research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1S,2S,5R)-5-acetyl­amino-4-oxo-2,3-di­phenyl-1,3-thia­zinan-1-ium-1-olate

CROSSMARK_Color_square_no_text.svg

aDepartment of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by G. Smith, Queensland University of Technology, Australia (Received 4 August 2017; accepted 29 August 2017; online 5 September 2017)

The asymmetric unit of the enanti­omerically pure title compound, C18H18N2O3S, comprises two independent mol­ecules (A and B) having almost identical conformations. When overlayed, the alignment–r.m.s. deviation value is 0.30 Å. The six-membered heterocycle has a twisted half-chair conformation in both mol­ecules. The O atom on the S atom of the ring is pseudo-axial on the thia­zine ring and trans to both a phenyl group substituent and the acetamide group in each case. The two benzene rings in each mol­ecule are almost orthogonal to each other, with inter­planar dihedral angles of 83.79 (17) and 86.95 (16)°. The acetamide group is pseudo-equatorial and a phenyl ring is pseudo-axial on the thia­zine ring. Both mol­ecules show a weak intra­molecular C—H⋯O inter­action between H-atom donors of one of the phenyl rings and the acetamide group. In the crystal, an inter­molecular N—H⋯O(thia­zine) hydrogen bond links B mol­ecules along the 21 (b) screw axis and, in addition, an N—H⋯O(acetamide) hydrogen bond links A and B mol­ecules across a. A two-dimensional layered structure lying parallel to (001) is generated, also involving weak inter­molecular C—H⋯O inter­actions.

1. Chemical context

The 1,3-thia­zin-4-ones are a group of six-membered heterocycles with a wide range of biological activity (Ryabukhin et al., 1996[Ryabukhin, Y. I., Korzhavina, O. B. & Suzdalev, K. F. (1996). Adv. Heterocycl. Chem. 66, 131-190.]). Surrey's research (Surrey et al., 1958[Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469-3471.]; Surrey, 1963a[Surrey, A. R. (1963a). US Patent 3082209.],b[Surrey, A. R. (1963b). US Patent 3093639.]) resulted in the discovery of two drugs, the anti-anxiety and muscle relaxant chlormezanone [2-(4-chloro­phen­yl)-3-methyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1,1-dioxide] (O'Neil, 2006[O'Neil, M. J. (2006). Editor. The Merck Index, 14th ed., p. 349, Whitehouse Station, NJ: Merck & Co. Inc.]; Tanaka & Horayama, 2005[Tanaka, R. & Horayama, N. (2005). X-Ray Struct. Anal. Online, 21, x57-x58.]) and muscle relaxant di­chloro­mezanone [2-(3,4-di­chloro­phen­yl)-3-methyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1,1-dioxide] (Elks & Ganellin, 1990[Elks, J. & Ganellin, C. R. (1990). Editors. Dictionary of Drugs, p. 382. Cambridge, UK: Chapman and Hall.]). These sulfones showed greater activity than the sulfides from which they were synthesized (Surrey et al., 1958[Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469-3471.]). Surrey also prepared a variety of other sulfoxides and sulfones of 3-alkyl-2-aryl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-ones (Surrey, 1963a[Surrey, A. R. (1963a). US Patent 3082209.],b[Surrey, A. R. (1963b). US Patent 3093639.]). We have reported previously the crystal structure of the first N-aryl sulfoxide in this family, racemic 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1-oxide (Yennawar et al., 2016[Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541-1543.]).

A sulfoxide typically has an S—O bond that is between a double bond and a single bond, with one of the lone pairs that was on the sulfide coordinating to the O atom, while O atom contributes electrons from a lone pair to a d orbital of the S atom. The geometry of a sulfoxide is pyramidal, with a high energy barrier for inversion, making it possible to isolate stable enanti­omers (Bentley, 2005[Bentley, R. (2005). Chem. Soc. Rev. 34, 609-624.]). Herein, we report the crystal structure of the sulfoxide of N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acetamide (Yennawar, Singh & Silverberg, 2015[Yennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62-64.]), C18H18N2O3S, prepared using the method we have reported previously for the oxidation of other 2,3-diphenyl-1,3-thia­zin-4-ones (Yennawar et al., 2016[Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541-1543.]; Yennawar, Noble et al., 2017[Yennawar, H. P., Noble, D. J., Yang, Z. & Silverberg, L. J. (2017). IUCrData, 2, x171112.]) and 1,3-thia­zolidinones (Yennawar, Hullihen et al., 2015[Yennawar, H. P., Tierney, J., Hullihen, P. D. & Silverberg, L. J. (2015). Acta Cryst. E71, 264-267.]; Cannon et al., 2015[Cannon, K., Gandla, D., Lauro, S., Silverberg, L., Tierney, J. & Lagalante, A. (2015). Int. J. Chem. 7(2), 73-84.]). The oxidation of the confirmed enanti­opure sulfide N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acetamide 0.375-hydrate (Yennawar, Singh & Silverberg, 2015[Yennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62-64.]), derived from N-acetyl-L-cysteine, yielded a single stereoisomer as the only product.

[Scheme 1]

2. Structural commentary

The crystal structure of the title compound has two independent homochiral mol­ecules (A and B) in the asymmetric unit (Fig. 1[link]), which have almost identical conformational features, having an alignment–r.m.s. deviation value of 0.3 Å. Both have the thia­zine rings in a twisted half-chair configuration, with puckering amplitudes = 0.6753 (19)/0.653 (2) Å and θ = 131.05 (17)/135.66 (18)° in mol­ecules A/B, respectively (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). The O atom on the S atom of the ring is pseudo-axial on the thia­zine ring and trans to both the 2-phenyl group and the acetamide group in each case. The two phenyl rings in each mol­ecule are almost orthogonal to one another, with dihedral angles of 83.79 (17) and 86.95 (16)° in mol­ecules A and B, respectively. The acetamide group is pseudo-equatorial and the 2-phenyl group is pseudo-axial on the thia­zine ring. A weak intra­molecular C—H⋯O hydrogen bond between the 2-phenyl ring and the O atom of the acetamide group is seen in both mol­ecules (C10A—H⋯O3A and C10B—H⋯O3B), as detailed in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯O2Bi 0.91 (3) 2.25 (3) 3.137 (3) 164 (2)
N2B—H2B⋯O1Bii 0.79 (3) 2.14 (3) 2.916 (3) 168 (3)
C10A—H10A⋯O3A 0.93 2.42 3.259 (3) 149
C10B—H10B⋯O3B 0.93 2.44 3.232 (4) 143
C4B—H4BB⋯O2Aiii 0.97 2.25 3.116 (3) 148
Symmetry codes: (i) x+1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z]; (iii) [-x+1, y+{\script{1\over 2}}, -z].
[Figure 1]
Figure 1
The mol­ecular structures of the two independent mol­ecules (A and B) in the asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. Dashed lines indicate intra­molecular C—H⋯O inter­actions.

We reported previously the crystal structure of the starting sulfide, N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thia­zinan-5-yl]ace­t­amide 0.375-hydrate (Yennawar, Singh & Silverberg, 2015[Yennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62-64.]), which also had two independent homochiral mol­ecules in the asymmetric unit. However, they were not identical: in one mol­ecule, the thia­zine ring was in a half-chair conformation in which the 2-phenyl ring was nearly pseudo-axial and the acetamide group was nearly pseudo-equatorial. The other mol­ecule had the thia­zine ring in a boat conformation in which both substituents were pseudo-equatorial.

3. Supra­molecular features

In the crystal, the B mol­ecule and its 21-related symmetry neighbours form a continuous hydrogen-bonded chain along the b-cell direction through N—H⋯O inter­actions involving the acetamide N atom and the thia­zin-1-ium-1-olate O atoms [N2B—H⋯O1Bii; symmetry code: (ii) −x, y + [{1\over 2}], −z; Table 1[link]] (Fig. 2[link]). Mol­ecules A and B inter­act, wherein the O atom in the 4-position of mol­ecule B accepts a proton from the acetamide N atom of mol­ecule A [N2A—H⋯O1Bi; symmetry code: (i) x + 1, y, z]. The sulfoxide O atom of mol­ecule A does not participate in any hydrogen bonding. A two-dimensional sheet structure lying parallel to (001) is generated. No benzene ring in either of the mol­ecules participates in face-to-face ππ stacking inter­actions.

[Figure 2]
Figure 2
Crystal packing diagram with red dotted lines for inter­molecular N—H⋯O contacts between 21-related mol­ecules, forming helical chains along the b-axis direction, as well as the inter­action with an independent mol­ecule. Blue dotted lines represent the intra­molecular C—H⋯O contacts.

4. Database survey

Crystal structures of a number of 1,3-thia­zolidin-4-one 1-oxides have been reported (Wang et al., 2010[Wang, Q., Xu, Z. & Sun, Y. (2010). Acta Cryst. E66, o1422.]; Johnson et al., 1983[Johnson, M. R., Fazio, M. J., Ward, D. L. & Sousa, L. R. (1983). J. Org. Chem. 48, 494-499.]; Chen et al., 2011[Chen, H., Zai-Hong, G., Qing-Mei, Y. & Xiao-Liu, L. (2011). Chin. J. Org. Chem. 31, 249-255.]; Colombo et al., 2008[Colombo, A., Fernàndez, J. C., Fernández-Forner, D., de la Figuera, N., Albericio, F. & Forns, P. (2008). Tetrahedron Lett. 49, 1569-1572.]; Yennawar, Hullihen et al., 2015[Yennawar, H. P., Tierney, J., Hullihen, P. D. & Silverberg, L. J. (2015). Acta Cryst. E71, 264-267.]) and the structure of chlormezanone [2-(4-chloro­phen­yl)-3-methyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1,1-dioxide] has also been reported (Tanaka & Horayama, 2005[Tanaka, R. & Horayama, N. (2005). X-Ray Struct. Anal. Online, 21, x57-x58.]). We have reported previously the crystal structure of 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1-oxide (Yennawar et al., 2016[Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541-1543.]). We have also reported recently the crystal structures of 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one 1-oxide (Yennawar, Fox et al., 2017[Yennawar, H. P., Fox, R., Moyer, Q. J., Yang, Z. & Silverberg, L. J. (2017). Acta Cryst. E73, 1189-1191.]) and 2,3-diphenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one 1-oxide (Yennawar, Noble et al., 2017[Yennawar, H. P., Noble, D. J., Yang, Z. & Silverberg, L. J. (2017). IUCrData, 2, x171112.]).

5. Synthesis and crystallization

A 5 ml round-bottomed flask was charged with 53.9 mg of N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acetamide 0.375-hydrate, whose configuration was established previously (Yennawar, Singh & Silverberg, 2015[Yennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62-64.]), and 1.4 ml of methanol and stirred. A solution of 79.5 mg of Oxone® and 1 ml of distilled water was added dropwise and the mixture was stirred until the reaction was complete, as determined by thin-layer chromatography (TLC). The solids were dissolved by the addition of 5 ml of distilled water. The solution was extracted with 10 ml of di­chloro­methane. The organic layer was washed with 5 ml of distilled water and then with 5 ml of saturated sodium chloride. The solution was dried over Na2SO4 and concentrated under vacuum giving a crude solid. This was chromatographed on flash silica gel, eluting with a gradient of 0–60% acetone in ethyl acetate, giving 55.8 mg of product [98.6% yield; m.p. 449–452 K; RF = 0.20 (30% acetone/70% ethyl acetate)]. Crystals suitable for X-ray crystallography were grown by slow evaporation from propan-2-ol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms, excepting those on N atoms, were placed geometrically and allowed to ride on their parent C atoms during refinement, with C—H distances of 0.93 (aromatic), 0.96 (meth­yl), 0.97 or (methyl­ene) and 0.98 Å (meth­yl), and with Uiso(H) = 1.2Ueq(aromatic or methyl­ene C) or 1.5Ueq(methyl C). H atoms on N atoms were located in a difference Fourier map and were refined isotropically. The absolute configuration for the chiral centres in the mol­ecule was determined as (1S,2S,5R) (for the arbitrarily numbered atoms C1A/B,C3A/B), with a Flack absolute structure parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) of 0.07 (6) for 4160 Friedel pairs.

Table 2
Experimental details

Crystal data
Chemical formula C18H18N2O3S
Mr 342.40
Crystal system, space group Monoclinic, P21
Temperature (K) 298
a, b, c (Å) 12.872 (6), 10.139 (5), 13.460 (6)
β (°) 103.104 (9)
V3) 1710.8 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.23 × 0.20 × 0.19
 
Data collection
Diffractometer Bruker SCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.309, 0.900
No. of measured, independent and observed [I > 2σ(I)] reflections 15296, 8079, 6949
Rint 0.031
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.02
No. of reflections 8079
No. of parameters 443
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.27
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4160 Friedel pairs
Absolute structure parameter 0.07 (6)
Computer programs: SMART (Bruker, 2016[Bruker (2016). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(1S,2S,5R)-5-Acetylamino-4-oxo-2,3-diphenyl-1,3-thiazinan-1-ium-1-olate top
Crystal data top
C18H18N2O3SDx = 1.329 Mg m3
Mr = 342.40Melting point = 449–452 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 12.872 (6) ÅCell parameters from 7433 reflections
b = 10.139 (5) Åθ = 2.5–28.2°
c = 13.460 (6) ŵ = 0.21 mm1
β = 103.104 (9)°T = 298 K
V = 1710.8 (14) Å3Block, colorless
Z = 40.23 × 0.20 × 0.19 mm
F(000) = 720
Data collection top
Bruker SCD area detector
diffractometer
8079 independent reflections
Radiation source: fine-focus sealed tube6949 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 28.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1617
Tmin = 0.309, Tmax = 0.900k = 1313
15296 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0745P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
8079 reflectionsΔρmax = 0.37 e Å3
443 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983), 4160 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (6)
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.79355 (19)0.2939 (3)0.48969 (16)0.0397 (5)
H1A0.78930.20950.52410.048*
C2A0.86711 (19)0.3246 (3)0.33058 (17)0.0393 (5)
C3A0.93950 (18)0.4386 (2)0.37719 (15)0.0344 (5)
H3A1.01090.40090.40100.041*
C4A0.91189 (19)0.5047 (2)0.46957 (15)0.0356 (5)
H4AA0.84260.54680.44990.043*
H4AB0.96450.57180.49640.043*
C5A0.69426 (19)0.3706 (3)0.49564 (17)0.0431 (5)
C6A0.6572 (2)0.3596 (4)0.5857 (2)0.0598 (8)
H6A0.68950.30110.63650.072*
C7A0.5723 (3)0.4365 (5)0.5981 (2)0.0759 (11)
H7A0.54790.42970.65790.091*
C8A0.5243 (3)0.5217 (5)0.5243 (3)0.0763 (10)
H8A0.46740.57280.53400.092*
C9A0.5592 (2)0.5335 (4)0.4343 (2)0.0636 (8)
H9A0.52620.59260.38410.076*
C10A0.6433 (2)0.4567 (3)0.4200 (2)0.0497 (6)
H10A0.66580.46270.35920.060*
C11A0.7454 (2)0.1476 (2)0.34101 (17)0.0398 (5)
C16A0.7794 (2)0.0238 (3)0.3750 (2)0.0563 (7)
H16A0.84000.01360.42730.068*
C15A0.7227 (3)0.0862 (3)0.3309 (3)0.0719 (10)
H15A0.74470.17010.35460.086*
C14A0.6350 (3)0.0716 (4)0.2531 (3)0.0709 (10)
H14A0.59830.14550.22280.085*
C13A0.6014 (3)0.0507 (4)0.2197 (3)0.0734 (10)
H13A0.54110.06020.16710.088*
C12A0.6561 (2)0.1616 (4)0.2634 (2)0.0588 (7)
H12A0.63250.24530.24030.071*
C17A0.8618 (2)0.5983 (3)0.2465 (2)0.0487 (6)
C18A0.8817 (3)0.7020 (4)0.1734 (3)0.0784 (11)
H18A0.94970.74270.19990.118*
H18B0.82660.76760.16480.118*
H18C0.88140.66210.10870.118*
N1A0.80481 (17)0.26229 (19)0.38641 (14)0.0384 (4)
N2A0.94797 (16)0.5352 (2)0.29910 (14)0.0392 (4)
H2A1.014 (2)0.561 (3)0.2912 (19)0.036 (7)*
O1A1.00529 (16)0.2968 (2)0.56800 (15)0.0581 (5)
O2A0.87065 (18)0.2840 (2)0.24629 (13)0.0615 (6)
O3A0.77158 (16)0.5727 (3)0.25622 (17)0.0702 (7)
S1A0.91010 (5)0.38151 (6)0.56562 (4)0.04051 (15)
C1B0.22990 (19)0.4488 (2)0.06076 (17)0.0389 (5)
H1B0.20750.35620.05840.047*
C2B0.16558 (17)0.6316 (2)0.16162 (17)0.0357 (5)
C3B0.13964 (19)0.7241 (3)0.06778 (18)0.0410 (5)
H3B0.06250.71640.04070.049*
C4B0.1904 (2)0.6890 (3)0.02038 (17)0.0418 (5)
H4BA0.26720.69830.00090.050*
H4BB0.16490.74880.07690.050*
C5B0.34898 (18)0.4469 (3)0.06755 (16)0.0377 (5)
C6B0.3913 (2)0.3500 (3)0.0150 (2)0.0528 (7)
H6B0.34680.28700.02290.063*
C7B0.4994 (3)0.3473 (3)0.0189 (2)0.0615 (8)
H7B0.52690.28360.01770.074*
C8B0.5669 (2)0.4381 (4)0.0764 (2)0.0578 (7)
H8B0.63970.43500.07910.069*
C9B0.5264 (2)0.5332 (3)0.1298 (2)0.0499 (6)
H9B0.57210.59410.16920.060*
C10B0.4174 (2)0.5390 (3)0.12537 (18)0.0424 (5)
H10B0.39030.60430.16090.051*
C11B0.2058 (2)0.4150 (2)0.23392 (18)0.0419 (5)
C12B0.2934 (3)0.4162 (4)0.3126 (2)0.0722 (10)
H12B0.34660.47870.31430.087*
C13B0.3032 (4)0.3236 (5)0.3903 (3)0.0893 (13)
H13B0.36350.32320.44360.107*
C14B0.2239 (3)0.2330 (4)0.3880 (3)0.0775 (11)
H14B0.23070.17050.43970.093*
C15B0.1358 (3)0.2339 (3)0.3110 (3)0.0669 (9)
H15B0.08180.17290.31070.080*
C16B0.1249 (2)0.3260 (3)0.2317 (2)0.0505 (6)
H16B0.06440.32680.17870.061*
C17B0.2575 (2)0.9072 (3)0.13509 (19)0.0458 (6)
C18B0.2671 (4)1.0542 (3)0.1506 (3)0.0763 (10)
H18D0.30071.07270.22040.114*
H18E0.19741.09320.13420.114*
H18F0.30951.09030.10690.114*
N1B0.19754 (16)0.5070 (2)0.14898 (14)0.0381 (4)
N2B0.15836 (19)0.8610 (2)0.09612 (17)0.0469 (5)
H2B0.110 (2)0.910 (3)0.089 (2)0.042 (8)*
O1B0.04145 (15)0.5076 (3)0.06247 (17)0.0666 (6)
O2B0.14719 (15)0.66808 (19)0.24289 (14)0.0484 (4)
O3B0.33503 (15)0.83467 (19)0.15418 (15)0.0530 (5)
S1B0.15756 (5)0.52300 (7)0.06050 (4)0.04663 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0472 (13)0.0435 (13)0.0292 (10)0.0069 (11)0.0101 (9)0.0013 (9)
C2A0.0442 (12)0.0432 (13)0.0316 (10)0.0011 (10)0.0108 (9)0.0049 (9)
C3A0.0338 (11)0.0389 (12)0.0300 (10)0.0003 (9)0.0065 (8)0.0027 (9)
C4A0.0397 (11)0.0343 (12)0.0319 (9)0.0014 (9)0.0062 (9)0.0056 (8)
C5A0.0441 (12)0.0518 (14)0.0355 (11)0.0110 (12)0.0135 (10)0.0064 (11)
C6A0.0595 (16)0.083 (2)0.0409 (13)0.0101 (16)0.0195 (12)0.0040 (14)
C7A0.0571 (18)0.125 (3)0.0529 (16)0.0064 (19)0.0280 (15)0.0207 (19)
C8A0.0464 (17)0.110 (3)0.073 (2)0.0079 (19)0.0156 (15)0.025 (2)
C9A0.0417 (14)0.084 (2)0.0621 (16)0.0076 (16)0.0050 (12)0.0074 (17)
C10A0.0429 (13)0.0638 (18)0.0428 (12)0.0026 (13)0.0106 (10)0.0038 (12)
C11A0.0426 (13)0.0425 (13)0.0367 (11)0.0081 (11)0.0137 (9)0.0063 (10)
C16A0.0598 (17)0.0445 (15)0.0607 (16)0.0018 (14)0.0055 (13)0.0077 (13)
C15A0.100 (3)0.0442 (18)0.076 (2)0.0166 (17)0.029 (2)0.0106 (14)
C14A0.084 (2)0.070 (2)0.0665 (19)0.0399 (19)0.0320 (19)0.0292 (17)
C13A0.062 (2)0.094 (3)0.0601 (18)0.0213 (19)0.0051 (15)0.0221 (18)
C12A0.0604 (18)0.0622 (19)0.0468 (14)0.0062 (14)0.0028 (13)0.0074 (13)
C17A0.0390 (13)0.0625 (18)0.0442 (13)0.0003 (12)0.0085 (11)0.0123 (12)
C18A0.0573 (18)0.097 (3)0.081 (2)0.0043 (19)0.0149 (17)0.050 (2)
N1A0.0482 (11)0.0372 (11)0.0311 (9)0.0086 (9)0.0115 (8)0.0076 (7)
N2A0.0349 (10)0.0446 (12)0.0388 (9)0.0033 (9)0.0102 (8)0.0027 (9)
O1A0.0572 (11)0.0548 (12)0.0561 (11)0.0131 (10)0.0005 (9)0.0087 (9)
O2A0.0785 (14)0.0743 (14)0.0388 (9)0.0276 (12)0.0280 (10)0.0233 (9)
O3A0.0353 (10)0.103 (2)0.0692 (13)0.0017 (10)0.0059 (9)0.0341 (13)
S1A0.0493 (3)0.0405 (3)0.0289 (2)0.0010 (3)0.0029 (2)0.0018 (2)
C1B0.0428 (12)0.0363 (12)0.0386 (11)0.0073 (10)0.0114 (10)0.0046 (9)
C2B0.0284 (10)0.0408 (12)0.0396 (11)0.0031 (9)0.0111 (9)0.0040 (9)
C3B0.0320 (11)0.0487 (14)0.0423 (12)0.0031 (10)0.0083 (9)0.0088 (10)
C4B0.0400 (12)0.0535 (15)0.0296 (10)0.0044 (11)0.0030 (9)0.0073 (10)
C5B0.0390 (12)0.0417 (13)0.0334 (10)0.0012 (10)0.0099 (9)0.0018 (9)
C6B0.0530 (15)0.0572 (18)0.0474 (14)0.0036 (13)0.0099 (11)0.0136 (12)
C7B0.0560 (16)0.070 (2)0.0626 (17)0.0151 (15)0.0223 (14)0.0136 (15)
C8B0.0397 (14)0.074 (2)0.0604 (16)0.0124 (14)0.0134 (12)0.0068 (15)
C9B0.0410 (13)0.0488 (15)0.0568 (14)0.0004 (12)0.0047 (11)0.0037 (13)
C10B0.0423 (12)0.0381 (13)0.0465 (12)0.0000 (10)0.0093 (10)0.0022 (10)
C11B0.0459 (13)0.0422 (14)0.0414 (12)0.0020 (10)0.0178 (10)0.0077 (9)
C12B0.070 (2)0.082 (3)0.0588 (17)0.0207 (17)0.0013 (15)0.0301 (17)
C13B0.096 (3)0.104 (3)0.061 (2)0.010 (2)0.0021 (19)0.040 (2)
C14B0.090 (3)0.075 (2)0.075 (2)0.011 (2)0.034 (2)0.0384 (19)
C15B0.067 (2)0.0498 (18)0.097 (2)0.0029 (15)0.046 (2)0.0232 (17)
C16B0.0485 (14)0.0436 (15)0.0639 (17)0.0020 (12)0.0224 (13)0.0070 (12)
C17B0.0572 (16)0.0417 (15)0.0410 (12)0.0062 (12)0.0160 (11)0.0010 (10)
C18B0.098 (3)0.0469 (19)0.084 (2)0.0031 (17)0.021 (2)0.0066 (16)
N1B0.0428 (10)0.0384 (11)0.0360 (9)0.0021 (8)0.0148 (8)0.0055 (8)
N2B0.0459 (12)0.0432 (13)0.0541 (12)0.0160 (11)0.0163 (10)0.0089 (10)
O1B0.0388 (10)0.0814 (16)0.0722 (13)0.0158 (11)0.0029 (9)0.0075 (12)
O2B0.0558 (11)0.0522 (11)0.0435 (9)0.0023 (8)0.0246 (8)0.0015 (8)
O3B0.0478 (10)0.0490 (11)0.0607 (11)0.0041 (8)0.0093 (9)0.0076 (8)
S1B0.0416 (3)0.0590 (4)0.0362 (3)0.0103 (3)0.0023 (2)0.0070 (3)
Geometric parameters (Å, º) top
C1A—H1A0.9800C1B—H1B0.9800
C1A—C5A1.514 (4)C1B—C5B1.515 (3)
C1A—N1A1.465 (3)C1B—N1B1.468 (3)
C1A—S1A1.841 (3)C1B—S1B1.846 (3)
C2A—C3A1.527 (3)C2B—C3B1.547 (3)
C2A—N1A1.371 (3)C2B—N1B1.351 (3)
C2A—O2A1.217 (3)C2B—O2B1.227 (3)
C3A—H3A0.9800C3B—H3B0.9800
C3A—C4A1.524 (3)C3B—C4B1.521 (3)
C3A—N2A1.459 (3)C3B—N2B1.445 (4)
C4A—H4AA0.9700C4B—H4BA0.9700
C4A—H4AB0.9700C4B—H4BB0.9700
C4A—S1A1.801 (2)C4B—S1B1.788 (3)
C5A—C6A1.404 (3)C5B—C6B1.392 (4)
C5A—C10A1.388 (4)C5B—C10B1.394 (4)
C6A—H6A0.9300C6B—H6B0.9300
C6A—C7A1.383 (5)C6B—C7B1.380 (4)
C7A—H7A0.9300C7B—H7B0.9300
C7A—C8A1.355 (6)C7B—C8B1.377 (5)
C8A—H8A0.9300C8B—H8B0.9300
C8A—C9A1.389 (5)C8B—C9B1.374 (4)
C9A—H9A0.9300C9B—H9B0.9300
C9A—C10A1.382 (4)C9B—C10B1.392 (4)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C16A1.372 (4)C11B—C12B1.361 (4)
C11A—C12A1.375 (4)C11B—C16B1.372 (4)
C11A—N1A1.449 (3)C11B—N1B1.460 (3)
C16A—H16A0.9300C12B—H12B0.9300
C16A—C15A1.390 (5)C12B—C13B1.389 (5)
C15A—H15A0.9300C13B—H13B0.9300
C15A—C14A1.362 (6)C13B—C14B1.369 (6)
C14A—H14A0.9300C14B—H14B0.9300
C14A—C13A1.356 (6)C14B—C15B1.353 (5)
C13A—H13A0.9300C15B—H15B0.9300
C13A—C12A1.385 (5)C15B—C16B1.401 (4)
C12A—H12A0.9300C16B—H16B0.9300
C17A—C18A1.502 (4)C17B—C18B1.505 (4)
C17A—N2A1.336 (3)C17B—N2B1.350 (4)
C17A—O3A1.226 (3)C17B—O3B1.219 (3)
C18A—H18A0.9600C18B—H18D0.9600
C18A—H18B0.9600C18B—H18E0.9600
C18A—H18C0.9600C18B—H18F0.9600
N2A—H2A0.91 (3)N2B—H2B0.79 (3)
O1A—S1A1.491 (2)O1B—S1B1.497 (2)
C5A—C1A—H1A106.6C5B—C1B—H1B106.0
C5A—C1A—S1A108.30 (17)C5B—C1B—S1B111.05 (15)
N1A—C1A—H1A106.6N1B—C1B—H1B106.0
N1A—C1A—C5A115.4 (2)N1B—C1B—C5B115.16 (19)
N1A—C1A—S1A112.87 (15)N1B—C1B—S1B111.87 (17)
S1A—C1A—H1A106.6S1B—C1B—H1B106.0
N1A—C2A—C3A120.12 (19)N1B—C2B—C3B118.6 (2)
O2A—C2A—C3A119.4 (2)O2B—C2B—C3B119.7 (2)
O2A—C2A—N1A120.3 (2)O2B—C2B—N1B121.3 (2)
C2A—C3A—H3A106.2C2B—C3B—H3B105.6
C4A—C3A—C2A115.76 (18)C4B—C3B—C2B116.3 (2)
C4A—C3A—H3A106.2C4B—C3B—H3B105.6
N2A—C3A—C2A110.52 (18)N2B—C3B—C2B112.0 (2)
N2A—C3A—H3A106.2N2B—C3B—H3B105.6
N2A—C3A—C4A111.2 (2)N2B—C3B—C4B110.8 (2)
C3A—C4A—H4AA109.9C3B—C4B—H4BA109.7
C3A—C4A—H4AB109.9C3B—C4B—H4BB109.7
C3A—C4A—S1A108.90 (16)C3B—C4B—S1B109.99 (17)
H4AA—C4A—H4AB108.3H4BA—C4B—H4BB108.2
S1A—C4A—H4AA109.9S1B—C4B—H4BA109.7
S1A—C4A—H4AB109.9S1B—C4B—H4BB109.7
C6A—C5A—C1A117.5 (3)C6B—C5B—C1B119.1 (2)
C10A—C5A—C1A123.3 (2)C6B—C5B—C10B119.1 (2)
C10A—C5A—C6A119.1 (3)C10B—C5B—C1B121.8 (2)
C5A—C6A—H6A120.2C5B—C6B—H6B119.9
C7A—C6A—C5A119.5 (3)C7B—C6B—C5B120.1 (3)
C7A—C6A—H6A120.2C7B—C6B—H6B119.9
C6A—C7A—H7A119.6C6B—C7B—H7B119.6
C8A—C7A—C6A120.8 (3)C8B—C7B—C6B120.7 (3)
C8A—C7A—H7A119.6C8B—C7B—H7B119.6
C7A—C8A—H8A119.6C7B—C8B—H8B120.1
C7A—C8A—C9A120.7 (3)C9B—C8B—C7B119.8 (3)
C9A—C8A—H8A119.6C9B—C8B—H8B120.1
C8A—C9A—H9A120.3C8B—C9B—H9B119.8
C10A—C9A—C8A119.4 (3)C8B—C9B—C10B120.4 (3)
C10A—C9A—H9A120.3C10B—C9B—H9B119.8
C5A—C10A—H10A119.8C5B—C10B—H10B120.0
C9A—C10A—C5A120.5 (3)C9B—C10B—C5B119.9 (2)
C9A—C10A—H10A119.8C9B—C10B—H10B120.0
C16A—C11A—C12A119.8 (3)C12B—C11B—C16B120.9 (3)
C16A—C11A—N1A119.7 (2)C12B—C11B—N1B120.3 (2)
C12A—C11A—N1A120.5 (3)C16B—C11B—N1B118.8 (2)
C11A—C16A—H16A120.2C11B—C12B—H12B120.1
C11A—C16A—C15A119.6 (3)C11B—C12B—C13B119.9 (3)
C15A—C16A—H16A120.2C13B—C12B—H12B120.1
C16A—C15A—H15A119.9C12B—C13B—H13B120.1
C14A—C15A—C16A120.3 (3)C14B—C13B—C12B119.8 (4)
C14A—C15A—H15A119.9C14B—C13B—H13B120.1
C15A—C14A—H14A120.0C13B—C14B—H14B119.9
C13A—C14A—C15A120.0 (3)C15B—C14B—C13B120.3 (3)
C13A—C14A—H14A120.0C15B—C14B—H14B119.9
C14A—C13A—H13A119.7C14B—C15B—H15B119.7
C14A—C13A—C12A120.6 (3)C14B—C15B—C16B120.7 (3)
C12A—C13A—H13A119.7C16B—C15B—H15B119.7
C11A—C12A—C13A119.7 (3)C11B—C16B—C15B118.5 (3)
C11A—C12A—H12A120.2C11B—C16B—H16B120.7
C13A—C12A—H12A120.2C15B—C16B—H16B120.7
N2A—C17A—C18A116.0 (2)N2B—C17B—C18B116.0 (3)
O3A—C17A—C18A121.6 (3)O3B—C17B—C18B122.0 (3)
O3A—C17A—N2A122.4 (2)O3B—C17B—N2B121.9 (2)
C17A—C18A—H18A109.5C17B—C18B—H18D109.5
C17A—C18A—H18B109.5C17B—C18B—H18E109.5
C17A—C18A—H18C109.5C17B—C18B—H18F109.5
H18A—C18A—H18B109.5H18D—C18B—H18E109.5
H18A—C18A—H18C109.5H18D—C18B—H18F109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5
C2A—N1A—C1A127.96 (19)C2B—N1B—C1B128.89 (19)
C2A—N1A—C11A117.19 (18)C2B—N1B—C11B117.93 (19)
C11A—N1A—C1A114.79 (18)C11B—N1B—C1B113.1 (2)
C3A—N2A—H2A120.0 (16)C3B—N2B—H2B120 (2)
C17A—N2A—C3A121.0 (2)C17B—N2B—C3B121.5 (2)
C17A—N2A—H2A118.6 (16)C17B—N2B—H2B119 (2)
C4A—S1A—C1A94.46 (11)C4B—S1B—C1B94.54 (11)
O1A—S1A—C1A107.22 (13)O1B—S1B—C1B105.93 (12)
O1A—S1A—C4A105.71 (11)O1B—S1B—C4B105.70 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···O2Bi0.91 (3)2.25 (3)3.137 (3)164 (2)
N2B—H2B···O1Bii0.79 (3)2.14 (3)2.916 (3)168 (3)
C10A—H10A···O3A0.932.423.259 (3)149
C10B—H10B···O3B0.932.443.232 (4)143
C4B—H4BB···O2Aiii0.972.253.116 (3)148
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z; (iii) x+1, y+1/2, z.
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHEM-0131112 for the X-ray diffractometer); Penn State Schuylkill.

References

First citationBentley, R. (2005). Chem. Soc. Rev. 34, 609–624.  Web of Science CrossRef PubMed CAS
First citationBruker (2016). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCannon, K., Gandla, D., Lauro, S., Silverberg, L., Tierney, J. & Lagalante, A. (2015). Int. J. Chem. 7(2), 73–84.
First citationChen, H., Zai-Hong, G., Qing-Mei, Y. & Xiao-Liu, L. (2011). Chin. J. Org. Chem. 31, 249–255.
First citationColombo, A., Fernàndez, J. C., Fernández-Forner, D., de la Figuera, N., Albericio, F. & Forns, P. (2008). Tetrahedron Lett. 49, 1569–1572.  Web of Science CSD CrossRef CAS
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationElks, J. & Ganellin, C. R. (1990). Editors. Dictionary of Drugs, p. 382. Cambridge, UK: Chapman and Hall.
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationJohnson, M. R., Fazio, M. J., Ward, D. L. & Sousa, L. R. (1983). J. Org. Chem. 48, 494–499.  CSD CrossRef CAS Web of Science
First citationO'Neil, M. J. (2006). Editor. The Merck Index, 14th ed., p. 349, Whitehouse Station, NJ: Merck & Co. Inc.
First citationRyabukhin, Y. I., Korzhavina, O. B. & Suzdalev, K. F. (1996). Adv. Heterocycl. Chem. 66, 131–190.  CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSurrey, A. R. (1963a). US Patent 3082209.
First citationSurrey, A. R. (1963b). US Patent 3093639.
First citationSurrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469–3471.  CrossRef CAS Web of Science
First citationTanaka, R. & Horayama, N. (2005). X-Ray Struct. Anal. Online, 21, x57–x58.
First citationWang, Q., Xu, Z. & Sun, Y. (2010). Acta Cryst. E66, o1422.  Web of Science CSD CrossRef IUCr Journals
First citationYennawar, H. P., Fox, R., Moyer, Q. J., Yang, Z. & Silverberg, L. J. (2017). Acta Cryst. E73, 1189–1191.  Web of Science CSD CrossRef IUCr Journals
First citationYennawar, H. P., Noble, D. J., Yang, Z. & Silverberg, L. J. (2017). IUCrData, 2, x171112.
First citationYennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62–64.  Web of Science CSD CrossRef IUCr Journals
First citationYennawar, H. P., Tierney, J., Hullihen, P. D. & Silverberg, L. J. (2015). Acta Cryst. E71, 264–267.  Web of Science CSD CrossRef IUCr Journals
First citationYennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541–1543.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds