research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Supra­molecular patterns and Hirshfeld surface analysis in the crystal structure of bis­­(2-amino-4-meth­­oxy-6-methyl­pyrimidinium) isophthalate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India, bDepartment of Chemistry, Government Arts College, Tiruchirappalli 620 022, Tamil Nadu, India, and cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: manavaibala@gmail.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 4 September 2017; accepted 27 September 2017; online 29 September 2017)

In the title mol­ecular salt, 2C6H10N3O+·C8H4O42−, the N atom of each of the two 2-amino-4-meth­oxy-6-methyl­pyrimidine mol­ecules lying between the amine and methyl groups has been protonated. The dihedral angles between the pyrimidine rings of the cations and the benzene ring of the succinate dianion are 5.04 (8) and 7.95 (8)°. Each of the cations is linked to the anion through a pair of N—H⋯O(carboxyl­ate) hydrogen bonds, forming cyclic R22(8) ring motifs which are then linked through inversion-related N—H⋯O hydrogen bonds, giving a central R24(8) motif. Peripheral amine N—H⋯O hydrogen-bonding inter­actions on either side of the succinate anion, also through centrosymmetric R22(8) extensions, form one-dimensional ribbons extending along [211]. The crystal structure also features ππ stacking inter­actions between the aromatic rings of the pyrimidine cations [minimum ring centroid separation = 3.6337 (9) Å]. The inter­molecular inter­actions were also investigated using Hirshfeld surface studies and two-dimensional fingerprint images.

1. Chemical context

Pyrimidine and amino­pyrimidine derivatives have useful applications in many fields, for example as pesticides and pharmaceutical agents (Condon et al., 1993[Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41-46. Alton, Hampshire, England: BCPC Publications.]), while imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990[Maeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415-422. Alton, Hampshire, England: BCPC Publications.]). Pyrimidine derivatives have also been developed as anti­viral agents, such as AZT, which is the most widely used anti-AIDS drug (Gilchrist, 1997[Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261-276. Singapore: Addison Wesley Longman.]). Hydrogen bonding plays a vital role in mol­ecular recognition. It is significant to know the types of hydrogen bonds present to design new materials with highly specific features. Supra­molecular chemistry plays a pivotal role in many biological systems and is involved in artificial systems. It refers to the specific relation between two or more mol­ecules through non-covalent inter­actions such as hydrogen bonding, hydro­phobic forces, van der Waals forces and ππ inter­actions. The origin of supra­molecular architectures is correlated to the positions and properties of the active groups in mol­ecules (Desiraju, 1989[Desiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids.. Amsterdam: Elsevier.]; Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). As part of our recent studies in this field, the synthesis, crystal structure and Hirshfeld surface analysis of the title salt have been undertaken and are presented herein.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title salt comprises two 2-amino-4-meth­oxy-6-methyl­pyrimidinium cations (A and B) and an isophthalate dianion (Fig. 1[link]). The cations and the anion are essentially planar with the dihedral angles between the pyrimidine rings of cation A and cation B and that of the benzene ring of the succinate dianion of 5.04 (8) and 7.96 (8)°, respectively. The pyrimidinium cations are protonated at N1A and N1B, which are present between the amine and methyl groups. The protonation is reflected in an enhancement in bond angles at N1A/N1B [C1A—N1A—C2A = 120.76 (13)°; C1B—N1B—C2B = 120.99 (14)°], when compared with those at the unprotonated atom N3A/N3B [C1A—N3A—C4A = 116.01 (14)°; C1B—N3B—C4B = 116.45 (13)°]. The corres­ponding angle in neutral 2-amino-4-meth­oxy-6-methyl­pyrimidine (Glidewell et al., 2003[Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o9-o13.]) is 116.01 (18)°. The bond lengths and angles are normal for the carboxyl­ate groups of the isophthalate anion (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Figure 1]
Figure 1
The atom numbering for the two cations and the dianion in the asymmetric unit of the title salt, with probability displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds (Table 1[link]) are shown as dashed lines.

3. Supra­molecular features

In the crystal, the protonated nitro­gen atoms (N1A and N1B) and the 2-amino group nitro­gen atoms (N2A and N2B) of the cations form two pairs of N—H⋯O hydrogen bonds with carboxyl O-atom acceptors (O3, O5) and (O2, O4), respectively, of the isophalate anion (Table 1[link] and Fig. 1[link]). These form eight-membered ring motifs with graph-set notation R22(8) on either side of the pyrimidine dianion. The ring units are cyclically linked across a crystalligraphic inversion centre through four N—H⋯O hydrogen bonds [graph set R42(8)], providing a DDAA array of quadruple hydrogen bonds (D = H-atom donor, A = H-atom acceptor) represented by the overall graph-set notation R22(8), R42(8), R22(8), as shown in Fig. 2[link]. The same type of conjoined motif has been reported in the crystal structures of trimethoprim hydrogen glutarate (Robert et al., 2001[Robert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206-o1208.]), 2-amino-4-meth­oxy-6-methyl­pyridinium tri­fluoro­acetate (Jeevaraj et al., 2016[Jeevaraj, M., Edison, B., Kavitha, S. J., Thanikasalam, K., Britto, S. & Balasubramani, K. (2016). IUCrData, 1, x161010.]) and 2-amino-4-meth­oxy-6-methyl­pyrimidinium 2-hy­droxy­benzoate (Jeevaraj et al., 2017[Jeevaraj, M., Sivajeyanthi, P., Edison, B., Thanigaimani, K., Balasubramani, K. & Razak, I. A. (2017). Acta Cryst. E73, 1305-1307.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2B—H2B1⋯O4i 0.86 2.04 2.8150 (19) 150
N1A—H1A⋯O3 0.86 1.74 2.5921 (17) 171
N1B—H1B⋯O5 0.86 1.79 2.6448 (17) 175
N2B—H2B2⋯O4 0.86 1.93 2.7648 (19) 164
N2A—H2A1⋯O2ii 0.86 2.03 2.805 (2) 150
N2A—H2A2⋯O2 0.86 1.95 2.803 (2) 172
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x, -y+1, -z.
[Figure 2]
Figure 2
The DDAA array of quadruple hydrogen-bonding inter­actions with conjoined R42(8) and peripheral R22(8) ring motifs.

The extension of the crystal structure is through lateral duplex N2A— H⋯O2ii and N2B—H⋯O4i hydrogen bonds in centrosymmetric R42(8) inter­actions (for symmetry codes, see Table 1[link]). These inter­actions result in one-dimensional ribbon structures extending along [211] (Fig. 3[link]). The crystal structure is further stablized by ππ stacking inter­actions between the aromatic rings of the pyrimidine cations, having centroid–centroid separations CgCgiii of 3.6337 (9) for cation B and CgCgiv of 3.7260 (9) Å for cation A [symmetry codes: (iii) −x + 2, −y + 1, −z + 1; (iv) −x, −y, −z].

[Figure 3]
Figure 3
Crystal packing of the title compound in the unit cell viewed along b, with hydrogen bonds shown as dashed lines.

4. Hirshfeld surface analysis

The dnorm parameter takes negative or positive values depending upon whether the inter­molecular close contact is shorter or longer than the van der Waals radii, respectively (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The 3D dnorm surface of the title salt is shown in Fig. 4[link]. Colours are used to illustrate the contribution of inter­molecular contacts present in the crystal structure with red inidicating N—H⋯O inter­actions. Two-dimensional fingerprint images are depicted in Fig. 5[link], and from this study it is revealed that the H⋯H inter­actions present (48.8%) are a major contributor whereas O⋯H/H⋯O (17.9%), C⋯H/H⋯C (13.8%), N⋯H/H⋯N (8.3%), C⋯C (4.1%), C⋯O/O⋯C (2.8%), C⋯N/N⋯C (1.7%), O⋯O (1.1%), O⋯N/N⋯O (0.9%) and N⋯N (0.6%), have significant contribution to the total surface.

[Figure 4]
Figure 4
The three-dimensional dnorm surface of the salt.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots of the crystal and relative contribution of the atom pairs to the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (Version 5.37, update February 2014; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-amino-4-meth­oxy-6-methyl­pyrimidine yielded only seven structures: VAQSOW, VAQSUC, VAQSEM, VAQSIQ, VAQRUB and VAQSAI (Aakeröy et al., 2003[Aakeröy, C. B., Beffert, K., Desper, J. & Elisabeth, E. (2003). Cryst. Growth Des. 3, 837-846.]); NUQTOJ (Jasinski et al., 2010[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010). Acta Cryst. E66, o1189-o1190.]).

6. Synthesis and crystallization

The title compound was synthesized in a reaction involving a hot methano­lic solution (20 ml) of 2-amino-4-meth­oxy-6-methyl­pyrimidine (139 mg, 1.0 mmol) and a hot methano­lic solution (20 ml) of isophthalic acid (166 mg, 1.0 mmol). The two solutions were mixed and stirred on a heating magnetic stirrer for few minutes. The colorless solution was cooled and kept at room temperature for slow evaporation. After a few days, the crystals of the title compound suitable for the X-ray analysis appeared, yield 65%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.96 or 0.93 Å) and were refined using a riding model with Uiso(H) = 1.2 Ueq(N or C) or 1.5Ueq(methyl C).

Table 2
Experimental details

Crystal data
Chemical formula 2C6H10N3O+·C8H4O42−
Mr 444.45
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.1346 (3), 8.2092 (3), 17.2340 (6)
α, β, γ (°) 92.4728 (12), 91.3245 (13), 107.0413 (12)
V3) 1098.54 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.62 × 0.42 × 0.35
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.893, 0.920
No. of measured, independent and observed [I > 2σ(I)] reflections 36645, 5061, 3717
Rint 0.028
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.151, 1.09
No. of reflections 5060
No. of parameters 293
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.19
Computer programs: APEX2, XPREP and SAINT (Bruker, 2002), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2015 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: XPREP (Bruker, 2004); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(2-amino-4-methoxy-6-methylpyrimidinium) benzene-1,3-dicarboxylate top
Crystal data top
2C6H10N3O+·C8H4O42Z = 2
Mr = 444.45F(000) = 468
Triclinic, P1Dx = 1.344 Mg m3
a = 8.1346 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2092 (3) ÅCell parameters from 5061 reflections
c = 17.2340 (6) Åθ = 2.4–27.5°
α = 92.4728 (12)°µ = 0.10 mm1
β = 91.3245 (13)°T = 296 K
γ = 107.0413 (12)°Block, colourless
V = 1098.54 (7) Å30.62 × 0.42 × 0.35 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3717 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
ω and φ scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.893, Tmax = 0.920k = 1010
36645 measured reflectionsl = 2222
5061 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.2201P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.009
5060 reflectionsΔρmax = 0.21 e Å3
293 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.01236 (16)0.13584 (16)0.12598 (7)0.0429 (3)
H1A0.0558990.2277790.1478110.051*
N1B0.79527 (16)0.53363 (16)0.52792 (7)0.0432 (3)
H1B0.7408660.5593700.4891820.052*
N2B0.92978 (19)0.81823 (16)0.55416 (8)0.0538 (4)
H2B11.0013500.9001790.5812010.065*
H2B20.8724170.8402380.5154990.065*
N2A0.0872 (2)0.29572 (17)0.03446 (8)0.0598 (4)
H2A10.1463570.3059270.0060850.072*
H2A20.0159980.3845480.0573000.072*
N3B0.99869 (17)0.62724 (16)0.63248 (7)0.0429 (3)
N3A0.21746 (17)0.00644 (16)0.02535 (8)0.0467 (3)
O1B1.05403 (17)0.42661 (15)0.70799 (7)0.0586 (3)
O1A0.33778 (18)0.28258 (16)0.02360 (9)0.0717 (4)
O20.16941 (18)0.57355 (16)0.10408 (8)0.0695 (4)
O30.21834 (16)0.39923 (14)0.18953 (7)0.0589 (3)
O40.79842 (17)0.88112 (15)0.41293 (7)0.0643 (4)
O50.64086 (15)0.61013 (14)0.40389 (7)0.0555 (3)
C1B0.90804 (19)0.65930 (18)0.57191 (8)0.0410 (3)
C1A0.10574 (19)0.14466 (19)0.06145 (9)0.0425 (3)
C2B0.7665 (2)0.36687 (19)0.54402 (9)0.0456 (4)
C2A0.0249 (2)0.0166 (2)0.15691 (10)0.0487 (4)
C3B0.8530 (2)0.3293 (2)0.60541 (10)0.0515 (4)
H3BA0.8362640.2171380.6186820.062*
C3A0.1312 (3)0.1589 (2)0.12097 (12)0.0605 (5)
H3AA0.1399790.2661640.1390450.073*
C4B0.9690 (2)0.4660 (2)0.64837 (9)0.0454 (4)
C4A0.2281 (2)0.1402 (2)0.05555 (10)0.0517 (4)
C5B0.6421 (2)0.2386 (2)0.49067 (12)0.0607 (5)
H5BA0.5327230.2611380.4904660.091*
H5BB0.6288850.1262290.5081840.091*
H5BC0.6845650.2460300.4390340.091*
C5A0.0783 (3)0.0105 (3)0.23016 (12)0.0660 (5)
H5AA0.1938990.0604000.2242980.099*
H5AB0.0798530.1237110.2411330.099*
H5AC0.0276780.0357890.2722380.099*
C6B1.1837 (3)0.5631 (2)0.74878 (11)0.0634 (5)
H6BA1.2370280.5178710.7895060.095*
H6BB1.1316200.6444820.7708280.095*
H6BC1.2691110.6181620.7132230.095*
C6A0.4472 (3)0.2673 (3)0.04086 (14)0.0779 (6)
H6AA0.5272310.3767900.0548970.117*
H6AB0.3781230.2264790.0843930.117*
H6AC0.5092360.1882820.0262690.117*
C70.2483 (2)0.5433 (2)0.16146 (9)0.0436 (4)
C80.38688 (18)0.68720 (19)0.20172 (8)0.0389 (3)
C90.4277 (2)0.8500 (2)0.17444 (9)0.0472 (4)
H9A0.3726800.8699380.1295140.057*
C100.5503 (2)0.9830 (2)0.21387 (10)0.0553 (4)
H10A0.5771061.0922010.1954880.066*
C110.6331 (2)0.9540 (2)0.28053 (10)0.0476 (4)
H11A0.7144131.0441470.3071150.057*
C120.59580 (18)0.79158 (19)0.30793 (8)0.0391 (3)
C130.47164 (18)0.65826 (19)0.26823 (8)0.0389 (3)
H13A0.4452860.5489070.2864440.047*
C140.68577 (19)0.7582 (2)0.38013 (9)0.0431 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0455 (7)0.0362 (7)0.0437 (7)0.0074 (5)0.0061 (5)0.0030 (5)
N1B0.0458 (7)0.0367 (7)0.0409 (7)0.0029 (5)0.0040 (5)0.0018 (5)
N2B0.0680 (9)0.0341 (7)0.0506 (8)0.0035 (6)0.0239 (7)0.0028 (6)
N2A0.0728 (10)0.0390 (7)0.0543 (8)0.0031 (7)0.0290 (7)0.0093 (6)
N3B0.0522 (7)0.0362 (7)0.0371 (6)0.0081 (5)0.0031 (5)0.0036 (5)
N3A0.0479 (7)0.0383 (7)0.0468 (7)0.0024 (6)0.0024 (6)0.0007 (6)
O1B0.0770 (8)0.0444 (7)0.0530 (7)0.0152 (6)0.0096 (6)0.0127 (5)
O1A0.0745 (9)0.0378 (7)0.0886 (10)0.0031 (6)0.0095 (8)0.0065 (6)
O20.0835 (9)0.0479 (7)0.0617 (8)0.0022 (6)0.0408 (7)0.0097 (6)
O30.0671 (8)0.0410 (6)0.0575 (7)0.0003 (5)0.0270 (6)0.0067 (5)
O40.0736 (8)0.0427 (7)0.0608 (7)0.0046 (6)0.0352 (6)0.0032 (5)
O50.0626 (7)0.0425 (6)0.0511 (7)0.0008 (5)0.0204 (5)0.0053 (5)
C1B0.0473 (8)0.0342 (7)0.0371 (7)0.0055 (6)0.0010 (6)0.0008 (6)
C1A0.0447 (8)0.0376 (8)0.0408 (8)0.0055 (6)0.0031 (6)0.0015 (6)
C2B0.0465 (8)0.0344 (8)0.0488 (9)0.0005 (6)0.0089 (7)0.0004 (6)
C2A0.0509 (9)0.0431 (9)0.0538 (9)0.0152 (7)0.0031 (7)0.0114 (7)
C3B0.0630 (10)0.0332 (8)0.0540 (9)0.0064 (7)0.0052 (8)0.0082 (7)
C3A0.0695 (11)0.0369 (9)0.0731 (12)0.0117 (8)0.0006 (9)0.0108 (8)
C4B0.0552 (9)0.0393 (8)0.0408 (8)0.0112 (7)0.0056 (7)0.0078 (6)
C4A0.0518 (9)0.0378 (8)0.0591 (10)0.0038 (7)0.0044 (8)0.0025 (7)
C5B0.0604 (10)0.0429 (9)0.0657 (11)0.0034 (8)0.0003 (9)0.0058 (8)
C5A0.0691 (12)0.0608 (11)0.0697 (12)0.0200 (9)0.0108 (10)0.0205 (10)
C6B0.0791 (12)0.0531 (10)0.0561 (10)0.0177 (9)0.0205 (9)0.0053 (8)
C6A0.0690 (12)0.0590 (12)0.0871 (15)0.0055 (10)0.0173 (11)0.0166 (11)
C70.0466 (8)0.0404 (8)0.0394 (8)0.0073 (6)0.0112 (6)0.0004 (6)
C80.0378 (7)0.0383 (8)0.0379 (7)0.0076 (6)0.0033 (6)0.0007 (6)
C90.0502 (8)0.0441 (8)0.0442 (8)0.0097 (7)0.0116 (7)0.0046 (7)
C100.0610 (10)0.0372 (8)0.0610 (10)0.0041 (7)0.0126 (8)0.0094 (7)
C110.0473 (8)0.0369 (8)0.0515 (9)0.0029 (6)0.0118 (7)0.0022 (7)
C120.0366 (7)0.0401 (8)0.0384 (7)0.0086 (6)0.0031 (6)0.0008 (6)
C130.0389 (7)0.0357 (7)0.0387 (7)0.0065 (6)0.0051 (6)0.0003 (6)
C140.0425 (8)0.0407 (8)0.0412 (8)0.0062 (6)0.0088 (6)0.0018 (6)
Geometric parameters (Å, º) top
N1A—C1A1.3488 (19)C3B—C4B1.405 (2)
N1A—C2A1.359 (2)C3B—H3BA0.9300
N1A—H1A0.8600C3A—C4A1.400 (3)
N1B—C1B1.3514 (19)C3A—H3AA0.9300
N1B—C2B1.361 (2)C5B—H5BA0.9600
N1B—H1B0.8600C5B—H5BB0.9600
N2B—C1B1.3149 (19)C5B—H5BC0.9600
N2B—H2B10.8600C5A—H5AA0.9600
N2B—H2B20.8600C5A—H5AB0.9600
N2A—C1A1.312 (2)C5A—H5AC0.9600
N2A—H2A10.8600C6B—H6BA0.9600
N2A—H2A20.8600C6B—H6BB0.9600
N3B—C4B1.3166 (19)C6B—H6BC0.9600
N3B—C1B1.3433 (19)C6A—H6AA0.9600
N3A—C4A1.312 (2)C6A—H6AB0.9600
N3A—C1A1.3450 (19)C6A—H6AC0.9600
O1B—C4B1.3284 (19)C7—C81.503 (2)
O1B—C6B1.438 (2)C8—C91.385 (2)
O1A—C4A1.333 (2)C8—C131.389 (2)
O1A—C6A1.440 (3)C9—C101.384 (2)
O2—C71.2394 (18)C9—H9A0.9300
O3—C71.2565 (19)C10—C111.383 (2)
O4—C141.2500 (18)C10—H10A0.9300
O5—C141.2522 (19)C11—C121.384 (2)
C2B—C3B1.353 (2)C11—H11A0.9300
C2B—C5B1.492 (2)C12—C131.3934 (19)
C2A—C3A1.348 (3)C12—C141.505 (2)
C2A—C5A1.491 (2)C13—H13A0.9300
C1A—N1A—C2A120.76 (13)H5BA—C5B—H5BC109.5
C1A—N1A—H1A119.6H5BB—C5B—H5BC109.5
C2A—N1A—H1A119.6C2A—C5A—H5AA109.5
C1B—N1B—C2B120.99 (14)C2A—C5A—H5AB109.5
C1B—N1B—H1B119.5H5AA—C5A—H5AB109.5
C2B—N1B—H1B119.5C2A—C5A—H5AC109.5
C1B—N2B—H2B1120.0H5AA—C5A—H5AC109.5
C1B—N2B—H2B2120.0H5AB—C5A—H5AC109.5
H2B1—N2B—H2B2120.0O1B—C6B—H6BA109.5
C1A—N2A—H2A1120.0O1B—C6B—H6BB109.5
C1A—N2A—H2A2120.0H6BA—C6B—H6BB109.5
H2A1—N2A—H2A2120.0O1B—C6B—H6BC109.5
C4B—N3B—C1B116.45 (13)H6BA—C6B—H6BC109.5
C4A—N3A—C1A116.01 (14)H6BB—C6B—H6BC109.5
C4B—O1B—C6B117.64 (13)O1A—C6A—H6AA109.5
C4A—O1A—C6A117.94 (15)O1A—C6A—H6AB109.5
N2B—C1B—N3B119.21 (13)H6AA—C6A—H6AB109.5
N2B—C1B—N1B118.44 (14)O1A—C6A—H6AC109.5
N3B—C1B—N1B122.34 (14)H6AA—C6A—H6AC109.5
N2A—C1A—N3A119.59 (14)H6AB—C6A—H6AC109.5
N2A—C1A—N1A117.70 (13)O2—C7—O3124.16 (14)
N3A—C1A—N1A122.70 (14)O2—C7—C8118.79 (14)
C3B—C2B—N1B118.51 (14)O3—C7—C8117.04 (13)
C3B—C2B—C5B125.04 (15)C9—C8—C13119.47 (13)
N1B—C2B—C5B116.44 (15)C9—C8—C7120.64 (13)
C3A—C2A—N1A118.38 (16)C13—C8—C7119.86 (13)
C3A—C2A—C5A125.42 (16)C10—C9—C8120.16 (14)
N1A—C2A—C5A116.17 (15)C10—C9—H9A119.9
C2B—C3B—C4B117.56 (15)C8—C9—H9A119.9
C2B—C3B—H3BA121.2C11—C10—C9120.19 (15)
C4B—C3B—H3BA121.2C11—C10—H10A119.9
C2A—C3A—C4A117.88 (16)C9—C10—H10A119.9
C2A—C3A—H3AA121.1C10—C11—C12120.42 (14)
C4A—C3A—H3AA121.1C10—C11—H11A119.8
N3B—C4B—O1B119.14 (14)C12—C11—H11A119.8
N3B—C4B—C3B124.12 (15)C11—C12—C13119.16 (13)
O1B—C4B—C3B116.73 (14)C11—C12—C14120.92 (13)
N3A—C4A—O1A119.48 (17)C13—C12—C14119.91 (13)
N3A—C4A—C3A124.20 (15)C8—C13—C12120.59 (14)
O1A—C4A—C3A116.31 (16)C8—C13—H13A119.7
C2B—C5B—H5BA109.5C12—C13—H13A119.7
C2B—C5B—H5BB109.5O4—C14—O5124.55 (14)
H5BA—C5B—H5BB109.5O4—C14—C12117.59 (14)
C2B—C5B—H5BC109.5O5—C14—C12117.85 (13)
C4B—N3B—C1B—N2B178.73 (15)C1A—N3A—C4A—C3A0.4 (3)
C4B—N3B—C1B—N1B1.7 (2)C6A—O1A—C4A—N3A3.3 (3)
C2B—N1B—C1B—N2B179.43 (14)C6A—O1A—C4A—C3A176.28 (18)
C2B—N1B—C1B—N3B1.0 (2)C2A—C3A—C4A—N3A2.5 (3)
C4A—N3A—C1A—N2A179.66 (16)C2A—C3A—C4A—O1A176.97 (17)
C4A—N3A—C1A—N1A1.6 (2)O2—C7—C8—C91.1 (2)
C2A—N1A—C1A—N2A179.80 (15)O3—C7—C8—C9179.99 (15)
C2A—N1A—C1A—N3A1.4 (2)O2—C7—C8—C13177.05 (15)
C1B—N1B—C2B—C3B0.2 (2)O3—C7—C8—C131.9 (2)
C1B—N1B—C2B—C5B178.77 (14)C13—C8—C9—C100.9 (2)
C1A—N1A—C2A—C3A0.8 (2)C7—C8—C9—C10177.20 (15)
C1A—N1A—C2A—C5A177.42 (15)C8—C9—C10—C110.3 (3)
N1B—C2B—C3B—C4B0.6 (2)C9—C10—C11—C120.8 (3)
C5B—C2B—C3B—C4B178.30 (16)C10—C11—C12—C131.1 (2)
N1A—C2A—C3A—C4A2.6 (3)C10—C11—C12—C14179.64 (15)
C5A—C2A—C3A—C4A175.43 (18)C9—C8—C13—C120.6 (2)
C1B—N3B—C4B—O1B179.52 (14)C7—C8—C13—C12177.54 (14)
C1B—N3B—C4B—C3B1.3 (2)C11—C12—C13—C80.4 (2)
C6B—O1B—C4B—N3B4.3 (2)C14—C12—C13—C8179.69 (14)
C6B—O1B—C4B—C3B174.96 (16)C11—C12—C14—O42.0 (2)
C2B—C3B—C4B—N3B0.1 (3)C13—C12—C14—O4178.71 (15)
C2B—C3B—C4B—O1B179.39 (15)C11—C12—C14—O5176.88 (15)
C1A—N3A—C4A—O1A179.08 (15)C13—C12—C14—O52.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2B—H2B1···O4i0.862.042.8150 (19)150
N1A—H1A···O30.861.742.5921 (17)171
N1B—H1B···O50.861.792.6448 (17)175
N2B—H2B2···O40.861.932.7648 (19)164
N2A—H2A1···O2ii0.862.032.805 (2)150
N2A—H2A2···O20.861.952.803 (2)172
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Funding information

KB and PS thank the Department of Science and Technology (DST-SERB), grant No. SB/FT/CS-058/2013, New Delhi, India, for financial support.

References

First citationAakeröy, C. B., Beffert, K., Desper, J. & Elisabeth, E. (2003). Cryst. Growth Des. 3, 837–846.
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science
First citationBruker (2004). APEX2, XPREP, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCondon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41–46. Alton, Hampshire, England: BCPC Publications.
First citationDesiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids.. Amsterdam: Elsevier.
First citationGilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261–276. Singapore: Addison Wesley Longman.
First citationGlidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o9–o13.  Web of Science CSD CrossRef CAS IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010). Acta Cryst. E66, o1189–o1190.  Web of Science CSD CrossRef IUCr Journals
First citationJeevaraj, M., Edison, B., Kavitha, S. J., Thanikasalam, K., Britto, S. & Balasubramani, K. (2016). IUCrData, 1, x161010.
First citationJeevaraj, M., Sivajeyanthi, P., Edison, B., Thanigaimani, K., Balasubramani, K. & Razak, I. A. (2017). Acta Cryst. E73, 1305–1307.  CrossRef IUCr Journals
First citationMaeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415–422. Alton, Hampshire, England: BCPC Publications.
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef
First citationRobert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206–o1208.  Web of Science CSD CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds