research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­chlorido­(2-{[6-(di­methyl­amino)­pyrimidin-4-yl]sulfan­yl}pyrimidine-4,6-di­amine)­copper(II) chloride hydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Faculty of Science, Wilfrid Laurier University, 75 University Ave. W., Waterloo, ON, N2L 3C5, Canada, and bCambridge Crystallographic Data Centre, Center for Integrative Proteomics Research, 174 Frelinghuysen Road, Piscataway, NJ 08854 USA
*Correspondence e-mail: ldawe@wlu.ca

Edited by M. Zeller, Purdue University, USA (Received 11 September 2017; accepted 19 September 2017; online 25 September 2017)

A copper(II) complex of the non-symmetric bidentate ligand 2-{[6-(di­methyl­amino)­pyrimidin-4-yl]sulfan­yl}pyrimidine-4,6-di­amine (L1) is reported. The single-crystal X-ray structure of aqua­[aqua/chlorido­(0.49/0.51)](2-{[6-(di­methyl­amino)­pyrimidin-4-yl]sulfan­yl}pyrimidine-4,6-di­amine)­copper(II) 0.49-chloride 1.51-hydrate, [CuCl1.51(C10H13N7S)(H2O)1.49]Cl0.49·1.51H2O or [(L1)Cl1.51(H2O)1.49Cu]0.49Cl·1.51H2O, exhibits distorted square-pyramidal geometry around the metal centre, with disorder in the axial position, occupied by chloride or water. The six-membered metal–chelate ring is in a boat conformation, and short inter­molecular S⋯S inter­actions are observed. In addition to its capacity for bidentate metal coordination, the ligand has the ability to engage in further supra­molecular inter­actions as both a hydrogen-bond donor and acceptor, and multiple inter­actions with lattice solvent water mol­ecules are present in the reported structure.

1. Chemical context

Non-symmetric ligand–metal complexes have been explored for their applications in chiral synthesis (Asay & Morales-Morales, 2015[Asay, M. & Morales-Morales, D. (2015). Dalton Trans. 44, 17432-17447.]; Pfaltz & Drury, 2004[Pfaltz, A. & Drury, W. J. (2004). Proc. Natl Acad. Sci. USA, 101, 5723-5726.]), or for their potential to yield new multimetallic topologies which combine homo- and heteroleptic sites into a single mol­ecule (Dawe et al., 2006[Dawe, L., Abedin, T., Kelly, T., Thompson, L., Miller, D., Zhao, L., Wilson, C., Leech, M. & Howard, J. (2006). J. Mater. Chem. 16, 2645-2659.]). Non-symmetric thio-bis-(pyridin-2-yl) or bis-(pyrimidin-2-yl) ligands are known, and upon bidentate coordination with transition metal cations, these form six-membered chelate rings, which adopt a boat-shaped conformation (Fig. 1[link]). Some reported transition metal complexes resulting from this class of ligands have been employed as possible alternatives to traditional chemotherapy drugs (Ray et al., 1994[Ray, S., Smith, F. R., Bridson, J. N., Hong, Q., Richardson, V. J. & Mandal, S. K. (1994). Inorg. Chim. Acta, 227, 175-179.]; Mandal et al., 2007[Mandal, S., Bérubé, G., Asselin, É., Richardson, V. J., Church, J. G., Bridson, J., Pham, T. N. Q., Pramanik, S. K. & Mandal, S. K. (2007). Bioorg. Med. Chem. Lett. 17, 2139-2145.]), as a step en route to new thrombin inhibitors (Chung et al., 2003[Chung, J. Y. L., Cvetovich, R. J., Tsay, F.-R., Dormer, P. G., DiMichele, L., Mathre, D. J., Chilenski, J. R., Mao, B. & Wenslow, R. (2003). J. Org. Chem. 68, 8838-8846.]), and have led to the formation of one CuI 30-nuclear cluster (Li et al., 2012[Li, H.-X., Zhao, W., Li, H.-Y., Xu, Z.-L., Wang, W.-X. & Lang, J.-P. (2012). Chem. Commun. pp. 4259-4261.]).

[Scheme 1]
[Figure 1]
Figure 1
Boat-shaped chelate ring for bidentate coordination of thio-bis-(pyridin-2-yl) or bis-(pyrimidin-2-yl) ligands.

In the inter­est of exploring simultaneous coordination chemistry and anion–ligand affinity via hydrogen-bonding inter­actions, the non-symmetric ligand 2-{[6-(di­methyl­amino)pyrimidin-4-yl]sulfan­yl}pyrimidine-4,6-di­amine (C10H13N7S; L1), was synthesized, and its metal complex with copper(II) chloride, is reported here. Even upon metal coordination, the ligand can still serve as a hydrogen-bond donor to anions via the amine moieties. Alternatively, these free amines could also act as possible anchors for surface attachment, with a view towards future device applications.

2. Structural commentary

The title compound crystallizes in the monoclinic space group P21/c with one bidentate ligand bound to a copper(II) cation (via N1 and N4; Fig. 2[link]). The copper(II) cation is five-coordinate, with the remaining coordination sites occupied by a chloride anion (Cl1), a water mol­ecule (O1), and a disordered site, with either chloride (Cl2; Fig. 2[link]a) or water (O2; Fig. 2[link]b) with occupancies of 0.511 (5) and 0.489 (5), respectively. The two largest ligand–metal–ligand bond angles (Table 1[link]) are N4—Cu1—Cl1 and O1—Cu1—N1 [171.10 (6) and 157.01 (8)°, respectively] giving a τ value of 0.23 (where τ = 0 is ideal square-pyramidal geometry, and τ = 1 is ideal trigonal-bipyramidal geometry; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), indicating that the geometry is distorted square pyramidal. Examination of the bond lengths (Table 1[link]), is also consistent with the disordered Cl/O as the axial site for this geometry. An intra­molecular hydrogen bond is present between the amine group (via N5—H5A) and the apical ligand (Fig. 2[link]; Table 2[link]). The six-membered chelate ring adopts a boat conformation. The angle between the distorted square plane defined by N1/N4/C4/C5 (r.m.s. deviation from the plane is 0.032 Å) and the flap defined by C4/S1/C5 (θ1) is 34.51 (17)°, while the angle between the square plane and the flap defined by N1/Cu1/N4 (θ2) is 46.93 (14)°. The boat-shaped configuration accommodates the C—S and N—Cu bonds, making up the flaps, which are significantly longer than the C—N bonds in the square plane (Table 1[link].)

Table 1
Selected geometric parameters (Å, °)

Cu1—Cl1 2.2689 (7) Cu1—N4 1.996 (2)
Cu1—Cl2 2.5273 (19) S1—C4 1.777 (2)
Cu1—O1 2.0158 (19) S1—C5 1.774 (3)
Cu1—O2 2.229 (6) N1—C4 1.332 (3)
Cu1—N1 2.034 (2) N4—C5 1.353 (3)
       
Cl1—Cu1—Cl2 92.89 (5) N1—Cu1—O2 101.55 (18)
O1—Cu1—Cl1 91.94 (6) N4—Cu1—Cl1 171.10 (6)
O1—Cu1—Cl2 92.69 (7) N4—Cu1—Cl2 95.20 (8)
O1—Cu1—O2 100.64 (18) N4—Cu1—O1 83.98 (8)
O1—Cu1—N1 157.01 (8) N4—Cu1—O2 95.5 (2)
O2—Cu1—Cl1 93.1 (2) N4—Cu1—N1 87.99 (8)
N1—Cu1—Cl1 92.81 (6) C5—S1—C4 104.53 (12)
N1—Cu1—Cl2 109.51 (8)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2i 0.92 (1) 1.99 (2) 2.897 (3) 170 (3)
O1—H1B⋯O4ii 0.91 (2) 1.82 (6) 2.71 (6) 167 (4)
O1—H1B⋯O5ii 0.91 (2) 1.80 (6) 2.69 (6) 162 (4)
O3—H3A⋯Cl2 0.92 2.28 3.200 (7) 176
O3—H3B⋯O4 0.93 2.17 2.94 (6) 139
O4—H4A⋯O3ii 0.91 2.25 3.07 (6) 150
O2—H2B⋯Cl3 0.91 2.33 3.177 (7) 154
O5—H5C⋯Cl3 0.93 2.02 2.83 (6) 145
N5—H5A⋯Cl2 0.84 (3) 2.46 (3) 3.295 (3) 172 (3)
N5—H5A⋯O2 0.84 (3) 2.07 (3) 2.903 (7) 167 (3)
N5—H5B⋯Cl1iii 0.79 (3) 2.56 (4) 3.353 (3) 173 (3)
N6—H6A⋯Cl3iii 0.80 (4) 2.41 (4) 3.187 (4) 165 (3)
N6—H6A⋯O3iii 0.80 (4) 2.32 (4) 3.094 (8) 163 (3)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+2, -z+1.
[Figure 2]
Figure 2
Asymmetric unit for [(C10H13N7S)Cl1.51(H2O)1.49Cu]0.49Cl·1.51H2O, with 50% displacement ellipsoids. (a) Disordered atoms with 0.51-occupancy; (b) disordered atoms with 0.49-occupancy. All atoms in (a) and (b) are identical, except those labelled in (b). Hydrogen bonds are represented by dashed lines.

A simpler, symmetric bidentate ligand, di(pyridin-2-yl)sulf­ide (DPS), has been reported to exhibit a very similar metal coordination environment to the major component reported here, upon reaction with CuCl2·H2O, to yield [Cu(DPS)(H2O)Cl2]·H2O (Teles et al., 2006[Teles, W. M., Marinho, M. V., Yoshida, M. I., Speziali, N. L., Krambrock, K., Pinheiro, C. B., Pinhal, N. M., Leitão, A. A. & Machado, F. C. (2006). Inorg. Chim. Acta, 359, 4613-4618.]). In this complex, the authors report τ = 0.06, with the square plane formed by the two nitro­gen atoms from DPS, a coordinating water mol­ecule, and one chloride ion (with the second chloride occupying the axial position). Similar to the reported structure here, the six-membered chelate ring adopts a boat conformation, which is characteristic for transition metal complexes with this class of ligands upon bidentate coordination (vide infra).

3. Supra­molecular features

In the crystal, mol­ecules of the title complex pack in columns, parallel to the crystallographic b axis (Fig. 3[link]), with short S⋯Si inter­molecular distances [3.7327 (3) Å; symmetry code: (i) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]]. Note that each chelated `boat' points in the same direction within a column, and the opposite direction is observed in adjacent columns.

[Figure 3]
Figure 3
Packed unit cell for [(L1)Cl1.51(H2O)1.49Cu]0.49Cl·1.51H2O. Only atoms in the major occupancy component are shown. All solvent water mol­ecules and hydrogen atoms have been omitted for clarity.

4. Database survey

A survey was performed of the Cambridge Structural Database (version 5.38 with May 2017 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), using ConQuest (version 1.19; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), for six-membered transition metal chelate rings resulting from bidentate ligand coordination, where the metal was any transition metal, and the other ring components were N–C–S–C–N. Further, within the ligand, each C—N was required to be part of a six-membered ring, where the remaining four atoms could be any non-metal, and the bond type within the ring was unspecified (allowed to be `any' bond type). This resulted in 74 hits, which were then manually sorted to omit systems where the ligand exhibited anything greater than bidenticity, leaving 68 structures for further analysis using Mercury (version 3.9; Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]). All of these exhibited boat-shaped puckering of the chelate ring, with mean values for θ1 = 43 (7) and θ2 = 37 (5)°. While the larger angle for the title complex is θ2, both θ1 and θ2 are within two standard deviations of comparable structures from the database.

5. Synthesis and crystallization

2-{[6-(Di­methyl­amino)­pyrimidin-4-yl]sulfan­yl}pyrimidine-4,6-di­amine (C10H13N7S; L1): 0.972 g (7.03 mmol) of potassium carbonate and 1.000 g (6.24 mmol) of 4,6-di­amino-2-mercapto­pyrimidine hydrate were combined in 20 mL of di­methyl­formamide, and stirred at 333 K for 20 min, prior to the addition of 0.524 g (3.51 mmol) of 4,6-di­chloro­pyrimidine (see reaction scheme). The resulting cloudy orange solution was refluxed for 24 h. It was then filtered, and the brown filtrate was reduced in vacuo to yield 0.387 g (1.47 mmol) of orange solid, after washing with ethanol (42% yield).

[Scheme 2]

Aqua­chlorido­(2-{[6-(di­methyl­amino)­pyrimidin-4-yl]sulfan­yl}pyrimidine-4,6-di­amine)­copper(II) chloride hydrate [CuCl1.51(C10H13N7S)(H2O)1.49]Cl0.49·1.51H2O: 0.050 g (0.19 mmol) of L1 and 0.048 g (0.28 mmol) of CuCl2·2H2O were separately dissolved in 5 mL of 1:1 methanol/aceto­nitrile. The solution of CuCl2 was added dropwise to the solution of L1. The resulting cloudy brown solution was stirred vigorously with heating (333 K) for 20 min. This was filtered, yielding 0.007 g of brown, amorphous powder, and a clear green filtrate that was left for slow evaporation. Green, prismatic X-ray quality crystals grew from the filtrate over the course of six weeks. 3.6 mg (0.0080 mmol) of analytically pure crystals were harvested as soon as they formed, though the mother liquor was still highly coloured, accounting for the low (4.2%) yield. These crystals were analyzed via small mol­ecule X-ray diffraction, and elemental analysis. Analysis calculated for [(C10H13N7S)CuCl2·3H2O: C, 26.58; H, 4.24; N, 21.7. Found: C, 26.26; H, 4.13; N, 21.31. Presence of copper confirmed via graphite furnace atomic absorption spectroscopy: calculated: 25 µg L−1; found: 31.0 ± 0.14 µg L−1 (n = 8).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were introduced in calculated positions and refined using a riding model, except those bonded to oxygen or nitro­gen atoms, which were introduced in difference-map positions. N—H hydrogen atoms were refined isotropically, with no restraints. All O—H hydrogen atoms (all associated with water mol­ecules) were refined with Uiso(H) 1.5 times that of the parent atoms and rotating geometry constraints (AFIX 7). Similar distance restraints (SADI, esd 0.02) were applied for all water mol­ecules.

Table 3
Experimental details

Crystal data
Chemical formula [CuCl1.51(C10H13N7S)(H2O)1.49]·Cl0.49·1.51H2O
Mr 451.82
Crystal system, space group Monoclinic, P21/c
Temperature (K) 110
a, b, c (Å) 11.42069 (19), 7.23911 (12), 21.6990 (3)
β (°) 103.1543 (16)
V3) 1746.91 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.94
Crystal size (mm) 0.27 × 0.19 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD with CrysAlis PRO imported SAXI images
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.034, 0.115
No. of measured, independent and observed [I > 2σ(I)] reflections 22331, 3000, 2523
Rint 0.051
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.04
No. of reflections 3000
No. of parameters 261
No. of restraints 47
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.32
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The structure exhibited significant disorder. This included main fragment disorder in the coordination sphere around Cu1. As such, similar distance restraints (SADI, esd 0.02) were applied to the Cu—OH2 and Cu—Cl bonds; for each, one O atom (O1) and one Cl atom (Cl1) were fully occupied, while the other (O2 and Cl2) were at partial occupancy, occupying the same coordination site on Cu1, with a sum of their occupancy equal to one. Identical anisotropic displacement parameter (EADP) constraints were applied to Cl2 and O2. Finally, EADP constraints were also applied to a disordered water mol­ecule (O4 and O5), with a sum occupancy of one.

While the structure does exhibit significant disorder, careful consideration was given to ensure that: (i) charge balance was established; (ii) the model was consistent with a reasonable hydrogen-bonding network; and (iii) the next highest residual electron density peak was associated along a C—S bond.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Aqua[aqua/chlorido(0.49/0.51)](2-{[6-(dimethylamino)pyrimidin-4-yl]sulfanyl}pyrimidine-4,6-diamine)copper(II) 0.49-chloride 1.51-hydrate top
Crystal data top
[CuCl1.51(C10H13N7S)(H2O)1.49]·0.49Cl·1.51H2OF(000) = 924
Mr = 451.82Dx = 1.718 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 11.42069 (19) ÅCell parameters from 13698 reflections
b = 7.23911 (12) Åθ = 4.0–66.3°
c = 21.6990 (3) ŵ = 5.94 mm1
β = 103.1543 (16)°T = 110 K
V = 1746.91 (5) Å3Prism, green
Z = 40.27 × 0.19 × 0.17 mm
Data collection top
Bruker APEXII CCD with CrysAlis PRO imported SAXI images
diffractometer
3000 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and φ scansθmax = 66.4°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 1313
Tmin = 0.034, Tmax = 0.115k = 88
22331 measured reflectionsl = 2522
Refinement top
Refinement on F247 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.8086P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3000 reflectionsΔρmax = 0.32 e Å3
261 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.65886 (3)0.87641 (5)0.36726 (2)0.02056 (12)
Cl10.59471 (5)0.68609 (9)0.43587 (3)0.02412 (16)
Cl20.81961 (17)1.0193 (3)0.45364 (9)0.0250 (6)0.511 (5)
Cl30.9316 (3)0.7674 (6)0.55061 (13)0.0648 (12)0.489 (5)
S10.47778 (6)0.94220 (9)0.22968 (3)0.02244 (16)
O10.77219 (16)0.6829 (3)0.34783 (8)0.0256 (4)
H1A0.743 (3)0.635 (4)0.3084 (9)0.051 (11)*
H1B0.790 (3)0.586 (4)0.3750 (15)0.062 (12)*
O30.9002 (6)0.6924 (9)0.5536 (4)0.0305 (15)0.511 (5)
H3A0.8735560.7842240.5241700.046*0.511 (5)
H3B0.9825960.7042840.5691680.046*0.511 (5)
O41.148 (5)0.571 (8)0.560 (3)0.056 (3)0.511 (5)
H4A1.1646210.4899140.5311280.084*0.511 (5)
H4B1.2183110.6347140.5787050.084*0.511 (5)
O20.7814 (6)1.0316 (10)0.4446 (3)0.0250 (6)0.489 (5)
H2A0.8165741.1284670.4293870.038*0.489 (5)
H2B0.8428330.9621170.4676370.038*0.489 (5)
O51.141 (5)0.553 (9)0.557 (3)0.056 (3)0.489 (5)
H5C1.0940420.6587430.5495830.084*0.489 (5)
H5D1.1649820.4870730.5264890.084*0.489 (5)
N10.50737 (19)1.0333 (3)0.35292 (9)0.0214 (5)
N20.31504 (19)1.0711 (3)0.28275 (10)0.0229 (5)
N30.86159 (19)1.1243 (3)0.25035 (10)0.0238 (5)
N40.70468 (19)1.0147 (3)0.29669 (9)0.0213 (5)
N50.5433 (2)1.1471 (4)0.45509 (11)0.0286 (5)
H5A0.614 (3)1.106 (5)0.4577 (15)0.034*
H5B0.517 (3)1.185 (5)0.4834 (16)0.034*
N60.1509 (2)1.1695 (4)0.32017 (14)0.0321 (6)
H6A0.122 (3)1.202 (5)0.3488 (17)0.033 (9)*
H6B0.109 (3)1.134 (5)0.2867 (17)0.037 (10)*
N70.8262 (2)1.1817 (3)0.14302 (10)0.0266 (5)
C10.4646 (2)1.1146 (4)0.40076 (12)0.0232 (6)
C20.3434 (2)1.1595 (4)0.39165 (12)0.0250 (6)
H20.3122071.2086330.4252220.030*
C30.2696 (2)1.1307 (4)0.33244 (13)0.0246 (6)
C40.4299 (2)1.0264 (3)0.29687 (11)0.0204 (5)
C50.6270 (2)1.0255 (3)0.23952 (11)0.0205 (5)
C60.6605 (2)1.0850 (3)0.18649 (11)0.0203 (5)
H60.6040651.0951920.1470500.024*
C70.7828 (2)1.1307 (4)0.19266 (12)0.0229 (6)
C80.8173 (2)1.0684 (4)0.29833 (12)0.0235 (6)
H80.8716691.0661770.3386040.028*
C90.7483 (3)1.1897 (4)0.07954 (13)0.0342 (7)
H9A0.7296051.0639400.0636030.051*
H9B0.7895171.2562600.0512900.051*
H9C0.6736631.2542060.0811540.051*
C100.9543 (3)1.2111 (5)0.14952 (14)0.0360 (7)
H10A0.9844051.2951870.1849690.054*
H10B0.9682391.2652390.1104320.054*
H10C0.9965001.0926070.1575500.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0206 (2)0.0275 (2)0.0147 (2)0.00178 (16)0.00640 (14)0.00253 (14)
Cl10.0240 (3)0.0325 (3)0.0171 (3)0.0027 (3)0.0072 (2)0.0045 (2)
Cl20.0180 (12)0.0367 (7)0.0183 (8)0.0039 (8)0.0002 (7)0.0004 (5)
Cl30.055 (2)0.110 (3)0.0285 (11)0.0397 (19)0.0078 (11)0.0013 (16)
S10.0219 (3)0.0293 (3)0.0168 (3)0.0034 (3)0.0060 (2)0.0018 (2)
O10.0215 (10)0.0351 (11)0.0208 (10)0.0028 (8)0.0059 (8)0.0012 (8)
O30.021 (3)0.038 (3)0.035 (3)0.007 (2)0.011 (2)0.012 (2)
O40.080 (5)0.054 (8)0.034 (4)0.022 (4)0.013 (3)0.009 (4)
O20.0180 (12)0.0367 (7)0.0183 (8)0.0039 (8)0.0002 (7)0.0004 (5)
O50.080 (5)0.054 (8)0.034 (4)0.022 (4)0.013 (3)0.009 (4)
N10.0239 (11)0.0268 (12)0.0149 (10)0.0019 (9)0.0075 (9)0.0032 (9)
N20.0216 (11)0.0266 (12)0.0209 (11)0.0009 (9)0.0059 (9)0.0051 (9)
N30.0212 (11)0.0319 (12)0.0188 (11)0.0002 (10)0.0055 (9)0.0019 (9)
N40.0212 (11)0.0276 (12)0.0156 (10)0.0006 (9)0.0051 (8)0.0001 (8)
N50.0288 (13)0.0421 (15)0.0162 (11)0.0084 (11)0.0080 (10)0.0024 (10)
N60.0233 (13)0.0439 (16)0.0306 (15)0.0030 (11)0.0092 (12)0.0048 (12)
N70.0251 (12)0.0394 (14)0.0175 (11)0.0014 (10)0.0092 (9)0.0033 (9)
C10.0276 (14)0.0244 (14)0.0199 (13)0.0024 (11)0.0100 (11)0.0068 (10)
C20.0285 (15)0.0282 (14)0.0213 (13)0.0046 (11)0.0117 (11)0.0054 (10)
C30.0253 (14)0.0234 (14)0.0277 (14)0.0016 (11)0.0113 (11)0.0101 (11)
C40.0236 (14)0.0200 (13)0.0191 (12)0.0006 (11)0.0083 (10)0.0044 (10)
C50.0222 (13)0.0215 (13)0.0189 (12)0.0023 (10)0.0068 (10)0.0024 (10)
C60.0222 (13)0.0251 (14)0.0144 (12)0.0013 (11)0.0057 (10)0.0001 (10)
C70.0275 (14)0.0234 (13)0.0196 (13)0.0005 (11)0.0091 (11)0.0029 (10)
C80.0238 (14)0.0292 (14)0.0174 (12)0.0023 (11)0.0047 (10)0.0013 (10)
C90.0341 (16)0.0502 (18)0.0193 (14)0.0019 (14)0.0079 (12)0.0053 (12)
C100.0254 (15)0.057 (2)0.0291 (15)0.0059 (14)0.0138 (12)0.0002 (14)
Geometric parameters (Å, º) top
Cu1—Cl12.2689 (7)N4—C51.353 (3)
Cu1—Cl22.5273 (19)N4—C81.336 (3)
Cu1—O12.0158 (19)N5—H5A0.84 (3)
Cu1—O22.229 (6)N5—H5B0.79 (3)
Cu1—N12.034 (2)N5—C11.331 (4)
Cu1—N41.996 (2)N6—H6A0.80 (4)
S1—C41.777 (2)N6—H6B0.81 (4)
S1—C51.774 (3)N6—C31.351 (4)
O1—H1A0.915 (14)N7—C71.337 (3)
O1—H1B0.911 (15)N7—C91.461 (3)
O3—H3A0.9233N7—C101.452 (3)
O3—H3B0.9290C1—C21.392 (4)
O4—H4A0.9144C2—H20.9500
O4—H4B0.9323C2—C31.383 (4)
O2—H2A0.9063C5—C61.363 (4)
O2—H2B0.9141C6—H60.9500
O5—H5C0.9293C6—C71.411 (4)
O5—H5D0.9107C8—H80.9500
N1—C11.376 (3)C9—H9A0.9800
N1—C41.332 (3)C9—H9B0.9800
N2—C31.368 (4)C9—H9C0.9800
N2—C41.318 (3)C10—H10A0.9800
N3—C71.366 (3)C10—H10B0.9800
N3—C81.320 (3)C10—H10C0.9800
Cl1—Cu1—Cl292.89 (5)C7—N7—C10120.8 (2)
O1—Cu1—Cl191.94 (6)C10—N7—C9118.0 (2)
O1—Cu1—Cl292.69 (7)N1—C1—C2120.3 (2)
O1—Cu1—O2100.64 (18)N5—C1—N1117.4 (2)
O1—Cu1—N1157.01 (8)N5—C1—C2122.3 (2)
O2—Cu1—Cl193.1 (2)C1—C2—H2120.9
N1—Cu1—Cl192.81 (6)C3—C2—C1118.2 (2)
N1—Cu1—Cl2109.51 (8)C3—C2—H2120.9
N1—Cu1—O2101.55 (18)N2—C3—C2121.3 (2)
N4—Cu1—Cl1171.10 (6)N6—C3—N2117.0 (3)
N4—Cu1—Cl295.20 (8)N6—C3—C2121.6 (3)
N4—Cu1—O183.98 (8)N1—C4—S1119.87 (19)
N4—Cu1—O295.5 (2)N2—C4—S1111.66 (18)
N4—Cu1—N187.99 (8)N2—C4—N1128.4 (2)
C5—S1—C4104.53 (12)N4—C5—S1120.15 (18)
Cu1—O1—H1A110 (2)N4—C5—C6122.7 (2)
Cu1—O1—H1B118 (3)C6—C5—S1116.92 (19)
H1A—O1—H1B107 (3)C5—C6—H6121.4
H3A—O3—H3B109.4C5—C6—C7117.1 (2)
H4A—O4—H4B108.7C7—C6—H6121.4
Cu1—O2—H2A111.7N3—C7—C6120.7 (2)
Cu1—O2—H2B114.0N7—C7—N3117.4 (2)
H2A—O2—H2B106.1N7—C7—C6122.0 (2)
H5C—O5—H5D123.9N3—C8—N4127.4 (2)
C1—N1—Cu1124.00 (17)N3—C8—H8116.3
C4—N1—Cu1118.91 (17)N4—C8—H8116.3
C4—N1—C1115.4 (2)N7—C9—H9A109.5
C4—N2—C3115.5 (2)N7—C9—H9B109.5
C8—N3—C7116.2 (2)N7—C9—H9C109.5
C5—N4—Cu1120.02 (17)H9A—C9—H9B109.5
C8—N4—Cu1122.97 (17)H9A—C9—H9C109.5
C8—N4—C5115.7 (2)H9B—C9—H9C109.5
H5A—N5—H5B126 (3)N7—C10—H10A109.5
C1—N5—H5A116 (2)N7—C10—H10B109.5
C1—N5—H5B116 (2)N7—C10—H10C109.5
H6A—N6—H6B122 (4)H10A—C10—H10B109.5
C3—N6—H6A119 (2)H10A—C10—H10C109.5
C3—N6—H6B118 (2)H10B—C10—H10C109.5
C7—N7—C9120.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···S1i0.92 (1)2.83 (3)3.439 (2)125 (3)
O1—H1A···N2i0.92 (1)1.99 (2)2.897 (3)170 (3)
O1—H1B···O4ii0.91 (2)1.82 (6)2.71 (6)167 (4)
O1—H1B···O5ii0.91 (2)1.80 (6)2.69 (6)162 (4)
O3—H3A···Cl20.922.283.200 (7)176
O3—H3B···O40.932.172.94 (6)139
O4—H4A···Cl1ii0.912.973.46 (6)116
O4—H4A···O3ii0.912.253.07 (6)150
O4—H4B···Cl2iii0.932.613.01 (6)107
O2—H2A···O5iii0.912.363.13 (6)144
O2—H2B···Cl30.912.333.177 (7)154
O5—H5C···Cl30.932.022.83 (6)145
O5—H5C···O2iii0.932.643.13 (6)114
O5—H5D···Cl1ii0.912.963.45 (6)116
O5—H5D···Cl3ii0.912.563.27 (6)135
N5—H5A···Cl10.84 (3)3.08 (3)3.430 (3)108 (2)
N5—H5A···Cl20.84 (3)2.46 (3)3.295 (3)172 (3)
N5—H5A···O20.84 (3)2.07 (3)2.903 (7)167 (3)
N5—H5B···Cl1iv0.79 (3)2.56 (4)3.353 (3)173 (3)
N6—H6A···Cl3iv0.80 (4)2.41 (4)3.187 (4)165 (3)
N6—H6A···O3iv0.80 (4)2.32 (4)3.094 (8)163 (3)
N6—H6B···N3v0.81 (4)2.76 (4)3.323 (3)128 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x+1, y+2, z+1; (v) x1, y, z.
 

Acknowledgements

Dr Paul Boyle, Department of Chemistry, X-Ray Facility, University of Western Ontario, Canada, is sincerely thanked for X-ray data collections. Dr Ken Maly, Department of Chemistry and Biochemistry, Wilfrid Laurier University, is thanked for helpful discussions on ligand synthesis. Dr Scott Smith, Department of Chemistry and Biochemistry, Wilfrid Laurier University, is thanked for helpful discussions on metal confirmation via GFAA spectroscopy.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada, Canada Foundation for Innovation, Wilfrid Laurier University Research Office, The Research Support Fund (Wilfrid Laurier University), Laurier Faculty of Science Student Association (award to T. Moyaert).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science
First citationAsay, M. & Morales-Morales, D. (2015). Dalton Trans. 44, 17432–17447.  CrossRef CAS PubMed
First citationBruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals
First citationChung, J. Y. L., Cvetovich, R. J., Tsay, F.-R., Dormer, P. G., DiMichele, L., Mathre, D. J., Chilenski, J. R., Mao, B. & Wenslow, R. (2003). J. Org. Chem. 68, 8838–8846.  CSD CrossRef PubMed CAS
First citationDawe, L., Abedin, T., Kelly, T., Thompson, L., Miller, D., Zhao, L., Wilson, C., Leech, M. & Howard, J. (2006). J. Mater. Chem. 16, 2645–2659.  CSD CrossRef CAS
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationLi, H.-X., Zhao, W., Li, H.-Y., Xu, Z.-L., Wang, W.-X. & Lang, J.-P. (2012). Chem. Commun. pp. 4259–4261.
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals
First citationMandal, S., Bérubé, G., Asselin, É., Richardson, V. J., Church, J. G., Bridson, J., Pham, T. N. Q., Pramanik, S. K. & Mandal, S. K. (2007). Bioorg. Med. Chem. Lett. 17, 2139–2145.  CSD CrossRef PubMed CAS
First citationPfaltz, A. & Drury, W. J. (2004). Proc. Natl Acad. Sci. USA, 101, 5723–5726.  CrossRef PubMed CAS
First citationRay, S., Smith, F. R., Bridson, J. N., Hong, Q., Richardson, V. J. & Mandal, S. K. (1994). Inorg. Chim. Acta, 227, 175–179.  CSD CrossRef CAS Web of Science
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationTeles, W. M., Marinho, M. V., Yoshida, M. I., Speziali, N. L., Krambrock, K., Pinheiro, C. B., Pinhal, N. M., Leitão, A. A. & Machado, F. C. (2006). Inorg. Chim. Acta, 359, 4613–4618.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds