research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of fac-tri­carbonyl­chlorido­bis­­(4-hy­dr­oxy­pyridine)­rhenium(I)–pyridin-4(1H)-one (1/1)

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Inorgánica, Facultade de Química, Instituto de Investigación Sanitaria Galicia Sur – Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain
*Correspondence e-mail: ezequiel@uvigo.es

Edited by M. Zeller, Purdue University, USA (Received 14 September 2017; accepted 20 September 2017; online 29 September 2017)

The asymmetric unit of the title compound, [ReCl(C5H5NO)2(CO)3]·C5H5NO, contains one mol­ecule of the complex fac-[ReCl(4-pyOH)2(CO)3] (where 4-pyOH represents 4-hy­droxy­pyridine) and one mol­ecule of pyridin-4(1H)-one (4-HpyO). In the mol­ecule of the complex, the Re atom is coordinated to two N atoms of the two 4-pyOH ligands, three carbonyl C atoms, in a facial configuration, and the Cl atom. The resulting geometry is slightly distorted octa­hedral. In the crystal structure, both fragments are associated by hydrogen bonds; two 4-HpyO mol­ecules bridge between two mol­ecules of the complex using the O=C group as acceptor for two different HO– groups of coordinated 4-pyOH from two neighbouring metal complexes. The resulting square arrangements are extented into infinite chains by hydrogen bonds involving the N—H groups of the 4-HpyO mol­ecule and the chloride ligands. The chains are further stabilized by π-stacking inter­actions.

1. Chemical context

The structural stability of the fac-{ReI(CO)3} fragment and its trend to form sixfold coordinated octa­hedral complexes make it a suitable candidate for the construction of self-assambled metallomacrocycles, with some of them showing inter­esting properties (Slone et al., 1998[Slone, R. V., Benkstein, K. D., Bélanger, S., Hupp, J. T., Guzei, I. A. & Rheingold, A. L. (1998). Coord. Chem. Rev. 171, 221-243.]; Sun & Lees, 2002[Sun, S. S. & Lees, A. J. (2002). Coord. Chem. Rev. 230, 171-192.]). Bi­pyridine (and pyrazine) based ligands are usually chosen to obtain square or rectangular metallocycles, [Re4(L)4(CO)12] (L is the bridging ligand) with inter­nal diameters of 5–9 nm. In the present work, we present the structure of a rhenium complex, where the square architecture is achieved by a coordinative Re—L link (where L is 4-hy­droxy­pyridine) and by hydrogen-bonding inter­actions involving a 4-pyridone mol­ecule (a tautomer of 4-hy­droxy­pyridine L).

[Scheme 1]

2. Structural commentary

The crystal structure consists of mol­ecules of fac-[ReCl(4-pyOH)2(CO)3] (where 4-pyOH represents 4-hy­droxy­pyridine) and pyridin-4(1H)-one (4-HpyO) in a 1:1 ratio (Fig. 1[link]). Both mol­ecules are associated through hydrogen bonding (see below). The existence of the pyridone form instead of hy­droxy­pyridine is confirmed by the C—O bond distance, subtanti­ally shorthened in 4-HpyO [C11—O3 = 1.293 (5) Å] with respect to the coordinated 4-pyOH [O1—C1 = 1.335 (5) Å and O2—C6 = 1.339 (5) Å], indicating the presence of a double C=O bond in 4-HpyO. The C—C bond lengths involving the carbonyl group [C11—C12 = 1.425 (6) Å and C11—C15 = 1.432 (6) Å] are elongated with respect to those observed in the 4-pyOH fragments [for instance, C1—C2 = 1.404 (6) Å and C1—C5 = 1.395 (6) Å]. The C—N bond lengths are also longer than their typical values in pyridines or pyridinium cations. These parameters are close to those found in the crystal structure of the free (uncoordinated) 4-pyridone (Jones, 2001[Jones, P. G. (2001). Acta Cryst. C57, 880-882.]; Tyl et al., 2008[Tyl, A., Nowak, M. & Kusz, J. (2008). Acta Cryst. C64, o661-o664.]) or to those involved in hydrogen bonding (Campos-Gaxiola et al. 2014[Campos-Gaxiola, J. J., Zamora Falcon, F., Corral Higuera, R., Höpfl, H. & Cruz-Enríquez, A. (2014). Acta Cryst. E70, o453-o454.]; Staun & Oliver, 2012[Staun, S. L. & Oliver, A. G. (2012). Acta Cryst. C68, o84-o87.]; 2015[Staun, S. L. & Oliver, A. G. (2015). Acta Cryst. E71, 861-863.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

The mol­ecular structure of fac-[ReCl(4-pyOH)2(CO)3] is similar to other tri­carbonyl­rhenium(I) complexes with two pyridine-based ligands (Abel & Wilkinson, 1959[Abel, E. W. & Wilkinson, G. (1959). J. Chem. Soc. pp. 1501-1505.]; Farrell et al., 2016[Farrell, J. R., Kerins, G. J., Niederhoffer, K. L., Crandall, L. A. & Ziegler, C. (2016). J. Organomet. Chem. 813, 41-45.]). The coordination polyhedron around the Re atom can be described as slightly distorted octa­hedral (all angles are close to 90 or 180°), formed by coordination of the two N atoms of the two 4-pyOH ligands (N1 and N2), by the three carbonyl C atoms, in a facial configuration, and the chloride ligand. Both Re—N bond lengths [2.208 (4) and 2.210 (4) Å] are statistically equivalent. Neverthless, the Re—Cl bond in the present compound [2.4986 (10) Å] is longer that those found in pyridine derivatives described recently by Farrell et al. (2016[Farrell, J. R., Kerins, G. J., Niederhoffer, K. L., Crandall, L. A. & Ziegler, C. (2016). J. Organomet. Chem. 813, 41-45.]), with an average value of 2.4649 (4) Å. This fact is likely due to the hydrogen-bonding inter­action involving the chloride and the N—H group of a neighbouring 4-pyridone since this inter­action is absent in those structures.

3. Supra­molecular features

The mol­ecular association in the crystal is strongly directed by hydrogen bonding (Table 1[link]). Two 4-pyridone mol­ecules bridge between two fac-[ReCl(4-pyOH)2(CO)3] using the ketone O=C group as the hydrogen-bonding acceptor to two different HO– groups, forming R42(28) rings centred at the g Wyckoff site (Fig. 2[link]). The N—H group of the pyridone unit also establishes hydrogen-bond inter­actions, with the chloride group, yielding a new centrosymmetric ring R44(28) (at the f Wickoff site). Although the centroid-to-centroid distance between the pyridone and hy­droxy­pyridone is rather long (3.791 Å), some distances between the atoms and centroids of the rings [C4⋯N3vi = 3.231 Å, C4⋯C14vi = 3.470 Å, C5⋯C14vi = 3.478 Å and C5⋯Civi = 3.365 Å; symmetry code: (vi) 1 − x, 2 − y, 1 − z; see Fig. 2[link]] suggest a (slipped) π-stacking inter­action. Both inter­molecular inter­actions work to form infinite chains, as represented in Fig. 2[link], which are further supported by weak C—H⋯O and C—H⋯Cl inter­actions (the most representative ones are included in Table 1[link]). The formation of the R42(28) rings yields a small channel-like void of ca 103 Å3 per unit cell, as shown in Fig. 3[link]. No substantial electron density is found in the channels (ca 4 electrons per void based on a PLATON/SQUEEZE analysis (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.], 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.94 (8) 1.62 (8) 2.556 (5) 175 (7)
O2—H2⋯O3i 1.01 (7) 1.57 (7) 2.569 (5) 169 (6)
N3—H3A⋯Cl1ii 0.97 (7) 2.32 (7) 3.218 (5) 152 (5)
C9—H9⋯O22iii 0.95 2.56 3.317 (7) 137
C3—H3⋯Cl1iv 0.95 2.89 3.580 (5) 131
C14—H14⋯O21v 0.95 2.62 3.264 (7) 126
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x+1, y, z; (iv) x-1, y, z; (v) x, y, z+1.
[Figure 2]
Figure 2
Representation of the formation of chains by hydrogen-bonding and π-stacking in the crystal structure.
[Figure 3]
Figure 3
Association of the chains and formation of the empty channels in the crystal structure.

4. Database survey

The structures of several complexes with the metal centre fac-tri­carbonyl­rhenium(I) and pyridine-based ligands have been reported (Abel & Wilkinson, 1959[Abel, E. W. & Wilkinson, G. (1959). J. Chem. Soc. pp. 1501-1505.]; Farrell et al., 2016[Farrell, J. R., Kerins, G. J., Niederhoffer, K. L., Crandall, L. A. & Ziegler, C. (2016). J. Organomet. Chem. 813, 41-45.]). The pyridine fragment can be part of a bridging ligand between different metal centres to form tetra­nuclear complexes as reported by Levine et al. (2009[Levine, L. A., Kirin, S. I., Myers, C. P., Showalter, S. A. & Williams, M. E. (2009). Eur. J. Inorg. Chem. pp. 613-621.]). When ligands based on 4,4′-bi­pyridine are chosen, square (Slone et al., 1996[Slone, R. V., Hupp, J. T., Stern, C. L. & Albrecht-Schmitt, T. E. (1996). Inorg. Chem. 35, 4096-4097.]; Bera et al., 2004[Bera, J. K., Bacsa, J., Smucker, B. W. & Dunbar, K. R. (2004). Eur. J. Inorg. Chem. pp. 368-375.]; Sun et al., 2002[Sun, S., Anspach, J. A. & Lees, A. J. (2002). Inorg. Chem. 41, 1862-1869.]) or rectangular (Dinolfo & Hupp, 2004[Dinolfo, P. H. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 16814-16819.]; Gupta et al., 2011[Gupta, D., Rajakannu, P., Shankar, B., Shanmugam, R., Hussain, F., Sarkar, B. & Sathiyendiran, M. (2011). Dalton Trans. 40, 5433-5435.]; Lu et al., 2012[Lu, Z., Lee, C., Velayudham, M., Lee, L., Wu, J., Kuo, T. & Lu, K. (2012). Chem. Eur. J. 18, 15714-15721.]; Nagarajaprakash et al., 2014[Nagarajaprakash, R., Divya, D., Ramakrishna, B. & Manimaran, B. (2014). Organometallics, 33, 1367-1373.]; Orsa et al., 2007[Orsa, D. K., Haynes, G. K., Pramanik, S. K., Iwunze, M. O., Greco, G. E., Krause, J. A., Ho, D. M., Williams, A. L., Hill, D. A. & Mandal, S. K. (2007). Inorg. Chem. Commun. 10, 821-824.]) homo- or heteronuclear complexes are isolated. Applications of these compounds as sensors (Keefe et al., 2000[Keefe, M. H., Slone, R. V., Hupp, J. T., Czaplewski, K. F., Snurr, R. Q. & Stern, C. L. (2000). Langmuir, 16, 3964-3970.]), luminescent materials (Slone et al., 1996[Slone, R. V., Hupp, J. T., Stern, C. L. & Albrecht-Schmitt, T. E. (1996). Inorg. Chem. 35, 4096-4097.]) or cytotoxic agents (Orsa et al., 2007[Orsa, D. K., Haynes, G. K., Pramanik, S. K., Iwunze, M. O., Greco, G. E., Krause, J. A., Ho, D. M., Williams, A. L., Hill, D. A. & Mandal, S. K. (2007). Inorg. Chem. Commun. 10, 821-824.]) have been also reported.

5. Synthesis and crystallization

The complex fac-[ReCl(4-pyOH)2(CO)3] was obtained by refluxing for 90 min a mixture of 4-hy­droxy­pyridine (29 mg, 0.31 mmol) and [ReCl(CH3CN)2(CO)3] in chloro­form–methanol (1:1 v/v, 10 ml). The solution was concentrated (to half of initial volume), diethyl ether was added and the mixture cooled to 277 K. Finally, the solid was filtered off and vacuum dried on CaCl2 (yield: 81%, 30 mg; m.p. 418–421 K). Analysis, calculated for C13H10ClN2O5Re: C 31.5, H 2.0, N 5.6%; found: C 31.9, H 1.9, N 5.5%. MS–ESI [m/z (%)]: 461 (100) [M – Cl]+. IR (ATR, cm−1): 2016 (m), 1865 (b, s), ν(CO).

Single crystals of the title compound (too few for elemental analysis or meaningful estimation of the yield) were obtained from solutions of fac-[ReCl(CO)3(4-pyOH)2] in CHCl3:CH2Cl2:ether (1:1:1) stored at 253 K (several days).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms on O and N atoms were located via difference Fourier analyses and refined with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). Other H atoms were included at calculated sites and allowed to ride on their carrier atoms, with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [ReCl(C5H5NO)2(CO)3]·C5H5NO
Mr 590.98
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.5235 (13), 11.717 (2), 13.644 (2)
α, β, γ (°) 66.694 (4), 78.757 (4), 81.374 (4)
V3) 1079.9 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.79
Crystal size (mm) 0.36 × 0.35 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.352, 0.647
No. of measured, independent and observed [I > 2σ(I)] reflections 28225, 4476, 4312
Rint 0.041
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.35
No. of reflections 4476
No. of parameters 272
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.63, −1.03
Computer programs: APEX3 (Bruker, 2014[Bruker (2014). APEX3 and SAINT. Bruker ASX Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX3 and SAINT. Bruker ASX Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b).

fac-Tricarbonylchloridobis(4-hydroxypyridine)rhenium(I)–pyridin-4(1H)-one (1/1) top
Crystal data top
[ReCl(C5H5NO)2(CO)3]·C5H5NOF(000) = 568
Mr = 590.98Dx = 1.818 Mg m3
Triclinic, P1Melting point: 145 K
a = 7.5235 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.717 (2) ÅCell parameters from 9858 reflections
c = 13.644 (2) Åθ = 3.3–26.6°
α = 66.694 (4)°µ = 5.79 mm1
β = 78.757 (4)°T = 100 K
γ = 81.374 (4)°Plate, yellow
V = 1079.9 (3) Å30.36 × 0.35 × 0.04 mm
Z = 2
Data collection top
Bruker D8 Venture Photon 100 CMOS
diffractometer
4312 reflections with I > 2σ(I)
φ and ω scansRint = 0.041
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.6°, θmin = 2.8°
Tmin = 0.352, Tmax = 0.647h = 99
28225 measured reflectionsk = 1414
4476 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0178P)2 + 5.8451P]
where P = (Fo2 + 2Fc2)/3
S = 1.35(Δ/σ)max = 0.001
4476 reflectionsΔρmax = 1.63 e Å3
272 parametersΔρmin = 1.03 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0119 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.86373 (2)0.70746 (2)0.07222 (2)0.01123 (10)
Cl11.09377 (15)0.82393 (10)0.09609 (9)0.0135 (2)
O10.3391 (5)0.8384 (4)0.4444 (3)0.0208 (8)
H10.394 (10)0.843 (6)0.499 (6)0.031*
O21.1814 (5)0.2036 (3)0.4087 (3)0.0229 (8)
O30.4725 (5)0.8444 (3)0.6006 (3)0.0203 (8)
H21.319 (10)0.196 (6)0.399 (6)0.030*
O201.1184 (5)0.6629 (4)0.1173 (3)0.0232 (8)
O210.6852 (5)0.9364 (4)0.0929 (3)0.0243 (8)
O220.5800 (6)0.5598 (4)0.0526 (4)0.0299 (9)
N10.6881 (5)0.7397 (4)0.2102 (3)0.0129 (8)
N20.9814 (5)0.5408 (4)0.1954 (3)0.0138 (8)
N30.1310 (6)0.9766 (4)0.8090 (4)0.0225 (9)
H3A0.056 (9)1.011 (6)0.859 (6)0.027*
C10.4552 (7)0.8016 (4)0.3733 (4)0.0154 (9)
C20.3875 (7)0.7932 (5)0.2880 (4)0.0165 (10)
H2A0.26070.80720.28480.020*
C30.5057 (7)0.7646 (4)0.2088 (4)0.0151 (9)
H30.45770.76210.15030.018*
C40.7506 (7)0.7409 (4)0.2958 (4)0.0140 (9)
H40.87670.72040.30000.017*
C50.6415 (7)0.7705 (5)0.3779 (4)0.0166 (10)
H50.69220.76970.43680.020*
C61.1246 (7)0.3148 (4)0.3390 (4)0.0169 (10)
C70.9392 (7)0.3537 (5)0.3529 (4)0.0187 (10)
H70.85850.30380.41200.022*
C80.8757 (7)0.4642 (4)0.2803 (4)0.0149 (9)
H80.74930.48840.29040.018*
C91.1622 (7)0.5051 (5)0.1839 (4)0.0170 (10)
H91.24070.55900.12640.020*
C101.2371 (7)0.3934 (5)0.2526 (4)0.0191 (10)
H101.36380.37060.24080.023*
C110.3637 (7)0.8866 (4)0.6664 (4)0.0159 (9)
C120.1806 (7)0.9321 (5)0.6507 (4)0.0192 (10)
H120.13570.93260.59010.023*
C130.0699 (7)0.9751 (5)0.7227 (4)0.0206 (10)
H130.05231.00450.71200.025*
C140.3048 (8)0.9366 (5)0.8259 (4)0.0202 (10)
H140.34580.94120.88570.024*
C150.4216 (6)0.8902 (4)0.7590 (4)0.0149 (9)
H150.54190.86010.77360.018*
C201.0245 (7)0.6793 (4)0.0466 (4)0.0175 (10)
C210.7553 (6)0.8525 (4)0.0305 (4)0.0148 (9)
C220.6898 (7)0.6144 (5)0.0594 (4)0.0197 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01149 (13)0.01337 (13)0.01111 (13)0.00016 (7)0.00161 (7)0.00747 (8)
Cl10.0141 (5)0.0153 (5)0.0144 (5)0.0007 (4)0.0023 (4)0.0091 (4)
O10.0169 (18)0.032 (2)0.0186 (18)0.0003 (15)0.0016 (15)0.0177 (16)
O20.024 (2)0.0183 (18)0.0187 (18)0.0032 (15)0.0025 (15)0.0015 (15)
O30.0179 (18)0.0264 (19)0.0191 (18)0.0058 (15)0.0019 (14)0.0144 (15)
O200.026 (2)0.0278 (19)0.0184 (18)0.0017 (16)0.0063 (16)0.0159 (16)
O210.025 (2)0.0226 (19)0.0214 (19)0.0016 (16)0.0089 (16)0.0037 (16)
O220.024 (2)0.037 (2)0.040 (2)0.0070 (17)0.0022 (18)0.026 (2)
N10.0115 (19)0.0162 (19)0.0112 (18)0.0018 (15)0.0003 (15)0.0072 (15)
N20.0117 (19)0.0133 (18)0.016 (2)0.0008 (15)0.0001 (16)0.0066 (16)
N30.024 (2)0.020 (2)0.023 (2)0.0028 (18)0.0078 (19)0.0120 (18)
C10.014 (2)0.017 (2)0.015 (2)0.0020 (18)0.0015 (18)0.0073 (18)
C20.016 (2)0.020 (2)0.017 (2)0.0035 (18)0.0061 (19)0.0097 (19)
C30.015 (2)0.017 (2)0.016 (2)0.0007 (18)0.0037 (18)0.0090 (19)
C40.017 (2)0.016 (2)0.012 (2)0.0009 (18)0.0043 (18)0.0074 (18)
C50.018 (2)0.019 (2)0.016 (2)0.0022 (19)0.0033 (19)0.0102 (19)
C60.020 (2)0.014 (2)0.017 (2)0.0006 (18)0.0036 (19)0.0059 (19)
C70.019 (2)0.016 (2)0.017 (2)0.0008 (19)0.002 (2)0.0053 (19)
C80.013 (2)0.018 (2)0.015 (2)0.0006 (18)0.0007 (18)0.0089 (19)
C90.015 (2)0.020 (2)0.016 (2)0.0006 (18)0.0006 (19)0.0077 (19)
C100.015 (2)0.021 (2)0.020 (2)0.0025 (19)0.002 (2)0.008 (2)
C110.021 (2)0.014 (2)0.013 (2)0.0001 (18)0.0003 (19)0.0074 (18)
C120.022 (3)0.019 (2)0.017 (2)0.005 (2)0.005 (2)0.009 (2)
C130.018 (2)0.018 (2)0.027 (3)0.0001 (19)0.001 (2)0.012 (2)
C140.027 (3)0.021 (2)0.017 (2)0.007 (2)0.000 (2)0.011 (2)
C150.011 (2)0.016 (2)0.022 (2)0.0007 (17)0.0068 (19)0.0106 (19)
C200.021 (3)0.011 (2)0.024 (3)0.0000 (18)0.008 (2)0.0085 (19)
C210.010 (2)0.019 (2)0.017 (2)0.0061 (18)0.0021 (18)0.0086 (19)
C220.014 (2)0.027 (3)0.016 (2)0.005 (2)0.0001 (19)0.011 (2)
Geometric parameters (Å, º) top
Re1—C221.898 (6)C2—C31.376 (7)
Re1—C211.914 (5)C2—H2A0.9500
Re1—C201.933 (5)C3—H30.9500
Re1—N12.208 (4)C4—C51.383 (7)
Re1—N22.210 (4)C4—H40.9500
Re1—Cl12.4987 (11)C5—H50.9500
O1—C11.333 (6)C6—C101.393 (7)
O1—H10.94 (8)C6—C71.401 (7)
O2—C61.341 (6)C7—C81.367 (7)
O2—H21.01 (7)C7—H70.9500
O3—C111.289 (6)C8—H80.9500
O20—C201.143 (7)C9—C101.387 (7)
O21—C211.151 (6)C9—H90.9500
O22—C221.155 (7)C10—H100.9500
N1—C41.348 (6)C11—C121.426 (7)
N1—C31.362 (6)C11—C151.433 (7)
N2—C81.346 (6)C12—C131.363 (7)
N2—C91.360 (6)C12—H120.9500
N3—C131.353 (7)C13—H130.9500
N3—C141.353 (7)C14—C151.355 (7)
N3—H3A0.97 (7)C14—H140.9500
C1—C21.401 (7)C15—H150.9500
C1—C51.402 (7)
C22—Re1—C2187.9 (2)C5—C4—H4118.2
C22—Re1—C2089.6 (2)C4—C5—C1119.2 (4)
C21—Re1—C2088.6 (2)C4—C5—H5120.4
C22—Re1—N191.96 (19)C1—C5—H5120.4
C21—Re1—N192.49 (18)O2—C6—C10124.3 (5)
C20—Re1—N1178.11 (17)O2—C6—C7117.8 (5)
C22—Re1—N291.80 (19)C10—C6—C7117.8 (4)
C21—Re1—N2177.97 (17)C8—C7—C6119.2 (5)
C20—Re1—N293.45 (18)C8—C7—H7120.4
N1—Re1—N285.51 (15)C6—C7—H7120.4
C22—Re1—Cl1177.81 (16)N2—C8—C7124.0 (5)
C21—Re1—Cl194.05 (14)N2—C8—H8118.0
C20—Re1—Cl191.33 (15)C7—C8—H8118.0
N1—Re1—Cl187.03 (11)N2—C9—C10122.8 (5)
N2—Re1—Cl186.19 (11)N2—C9—H9118.6
C1—O1—H1113 (4)C10—C9—H9118.6
C6—O2—H2109 (4)C9—C10—C6119.2 (5)
C4—N1—C3116.7 (4)C9—C10—H10120.4
C4—N1—Re1124.0 (3)C6—C10—H10120.4
C3—N1—Re1119.2 (3)O3—C11—C12122.0 (5)
C8—N2—C9116.8 (4)O3—C11—C15121.4 (5)
C8—N2—Re1121.6 (3)C12—C11—C15116.6 (4)
C9—N2—Re1121.4 (3)C13—C12—C11120.0 (5)
C13—N3—C14120.9 (5)C13—C12—H12120.0
C13—N3—H3A123 (4)C11—C12—H12120.0
C14—N3—H3A116 (4)N3—C13—C12121.1 (5)
O1—C1—C2118.1 (4)N3—C13—H13119.4
O1—C1—C5124.5 (5)C12—C13—H13119.4
C2—C1—C5117.4 (4)N3—C14—C15121.3 (5)
C3—C2—C1119.6 (5)N3—C14—H14119.4
C3—C2—H2A120.2C15—C14—H14119.4
C1—C2—H2A120.2C14—C15—C11120.0 (5)
N1—C3—C2123.2 (4)C14—C15—H15120.0
N1—C3—H3118.4C11—C15—H15120.0
C2—C3—H3118.4O20—C20—Re1179.5 (4)
N1—C4—C5123.7 (5)O21—C21—Re1177.0 (4)
N1—C4—H4118.2O22—C22—Re1178.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.94 (8)1.62 (8)2.556 (5)175 (7)
O2—H2···O3i1.01 (7)1.57 (7)2.569 (5)169 (6)
N3—H3A···Cl1ii0.97 (7)2.32 (7)3.218 (5)152 (5)
C9—H9···O22iii0.952.563.317 (7)137
C3—H3···Cl1iv0.952.893.580 (5)131
C14—H14···O21v0.952.623.264 (7)126
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y, z; (iv) x1, y, z; (v) x, y, z+1.
 

Funding information

Funding for this research was provided by: Ministry of Economy, Industry and Competitiveness (Spain); European Regional Development Fund (grant Nos. CTQ2015-71211-REDT and CTQ2015-7091-R).

References

First citationAbel, E. W. & Wilkinson, G. (1959). J. Chem. Soc. pp. 1501–1505.  CrossRef
First citationBera, J. K., Bacsa, J., Smucker, B. W. & Dunbar, K. R. (2004). Eur. J. Inorg. Chem. pp. 368–375.  CrossRef
First citationBruker (2014). APEX3 and SAINT. Bruker ASX Inc., Madison, Wisconsin, USA.
First citationCampos-Gaxiola, J. J., Zamora Falcon, F., Corral Higuera, R., Höpfl, H. & Cruz-Enríquez, A. (2014). Acta Cryst. E70, o453–o454.  CSD CrossRef IUCr Journals
First citationDinolfo, P. H. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 16814–16819.  CrossRef PubMed CAS
First citationFarrell, J. R., Kerins, G. J., Niederhoffer, K. L., Crandall, L. A. & Ziegler, C. (2016). J. Organomet. Chem. 813, 41–45.  CrossRef CAS
First citationGupta, D., Rajakannu, P., Shankar, B., Shanmugam, R., Hussain, F., Sarkar, B. & Sathiyendiran, M. (2011). Dalton Trans. 40, 5433–5435.  CrossRef CAS PubMed
First citationJones, P. G. (2001). Acta Cryst. C57, 880–882.  Web of Science CSD CrossRef CAS IUCr Journals
First citationKeefe, M. H., Slone, R. V., Hupp, J. T., Czaplewski, K. F., Snurr, R. Q. & Stern, C. L. (2000). Langmuir, 16, 3964–3970.  CrossRef CAS
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals
First citationLevine, L. A., Kirin, S. I., Myers, C. P., Showalter, S. A. & Williams, M. E. (2009). Eur. J. Inorg. Chem. pp. 613–621.  CrossRef
First citationLu, Z., Lee, C., Velayudham, M., Lee, L., Wu, J., Kuo, T. & Lu, K. (2012). Chem. Eur. J. 18, 15714–15721.  CrossRef CAS PubMed
First citationNagarajaprakash, R., Divya, D., Ramakrishna, B. & Manimaran, B. (2014). Organometallics, 33, 1367–1373.  CrossRef CAS
First citationOrsa, D. K., Haynes, G. K., Pramanik, S. K., Iwunze, M. O., Greco, G. E., Krause, J. A., Ho, D. M., Williams, A. L., Hill, D. A. & Mandal, S. K. (2007). Inorg. Chem. Commun. 10, 821–824.  CrossRef CAS
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSlone, R. V., Benkstein, K. D., Bélanger, S., Hupp, J. T., Guzei, I. A. & Rheingold, A. L. (1998). Coord. Chem. Rev. 171, 221–243.  CrossRef CAS
First citationSlone, R. V., Hupp, J. T., Stern, C. L. & Albrecht-Schmitt, T. E. (1996). Inorg. Chem. 35, 4096–4097.  CrossRef PubMed CAS
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals
First citationStaun, S. L. & Oliver, A. G. (2012). Acta Cryst. C68, o84–o87.  Web of Science CSD CrossRef IUCr Journals
First citationStaun, S. L. & Oliver, A. G. (2015). Acta Cryst. E71, 861–863.  Web of Science CSD CrossRef IUCr Journals
First citationSun, S., Anspach, J. A. & Lees, A. J. (2002). Inorg. Chem. 41, 1862–1869.  CrossRef PubMed CAS
First citationSun, S. S. & Lees, A. J. (2002). Coord. Chem. Rev. 230, 171–192.  CrossRef CAS
First citationTyl, A., Nowak, M. & Kusz, J. (2008). Acta Cryst. C64, o661–o664.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds