.023P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2553 reflectionsΔρmax = 0.56 e Å3
135 parametersΔρmin = 0.41 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.27031 (3)0.40104 (3)0.53553 (2)0.02936 (11)
Cl10.14922 (6)0.48607 (7)0.73553 (4)0.04342 (14)
Cl20.32299 (6)0.13672 (6)0.60668 (6)0.04544 (15)
O10.56562 (15)0.60090 (16)0.62683 (12)0.0345 (3)
O20.2605 (2)0.6467 (2)0.45620 (16)0.0443 (3)
H2A0.355 (3)0.710 (3)0.436 (2)0.055 (7)*
H2B0.167 (3)0.639 (3)0.404 (2)0.062 (8)*
O30.00694 (17)0.23434 (18)0.37696 (14)0.0395 (3)
H3A0.069 (3)0.128 (2)0.390 (2)0.062 (7)*
H3B0.054 (4)0.288 (4)0.352 (3)0.081 (10)*
N10.62886 (17)0.71302 (18)0.75570 (13)0.0294 (3)
C10.6561 (2)0.8903 (2)0.77007 (17)0.0342 (4)
H10.6313260.9340090.6904250.041*
C20.7204 (3)1.0102 (3)0.90084 (19)0.0415 (4)
C30.7538 (3)0.9400 (3)1.0169 (2)0.0568 (6)
H30.7958021.0165171.1066190.068*
C40.7250 (4)0.7571 (4)0.9997 (2)0.0611 (6)
H40.7481380.7100901.0778850.073*
C50.6620 (3)0.6431 (3)0.8670 (2)0.0472 (5)
H50.6427290.5192510.8549110.057*
C60.7494 (4)1.2087 (3)0.9131 (3)0.0701 (7)
H6A0.8731261.2827520.9001260.105*
H6B0.7396221.2567601.0045100.105*
H6C0.6538801.2137060.8424030.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02821 (16)0.02780 (17)0.03004 (17)0.00959 (12)0.00843 (11)0.00651 (12)
Cl10.0471 (3)0.0617 (3)0.0309 (2)0.0299 (2)0.01431 (18)0.0142 (2)
Cl20.0436 (3)0.0349 (3)0.0596 (3)0.0137 (2)0.0151 (2)0.0236 (2)
O10.0326 (6)0.0310 (6)0.0313 (6)0.0074 (5)0.0091 (5)0.0010 (5)
O20.0389 (7)0.0414 (7)0.0584 (9)0.0185 (6)0.0137 (6)0.0231 (7)
O30.0339 (6)0.0322 (7)0.0438 (7)0.0079 (5)0.0039 (5)0.0080 (6)
N10.0295 (6)0.0293 (7)0.0271 (6)0.0107 (5)0.0061 (5)0.0062 (5)
C10.0443 (9)0.0307 (8)0.0273 (7)0.0159 (7)0.0082 (6)0.0067 (6)
C20.0484 (10)0.0363 (9)0.0336 (8)0.0138 (8)0.0112 (7)0.0016 (7)
C30.0674 (13)0.0598 (13)0.0262 (9)0.0158 (11)0.0049 (9)0.0014 (9)
C40.0766 (14)0.0687 (15)0.0355 (10)0.0289 (12)0.0028 (10)0.0246 (10)
C50.0591 (11)0.0424 (10)0.0425 (10)0.0236 (9)0.0064 (9)0.0186 (9)
C60.105 (2)0.0393 (11)0.0571 (14)0.0257 (13)0.0237 (14)0.0048 (10)
Geometric parameters (Å, º) top
Mn1—Cl12.4602 (15)C1—H10.9300
Mn1—Cl22.4900 (19)C1—C21.381 (2)
Mn1—O1i2.2228 (17)C2—C31.381 (3)
Mn1—O12.1792 (18)C2—C61.500 (3)
Mn1—O22.246 (2)C3—H30.9300
Mn1—O32.1704 (17)C3—C41.373 (4)
O1—N11.3411 (19)C4—H40.9300
O2—H2A0.791 (15)C4—C51.377 (3)
O2—H2B0.802 (16)C5—H50.9300
O3—H3A0.863 (16)C6—H6A0.9600
O3—H3B0.795 (17)C6—H6B0.9600
N1—C11.334 (2)C6—H6C0.9600
N1—C51.340 (2)
Cl1—Mn1—Cl298.31 (4)C1—N1—O1119.45 (13)
O1—Mn1—Cl195.44 (6)C1—N1—C5121.69 (16)
O1i—Mn1—Cl1165.45 (4)C5—N1—O1118.86 (16)
O1i—Mn1—Cl289.66 (5)N1—C1—H1119.3
O1—Mn1—Cl293.11 (7)N1—C1—C2121.31 (16)
O1—Mn1—O1i71.87 (7)C2—C1—H1119.3
O1i—Mn1—O282.07 (6)C1—C2—C3117.8 (2)
O1—Mn1—O281.64 (7)C1—C2—C6119.87 (19)
O2—Mn1—Cl189.20 (6)C3—C2—C6122.4 (2)
O2—Mn1—Cl2171.24 (4)C2—C3—H3120.0
O3—Mn1—Cl1101.10 (7)C4—C3—C2119.99 (19)
O3—Mn1—Cl297.13 (6)C4—C3—H3120.0
O3—Mn1—O1i89.88 (8)C3—C4—H4119.9
O3—Mn1—O1159.02 (5)C3—C4—C5120.16 (18)
O3—Mn1—O285.76 (7)C5—C4—H4119.9
Mn1—O1—Mn1i108.13 (7)N1—C5—C4119.10 (19)
N1—O1—Mn1124.29 (9)N1—C5—H5120.5
N1—O1—Mn1i127.41 (10)C4—C5—H5120.5
Mn1—O2—H2A114.4 (17)C2—C6—H6A109.5
Mn1—O2—H2B121.9 (18)C2—C6—H6B109.5
H2A—O2—H2B112 (2)C2—C6—H6C109.5
Mn1—O3—H3A118.3 (16)H6A—C6—H6B109.5
Mn1—O3—H3B116 (2)H6A—C6—H6C109.5
H3A—O3—H3B109 (3)H6B—C6—H6C109.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···Cl1ii0.80 (2)2.38 (2)3.147 (3)161 (2)
O3—H3A···Cl2iii0.86 (2)2.28 (2)3.120 (2)167 (2)
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y, z+1.
 

Acknowledgements

The authors would like to thank Armstrong State University, Department of Chemistry and Physics, for financial support of this work.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationEppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157–202.
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHu, Z. C., Deibert, B. J. & Li, J. (2014). Chem. Soc. Rev. 43, 5815–5840.  Web of Science CrossRef CAS PubMed
First citationJiu, J., Blake, A. J., Champness, N. R., Hubberstey, P., Wilson, C. & Schröder, M. (2008). Inorg. Chem. 47, 8652–8664.  Web of Science PubMed
First citationLiu, J., Chen, L., Cui, H., Zhang, Y., Zhang, L. & Su, C.-Y. (2014). Chem. Soc. Rev. 43, 6011–6061.  Web of Science CrossRef CAS PubMed
First citationMa, B.-Q., Sun, H.-L. & Gao, S. (2005). Inorg. Chem. 44, 837–839.  Web of Science CSD CrossRef PubMed CAS
First citationMautner, F. A., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2017). Polyhedron, 134, 126–134.  CSD CrossRef CAS
First citationMoustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402–5413.  Web of Science CSD CrossRef CAS
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
First citationRigaku (2011). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.
First citationSarma, R. & Baruah, J. B. (2011). Solid State Sci. 13, 1692–1700.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationShi, J.-M., Liu, Z., Li, W.-N., Zhao, H. Y. & Liu, L.-D. (2007). J. Coord. Chem. 60, 1077–1082.  Web of Science CSD CrossRef CAS
First citationSun, H.-L., Wang, Z.-M., Gao, S. & Batten, S. R. (2008). CrystEngComm, 10, 1796–1802.  Web of Science CSD CrossRef CAS
First citationZhang, L.-P., Lu, W.-J. & Mak, T. C. (2003). Chem. Commun. 22, 2830–2831.  Web of Science CSD CrossRef

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds