research communications
fac-tricarbonylchloridobis(4-hydroxypyridine)rhenium(I)–pyridin-4(1H)-one (1/1)
ofaDepartamento de Química Inorgánica, Facultade de Química, Instituto de Investigación Sanitaria Galicia Sur – Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain
*Correspondence e-mail: ezequiel@uvigo.es
The 5H5NO)2(CO)3]·C5H5NO, contains one molecule of the complex fac-[ReCl(4-pyOH)2(CO)3] (where 4-pyOH represents 4-hydroxypyridine) and one molecule of pyridin-4(1H)-one (4-HpyO). In the molecule of the complex, the Re atom is coordinated to two N atoms of the two 4-pyOH ligands, three carbonyl C atoms, in a facial configuration, and the Cl atom. The resulting geometry is slightly distorted octahedral. In the both fragments are associated by hydrogen bonds; two 4-HpyO molecules bridge between two molecules of the complex using the O=C group as acceptor for two different HO– groups of coordinated 4-pyOH from two neighbouring metal complexes. The resulting square arrangements are extented into infinite chains by hydrogen bonds involving the N—H groups of the 4-HpyO molecule and the chloride ligands. The chains are further stabilized by π-stacking interactions.
of the title compound, [ReCl(CCCDC reference: 1575682
1. Chemical context
The structural stability of the fac-{ReI(CO)3} fragment and its trend to form sixfold coordinated octahedral complexes make it a suitable candidate for the construction of self-assambled metallomacrocycles, with some of them showing interesting properties (Slone et al., 1998; Sun & Lees, 2002). Bipyridine (and pyrazine) based ligands are usually chosen to obtain square or rectangular metallocycles, [Re4(L)4(CO)12] (L is the bridging ligand) with internal diameters of 5–9 nm. In the present work, we present the structure of a rhenium complex, where the square architecture is achieved by a coordinative Re—L link (where L is 4-hydroxypyridine) and by hydrogen-bonding interactions involving a 4-pyridone molecule (a tautomer of 4-hydroxypyridine L).
2. Structural commentary
The fac-[ReCl(4-pyOH)2(CO)3] (where 4-pyOH represents 4-hydroxypyridine) and pyridin-4(1H)-one (4-HpyO) in a 1:1 ratio (Fig. 1). Both molecules are associated through hydrogen bonding (see below). The existence of the pyridone form instead of hydroxypyridine is confirmed by the C—O bond distance, subtantially shorthened in 4-HpyO [C11—O3 = 1.293 (5) Å] with respect to the coordinated 4-pyOH [O1—C1 = 1.335 (5) Å and O2—C6 = 1.339 (5) Å], indicating the presence of a double C=O bond in 4-HpyO. The C—C bond lengths involving the carbonyl group [C11—C12 = 1.425 (6) Å and C11—C15 = 1.432 (6) Å] are elongated with respect to those observed in the 4-pyOH fragments [for instance, C1—C2 = 1.404 (6) Å and C1—C5 = 1.395 (6) Å]. The C—N bond lengths are also longer than their typical values in pyridines or pyridinium cations. These parameters are close to those found in the of the free (uncoordinated) 4-pyridone (Jones, 2001; Tyl et al., 2008) or to those involved in hydrogen bonding (Campos-Gaxiola et al. 2014; Staun & Oliver, 2012; 2015).
consists of molecules ofThe molecular structure of fac-[ReCl(4-pyOH)2(CO)3] is similar to other tricarbonylrhenium(I) complexes with two pyridine-based ligands (Abel & Wilkinson, 1959; Farrell et al., 2016). The around the Re atom can be described as slightly distorted octahedral (all angles are close to 90 or 180°), formed by coordination of the two N atoms of the two 4-pyOH ligands (N1 and N2), by the three carbonyl C atoms, in a facial configuration, and the chloride ligand. Both Re—N bond lengths [2.208 (4) and 2.210 (4) Å] are statistically equivalent. Neverthless, the Re—Cl bond in the present compound [2.4986 (10) Å] is longer that those found in pyridine derivatives described recently by Farrell et al. (2016), with an average value of 2.4649 (4) Å. This fact is likely due to the hydrogen-bonding interaction involving the chloride and the N—H group of a neighbouring 4-pyridone since this interaction is absent in those structures.
3. Supramolecular features
The molecular association in the crystal is strongly directed by hydrogen bonding (Table 1). Two 4-pyridone molecules bridge between two fac-[ReCl(4-pyOH)2(CO)3] using the ketone O=C group as the hydrogen-bonding acceptor to two different HO– groups, forming R42(28) rings centred at the g Wyckoff site (Fig. 2). The N—H group of the pyridone unit also establishes hydrogen-bond interactions, with the chloride group, yielding a new centrosymmetric ring R44(28) (at the f Wickoff site). Although the centroid-to-centroid distance between the pyridone and hydroxypyridone is rather long (3.791 Å), some distances between the atoms and centroids of the rings [C4⋯N3vi = 3.231 Å, C4⋯C14vi = 3.470 Å, C5⋯C14vi = 3.478 Å and C5⋯Civi = 3.365 Å; symmetry code: (vi) 1 − x, 2 − y, 1 − z; see Fig. 2] suggest a (slipped) π-stacking interaction. Both intermolecular interactions work to form infinite chains, as represented in Fig. 2, which are further supported by weak C—H⋯O and C—H⋯Cl interactions (the most representative ones are included in Table 1). The formation of the R42(28) rings yields a small channel-like void of ca 103 Å3 per as shown in Fig. 3. No substantial electron density is found in the channels (ca 4 electrons per void based on a PLATON/SQUEEZE analysis (Spek, 2009, 2015).
4. Database survey
The structures of several complexes with the metal centre fac-tricarbonylrhenium(I) and pyridine-based ligands have been reported (Abel & Wilkinson, 1959; Farrell et al., 2016). The pyridine fragment can be part of a bridging ligand between different metal centres to form tetranuclear complexes as reported by Levine et al. (2009). When ligands based on 4,4′-bipyridine are chosen, square (Slone et al., 1996; Bera et al., 2004; Sun et al., 2002) or rectangular (Dinolfo & Hupp, 2004; Gupta et al., 2011; Lu et al., 2012; Nagarajaprakash et al., 2014; Orsa et al., 2007) homo- or heteronuclear complexes are isolated. Applications of these compounds as sensors (Keefe et al., 2000), luminescent materials (Slone et al., 1996) or cytotoxic agents (Orsa et al., 2007) have been also reported.
5. Synthesis and crystallization
The complex fac-[ReCl(4-pyOH)2(CO)3] was obtained by refluxing for 90 min a mixture of 4-hydroxypyridine (29 mg, 0.31 mmol) and [ReCl(CH3CN)2(CO)3] in chloroform–methanol (1:1 v/v, 10 ml). The solution was concentrated (to half of initial volume), diethyl ether was added and the mixture cooled to 277 K. Finally, the solid was filtered off and vacuum dried on CaCl2 (yield: 81%, 30 mg; m.p. 418–421 K). Analysis, calculated for C13H10ClN2O5Re: C 31.5, H 2.0, N 5.6%; found: C 31.9, H 1.9, N 5.5%. MS–ESI [m/z (%)]: 461 (100) [M – Cl]+. IR (ATR, cm−1): 2016 (m), 1865 (b, s), ν(CO).
Single crystals of the title compound (too few for elemental analysis or meaningful estimation of the yield) were obtained from solutions of fac-[ReCl(CO)3(4-pyOH)2] in CHCl3:CH2Cl2:ether (1:1:1) stored at 253 K (several days).
6. Refinement
Crystal data, data collection and structure . H atoms on O and N atoms were located via difference Fourier analyses and refined with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). Other H atoms were included at calculated sites and allowed to ride on their carrier atoms, with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1575682
https://doi.org/10.1107/S2056989017013512/zl2716sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017013512/zl2716Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017013512/zl2716Isup3.cdx
Data collection: APEX3 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b).[ReCl(C5H5NO)2(CO)3]·C5H5NO | F(000) = 568 |
Mr = 590.98 | Dx = 1.818 Mg m−3 |
Triclinic, P1 | Melting point: 145 K |
a = 7.5235 (13) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.717 (2) Å | Cell parameters from 9858 reflections |
c = 13.644 (2) Å | θ = 3.3–26.6° |
α = 66.694 (4)° | µ = 5.79 mm−1 |
β = 78.757 (4)° | T = 100 K |
γ = 81.374 (4)° | Plate, yellow |
V = 1079.9 (3) Å3 | 0.36 × 0.35 × 0.04 mm |
Z = 2 |
Bruker D8 Venture Photon 100 CMOS diffractometer | 4312 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.041 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.6°, θmin = 2.8° |
Tmin = 0.352, Tmax = 0.647 | h = −9→9 |
28225 measured reflections | k = −14→14 |
4476 independent reflections | l = −17→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.029 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0178P)2 + 5.8451P] where P = (Fo2 + 2Fc2)/3 |
S = 1.35 | (Δ/σ)max = 0.001 |
4476 reflections | Δρmax = 1.63 e Å−3 |
272 parameters | Δρmin = −1.03 e Å−3 |
0 restraints | Extinction correction: SHELXL2013 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0119 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0.86373 (2) | 0.70746 (2) | 0.07222 (2) | 0.01123 (10) | |
Cl1 | 1.09377 (15) | 0.82393 (10) | 0.09609 (9) | 0.0135 (2) | |
O1 | 0.3391 (5) | 0.8384 (4) | 0.4444 (3) | 0.0208 (8) | |
H1 | 0.394 (10) | 0.843 (6) | 0.499 (6) | 0.031* | |
O2 | 1.1814 (5) | 0.2036 (3) | 0.4087 (3) | 0.0229 (8) | |
O3 | 0.4725 (5) | 0.8444 (3) | 0.6006 (3) | 0.0203 (8) | |
H2 | 1.319 (10) | 0.196 (6) | 0.399 (6) | 0.030* | |
O20 | 1.1184 (5) | 0.6629 (4) | −0.1173 (3) | 0.0232 (8) | |
O21 | 0.6852 (5) | 0.9364 (4) | −0.0929 (3) | 0.0243 (8) | |
O22 | 0.5800 (6) | 0.5598 (4) | 0.0526 (4) | 0.0299 (9) | |
N1 | 0.6881 (5) | 0.7397 (4) | 0.2102 (3) | 0.0129 (8) | |
N2 | 0.9814 (5) | 0.5408 (4) | 0.1954 (3) | 0.0138 (8) | |
N3 | 0.1310 (6) | 0.9766 (4) | 0.8090 (4) | 0.0225 (9) | |
H3A | 0.056 (9) | 1.011 (6) | 0.859 (6) | 0.027* | |
C1 | 0.4552 (7) | 0.8016 (4) | 0.3733 (4) | 0.0154 (9) | |
C2 | 0.3875 (7) | 0.7932 (5) | 0.2880 (4) | 0.0165 (10) | |
H2A | 0.2607 | 0.8072 | 0.2848 | 0.020* | |
C3 | 0.5057 (7) | 0.7646 (4) | 0.2088 (4) | 0.0151 (9) | |
H3 | 0.4577 | 0.7621 | 0.1503 | 0.018* | |
C4 | 0.7506 (7) | 0.7409 (4) | 0.2958 (4) | 0.0140 (9) | |
H4 | 0.8767 | 0.7204 | 0.3000 | 0.017* | |
C5 | 0.6415 (7) | 0.7705 (5) | 0.3779 (4) | 0.0166 (10) | |
H5 | 0.6922 | 0.7697 | 0.4368 | 0.020* | |
C6 | 1.1246 (7) | 0.3148 (4) | 0.3390 (4) | 0.0169 (10) | |
C7 | 0.9392 (7) | 0.3537 (5) | 0.3529 (4) | 0.0187 (10) | |
H7 | 0.8585 | 0.3038 | 0.4120 | 0.022* | |
C8 | 0.8757 (7) | 0.4642 (4) | 0.2803 (4) | 0.0149 (9) | |
H8 | 0.7493 | 0.4884 | 0.2904 | 0.018* | |
C9 | 1.1622 (7) | 0.5051 (5) | 0.1839 (4) | 0.0170 (10) | |
H9 | 1.2407 | 0.5590 | 0.1264 | 0.020* | |
C10 | 1.2371 (7) | 0.3934 (5) | 0.2526 (4) | 0.0191 (10) | |
H10 | 1.3638 | 0.3706 | 0.2408 | 0.023* | |
C11 | 0.3637 (7) | 0.8866 (4) | 0.6664 (4) | 0.0159 (9) | |
C12 | 0.1806 (7) | 0.9321 (5) | 0.6507 (4) | 0.0192 (10) | |
H12 | 0.1357 | 0.9326 | 0.5901 | 0.023* | |
C13 | 0.0699 (7) | 0.9751 (5) | 0.7227 (4) | 0.0206 (10) | |
H13 | −0.0523 | 1.0045 | 0.7120 | 0.025* | |
C14 | 0.3048 (8) | 0.9366 (5) | 0.8259 (4) | 0.0202 (10) | |
H14 | 0.3458 | 0.9412 | 0.8857 | 0.024* | |
C15 | 0.4216 (6) | 0.8902 (4) | 0.7590 (4) | 0.0149 (9) | |
H15 | 0.5419 | 0.8601 | 0.7736 | 0.018* | |
C20 | 1.0245 (7) | 0.6793 (4) | −0.0466 (4) | 0.0175 (10) | |
C21 | 0.7553 (6) | 0.8525 (4) | −0.0305 (4) | 0.0148 (9) | |
C22 | 0.6898 (7) | 0.6144 (5) | 0.0594 (4) | 0.0197 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.01149 (13) | 0.01337 (13) | 0.01111 (13) | 0.00016 (7) | −0.00161 (7) | −0.00747 (8) |
Cl1 | 0.0141 (5) | 0.0153 (5) | 0.0144 (5) | −0.0007 (4) | −0.0023 (4) | −0.0091 (4) |
O1 | 0.0169 (18) | 0.032 (2) | 0.0186 (18) | 0.0003 (15) | 0.0016 (15) | −0.0177 (16) |
O2 | 0.024 (2) | 0.0183 (18) | 0.0187 (18) | 0.0032 (15) | −0.0025 (15) | −0.0015 (15) |
O3 | 0.0179 (18) | 0.0264 (19) | 0.0191 (18) | 0.0058 (15) | −0.0019 (14) | −0.0144 (15) |
O20 | 0.026 (2) | 0.0278 (19) | 0.0184 (18) | −0.0017 (16) | 0.0063 (16) | −0.0159 (16) |
O21 | 0.025 (2) | 0.0226 (19) | 0.0214 (19) | 0.0016 (16) | −0.0089 (16) | −0.0037 (16) |
O22 | 0.024 (2) | 0.037 (2) | 0.040 (2) | −0.0070 (17) | −0.0022 (18) | −0.026 (2) |
N1 | 0.0115 (19) | 0.0162 (19) | 0.0112 (18) | 0.0018 (15) | 0.0003 (15) | −0.0072 (15) |
N2 | 0.0117 (19) | 0.0133 (18) | 0.016 (2) | −0.0008 (15) | 0.0001 (16) | −0.0066 (16) |
N3 | 0.024 (2) | 0.020 (2) | 0.023 (2) | −0.0028 (18) | 0.0078 (19) | −0.0120 (18) |
C1 | 0.014 (2) | 0.017 (2) | 0.015 (2) | −0.0020 (18) | 0.0015 (18) | −0.0073 (18) |
C2 | 0.016 (2) | 0.020 (2) | 0.017 (2) | 0.0035 (18) | −0.0061 (19) | −0.0097 (19) |
C3 | 0.015 (2) | 0.017 (2) | 0.016 (2) | −0.0007 (18) | −0.0037 (18) | −0.0090 (19) |
C4 | 0.017 (2) | 0.016 (2) | 0.012 (2) | 0.0009 (18) | −0.0043 (18) | −0.0074 (18) |
C5 | 0.018 (2) | 0.019 (2) | 0.016 (2) | −0.0022 (19) | −0.0033 (19) | −0.0102 (19) |
C6 | 0.020 (2) | 0.014 (2) | 0.017 (2) | 0.0006 (18) | −0.0036 (19) | −0.0059 (19) |
C7 | 0.019 (2) | 0.016 (2) | 0.017 (2) | 0.0008 (19) | 0.002 (2) | −0.0053 (19) |
C8 | 0.013 (2) | 0.018 (2) | 0.015 (2) | −0.0006 (18) | 0.0007 (18) | −0.0089 (19) |
C9 | 0.015 (2) | 0.020 (2) | 0.016 (2) | −0.0006 (18) | −0.0006 (19) | −0.0077 (19) |
C10 | 0.015 (2) | 0.021 (2) | 0.020 (2) | 0.0025 (19) | −0.002 (2) | −0.008 (2) |
C11 | 0.021 (2) | 0.014 (2) | 0.013 (2) | 0.0001 (18) | −0.0003 (19) | −0.0074 (18) |
C12 | 0.022 (3) | 0.019 (2) | 0.017 (2) | 0.005 (2) | −0.005 (2) | −0.009 (2) |
C13 | 0.018 (2) | 0.018 (2) | 0.027 (3) | 0.0001 (19) | −0.001 (2) | −0.012 (2) |
C14 | 0.027 (3) | 0.021 (2) | 0.017 (2) | −0.007 (2) | 0.000 (2) | −0.011 (2) |
C15 | 0.011 (2) | 0.016 (2) | 0.022 (2) | −0.0007 (17) | −0.0068 (19) | −0.0106 (19) |
C20 | 0.021 (3) | 0.011 (2) | 0.024 (3) | 0.0000 (18) | −0.008 (2) | −0.0085 (19) |
C21 | 0.010 (2) | 0.019 (2) | 0.017 (2) | −0.0061 (18) | 0.0021 (18) | −0.0086 (19) |
C22 | 0.014 (2) | 0.027 (3) | 0.016 (2) | 0.005 (2) | 0.0001 (19) | −0.011 (2) |
Re1—C22 | 1.898 (6) | C2—C3 | 1.376 (7) |
Re1—C21 | 1.914 (5) | C2—H2A | 0.9500 |
Re1—C20 | 1.933 (5) | C3—H3 | 0.9500 |
Re1—N1 | 2.208 (4) | C4—C5 | 1.383 (7) |
Re1—N2 | 2.210 (4) | C4—H4 | 0.9500 |
Re1—Cl1 | 2.4987 (11) | C5—H5 | 0.9500 |
O1—C1 | 1.333 (6) | C6—C10 | 1.393 (7) |
O1—H1 | 0.94 (8) | C6—C7 | 1.401 (7) |
O2—C6 | 1.341 (6) | C7—C8 | 1.367 (7) |
O2—H2 | 1.01 (7) | C7—H7 | 0.9500 |
O3—C11 | 1.289 (6) | C8—H8 | 0.9500 |
O20—C20 | 1.143 (7) | C9—C10 | 1.387 (7) |
O21—C21 | 1.151 (6) | C9—H9 | 0.9500 |
O22—C22 | 1.155 (7) | C10—H10 | 0.9500 |
N1—C4 | 1.348 (6) | C11—C12 | 1.426 (7) |
N1—C3 | 1.362 (6) | C11—C15 | 1.433 (7) |
N2—C8 | 1.346 (6) | C12—C13 | 1.363 (7) |
N2—C9 | 1.360 (6) | C12—H12 | 0.9500 |
N3—C13 | 1.353 (7) | C13—H13 | 0.9500 |
N3—C14 | 1.353 (7) | C14—C15 | 1.355 (7) |
N3—H3A | 0.97 (7) | C14—H14 | 0.9500 |
C1—C2 | 1.401 (7) | C15—H15 | 0.9500 |
C1—C5 | 1.402 (7) | ||
C22—Re1—C21 | 87.9 (2) | C5—C4—H4 | 118.2 |
C22—Re1—C20 | 89.6 (2) | C4—C5—C1 | 119.2 (4) |
C21—Re1—C20 | 88.6 (2) | C4—C5—H5 | 120.4 |
C22—Re1—N1 | 91.96 (19) | C1—C5—H5 | 120.4 |
C21—Re1—N1 | 92.49 (18) | O2—C6—C10 | 124.3 (5) |
C20—Re1—N1 | 178.11 (17) | O2—C6—C7 | 117.8 (5) |
C22—Re1—N2 | 91.80 (19) | C10—C6—C7 | 117.8 (4) |
C21—Re1—N2 | 177.97 (17) | C8—C7—C6 | 119.2 (5) |
C20—Re1—N2 | 93.45 (18) | C8—C7—H7 | 120.4 |
N1—Re1—N2 | 85.51 (15) | C6—C7—H7 | 120.4 |
C22—Re1—Cl1 | 177.81 (16) | N2—C8—C7 | 124.0 (5) |
C21—Re1—Cl1 | 94.05 (14) | N2—C8—H8 | 118.0 |
C20—Re1—Cl1 | 91.33 (15) | C7—C8—H8 | 118.0 |
N1—Re1—Cl1 | 87.03 (11) | N2—C9—C10 | 122.8 (5) |
N2—Re1—Cl1 | 86.19 (11) | N2—C9—H9 | 118.6 |
C1—O1—H1 | 113 (4) | C10—C9—H9 | 118.6 |
C6—O2—H2 | 109 (4) | C9—C10—C6 | 119.2 (5) |
C4—N1—C3 | 116.7 (4) | C9—C10—H10 | 120.4 |
C4—N1—Re1 | 124.0 (3) | C6—C10—H10 | 120.4 |
C3—N1—Re1 | 119.2 (3) | O3—C11—C12 | 122.0 (5) |
C8—N2—C9 | 116.8 (4) | O3—C11—C15 | 121.4 (5) |
C8—N2—Re1 | 121.6 (3) | C12—C11—C15 | 116.6 (4) |
C9—N2—Re1 | 121.4 (3) | C13—C12—C11 | 120.0 (5) |
C13—N3—C14 | 120.9 (5) | C13—C12—H12 | 120.0 |
C13—N3—H3A | 123 (4) | C11—C12—H12 | 120.0 |
C14—N3—H3A | 116 (4) | N3—C13—C12 | 121.1 (5) |
O1—C1—C2 | 118.1 (4) | N3—C13—H13 | 119.4 |
O1—C1—C5 | 124.5 (5) | C12—C13—H13 | 119.4 |
C2—C1—C5 | 117.4 (4) | N3—C14—C15 | 121.3 (5) |
C3—C2—C1 | 119.6 (5) | N3—C14—H14 | 119.4 |
C3—C2—H2A | 120.2 | C15—C14—H14 | 119.4 |
C1—C2—H2A | 120.2 | C14—C15—C11 | 120.0 (5) |
N1—C3—C2 | 123.2 (4) | C14—C15—H15 | 120.0 |
N1—C3—H3 | 118.4 | C11—C15—H15 | 120.0 |
C2—C3—H3 | 118.4 | O20—C20—Re1 | 179.5 (4) |
N1—C4—C5 | 123.7 (5) | O21—C21—Re1 | 177.0 (4) |
N1—C4—H4 | 118.2 | O22—C22—Re1 | 178.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3 | 0.94 (8) | 1.62 (8) | 2.556 (5) | 175 (7) |
O2—H2···O3i | 1.01 (7) | 1.57 (7) | 2.569 (5) | 169 (6) |
N3—H3A···Cl1ii | 0.97 (7) | 2.32 (7) | 3.218 (5) | 152 (5) |
C9—H9···O22iii | 0.95 | 2.56 | 3.317 (7) | 137 |
C3—H3···Cl1iv | 0.95 | 2.89 | 3.580 (5) | 131 |
C14—H14···O21v | 0.95 | 2.62 | 3.264 (7) | 126 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x+1, y, z; (iv) x−1, y, z; (v) x, y, z+1. |
Funding information
Funding for this research was provided by: Ministry of Economy, Industry and Competitiveness (Spain); European Regional Development Fund (grant Nos. CTQ2015-71211-REDT and CTQ2015-7091-R).
References
Abel, E. W. & Wilkinson, G. (1959). J. Chem. Soc. pp. 1501–1505. CrossRef
Bera, J. K., Bacsa, J., Smucker, B. W. & Dunbar, K. R. (2004). Eur. J. Inorg. Chem. pp. 368–375. CrossRef
Bruker (2014). APEX3 and SAINT. Bruker ASX Inc., Madison, Wisconsin, USA.
Campos-Gaxiola, J. J., Zamora Falcon, F., Corral Higuera, R., Höpfl, H. & Cruz-Enríquez, A. (2014). Acta Cryst. E70, o453–o454. CSD CrossRef IUCr Journals
Dinolfo, P. H. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 16814–16819. CrossRef PubMed CAS
Farrell, J. R., Kerins, G. J., Niederhoffer, K. L., Crandall, L. A. & Ziegler, C. (2016). J. Organomet. Chem. 813, 41–45. CrossRef CAS
Gupta, D., Rajakannu, P., Shankar, B., Shanmugam, R., Hussain, F., Sarkar, B. & Sathiyendiran, M. (2011). Dalton Trans. 40, 5433–5435. CrossRef CAS PubMed
Jones, P. G. (2001). Acta Cryst. C57, 880–882. Web of Science CSD CrossRef CAS IUCr Journals
Keefe, M. H., Slone, R. V., Hupp, J. T., Czaplewski, K. F., Snurr, R. Q. & Stern, C. L. (2000). Langmuir, 16, 3964–3970. CrossRef CAS
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals
Levine, L. A., Kirin, S. I., Myers, C. P., Showalter, S. A. & Williams, M. E. (2009). Eur. J. Inorg. Chem. pp. 613–621. CrossRef
Lu, Z., Lee, C., Velayudham, M., Lee, L., Wu, J., Kuo, T. & Lu, K. (2012). Chem. Eur. J. 18, 15714–15721. CrossRef CAS PubMed
Nagarajaprakash, R., Divya, D., Ramakrishna, B. & Manimaran, B. (2014). Organometallics, 33, 1367–1373. CrossRef CAS
Orsa, D. K., Haynes, G. K., Pramanik, S. K., Iwunze, M. O., Greco, G. E., Krause, J. A., Ho, D. M., Williams, A. L., Hill, D. A. & Mandal, S. K. (2007). Inorg. Chem. Commun. 10, 821–824. CrossRef CAS
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Slone, R. V., Benkstein, K. D., Bélanger, S., Hupp, J. T., Guzei, I. A. & Rheingold, A. L. (1998). Coord. Chem. Rev. 171, 221–243. CrossRef CAS
Slone, R. V., Hupp, J. T., Stern, C. L. & Albrecht-Schmitt, T. E. (1996). Inorg. Chem. 35, 4096–4097. CrossRef PubMed CAS
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals
Staun, S. L. & Oliver, A. G. (2012). Acta Cryst. C68, o84–o87. Web of Science CSD CrossRef IUCr Journals
Staun, S. L. & Oliver, A. G. (2015). Acta Cryst. E71, 861–863. Web of Science CSD CrossRef IUCr Journals
Sun, S., Anspach, J. A. & Lees, A. J. (2002). Inorg. Chem. 41, 1862–1869. CrossRef PubMed CAS
Sun, S. S. & Lees, A. J. (2002). Coord. Chem. Rev. 230, 171–192. CrossRef CAS
Tyl, A., Nowak, M. & Kusz, J. (2008). Acta Cryst. C64, o661–o664. Web of Science CSD CrossRef IUCr Journals
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.