research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of akuammicine, an indole alkaloid from Catharanthus roseus

CROSSMARK_Color_square_no_text.svg

aInstitut für Pflanzenbiologie, Technische Universität Braunschweig, Mendelssohnstrasse 4, 38106 Braunschweig, Germany, bInstitut für Lebensmittelchemie, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 28 September 2017; accepted 9 October 2017; online 20 October 2017)

The title compound, C20H22N2O2, an alkaloid isolated from the Madagascar periwinkle, crystallizes in P1 with two independent but closely similar mol­ecules in the unit cell. The mol­ecules are linked into pairs by two N—H⋯O=C hydrogen bonds. The absolute configuration was confirmed by anomalous dispersion effects as S at the 3 and 15 positions, and R at the 7 position.

1. Chemical context

The Madagascar periwinkle or rosy periwinkle (Catharanthus roseus L. G. Don), a member of the family Apocynaceae, is one of the most intensively studied medicinal plants (Sottomayor et al., 1998[Sottomayor, M., López-Serrano, M., DiCosmo, F. & Ros Barceló, A. (1998). FEBS Lett. 428, 299-303.]; Sreevalli et al., 2004[Sreevalli, Y., Kulkarni, R. N., Baskaran, K. & Chandrashekara, R. S. (2004). Ind. Crops Prod. 19, 191-195.]). Aerial parts of the plant contain between 0.2 and 1% of a mixture of more than 120 alkaloids (van Der Heijden et al., 2004[Der Heijden, R. van, Jacobs, D. I., Snoeijer, W., Hallard, D. & Verpoorte, R. (2004). Curr. Med. Chem. 11, 607-628.]). The most abundant are the monomers such as catharanthine and vindoline (Renault et al., 1999[Renault, J. H., Nuzillard, J. M., Le Crouérour, G., Thépenier, P., Zèches-Hanrot, M. & Le Men-Olivier, L. (1999). J. Chromatogr. A, 849, 421-431.]). The dimeric alkaloids that result from the joining of two compounds can display inter­esting pharmaceutical activities. Thus vinblastine and vincristine are used in the chemotherapy of leukemia and in the treatment of Hodgkin's disease (Verma et al., 2007[Verma, A., Laakso, I., Seppänen-Laakso, T., Huhtikangas, A. & Riekkola, M. L. (2007). Molecules, 12, 1307-1315.]). Additionally, ajmalicine, a monomeric indole alkaloid present in the root of C. roseus, is an anti­hypertensive alkaloid (Noble, 1990[Noble, R. L. (1990). Biochem. Cell Biol. 68, 1344-1351.]). In view of their medical and commercial value, the appropriate methods of extraction and purification have been well studied.

[Scheme 1]

We have undertaken the X-ray crystal structure determination of the title compound in order to establish its absolute stereochemistry. One-dimensional (1H, 13C, DEPT135) and two-dimensional NMR (HSQC, HMBC, 1H/1H-COSY, 1H/1H-NOESY) experiments clearly assigned the proton and carbon resonances and are consistent with the constitution of akuammicine (Buckingham et al., 2010[Buckingham, J., Baggaley, K. H., Roberts, A. D. & Szabó, L. F. (2010). Editors. Dictionary of Alkaloids, 2nd ed., p. 47. Boca Raton: CRC Press, Taylor & Francis Group.]). As the final purification step was performed with an alkaline solvent mixture, the NMR data of akuammicine correspond to the free base, and can be linked to the determined stereochemistry.

2. Structural commentary

The title compound crystallizes in space group P1 with two independent mol­ecules (Fig. 1[link]). The two mol­ecules are closely similar; a least-squares fit of all non-H atoms gives an r.m.s. deviation of 0.065 Å, whereby the largest deviation is 0.29 Å for the methyl carbon C18. The absolute configuration is established as S at C3 and C15 and R at C7. Intra­molecular classical N1—H01⋯O1 hydrogen bonds are observed (Table 1[link]). The C18—H18A⋯O2 contacts in both mol­ecules may represent a significant intra­molecular inter­action.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O1 0.90 (4) 2.20 (3) 2.754 (3) 119 (3)
N1—H01⋯O1′ 0.90 (4) 2.23 (4) 3.018 (3) 146 (3)
N1′—H01′⋯O1′ 0.89 (4) 2.20 (4) 2.745 (4) 119 (3)
N1′—H01′⋯O1 0.89 (4) 2.31 (4) 3.098 (3) 147 (4)
C18—H18A⋯O2 0.98 2.64 3.609 (4) 168
C18′—H18D⋯O2′ 0.98 2.50 3.469 (4) 173
[Figure 1]
Figure 1
The structure of the title compound in the crystal. Ellipsoids represent 30% probability levels. Both independent mol­ecules are shown, but for clarity only one is labelled. The second mol­ecule has the same numbering but with primes. Dashed lines represent hydrogen bonds.

The five-membered ring involving N4 displays an envelope conformation, with C5 lying outside the plane of the other four atoms. The cyclo­hexene ring is a `skew-boat' or 1,3-diplanar form, with torsion angles of approximately zero about C3—C7 and C2=C16. Finally, the six-membered ring involving N4 shows a form inter­mediate between boat and skew-boat; the torsion angle about C15—C20 is approximately zero, but that about C3—N4 (which would also be zero for an ideal boat) is about 24°. See Table 2[link] for details.

Table 2
Selected torsion angles (°)

C14—C3—N4—C21 −24.3 (3) C14′—C3′—N4′—C21′ −24.0 (3)
C14—C3—C7—C2 −0.2 (4) C14′—C3′—C7′—C2′ −0.1 (3)
C7—C2—C16—C15 −7.1 (4) C7′—C2′—C16′—C15′ −9.0 (4)
C14—C15—C20—C21 −3.6 (3) C14′—C15′—C20′—C21′ −1.6 (4)

3. Supra­molecular features

The two mol­ecules are connected by the two classical hydrogen bonds, N1—H01⋯O1′ and N1′—H01′⋯O1 (Fig. 1[link], Table 1[link]), to form a dimeric assembly. The contacts C11—H11⋯Cg1(1 + x, −1 + y, z) and C11′—H11′⋯Cg2(−1 + x, 1 + y, z), where Cg1 is the mid-point of C19=C20 and Cg2 is the mid-point of C19′=C20′, may represent C—H⋯π inter­actions; the H⋯Cg distances are 2.74 and 2.72 Å, and the angles at H are 147 and 155°, respectively.

4. Database survey

The most similar natural product to have been investigated by X-ray structure analysis is probably isovoacangine (Soriano-García et al., 1991[Soriano-García, M., Rodríguez-Romero, A., Walls, F., Toscano, R. & Iribe, R. V. (1991). J. Crystallogr. Spectrosc. Res. 21, 681-685.]), refcode KORZOG.

5. Isolation and crystallization

The title compound was isolated using a combination of high-performance countercurrent chromatography (HPCCC) (Ito, 2005[Ito, Y. (2005). J. Chromatogr. A, 1065, 145-168.]), preparative C18 high-performance liquid chromatography (HPLC) and silica-gel column chromatography (Ito, 2005[Ito, Y. (2005). J. Chromatogr. A, 1065, 145-168.]). Seedlings of F1 Titan Rose Catharanthus roseus, purchased from a commercial provider of pharmaceutical plants (Gärtnerei Volk GmbH Pflanzenhandel, Braunschweig, Germany), were planted and grown outside from June to July 2015 on a mixture of standard garden soil and sand (2:1). Aerial plant parts were harvested and lyophilized, and dried tissue material was then milled by a bead mill [Mixer Mill MM 200 (RETSCH, Haan, Germany) at a vibrational frequency of 25 Hz for 1 min]. The dried powder was immersed in water adjusted to pH 2 by tri­fluoro­acetic acid (TFA), homogenized by a T-25 digital ULTRA-TURRAX (IKA, Staufen, Germany) at maximum speed (25 000 rpm for 10 min) and shaken overnight for extraction. Plant particles were centrifuged off (30 min, 8000 rpm). The acidic extract was lyophilized and redissolved in 1 l chloro­form. A solution of NaOH was added (1 l, 200 mM) and the solutions were vigorously mixed for alkaloid extraction. The phases were centrifuged (8000 rpm, 15 min) and the chloro­form phase was dried for indole-alkaloid recovery.

The complex indole-alkaloid crude extract (700 mg) was injected into a semi-preparative HPCCC instrument (Spectrum, Dynamic Extractions Ltd, Gwent, UK) (Ito, 2005[Ito, Y. (2005). J. Chromatogr. A, 1065, 145-168.]), a J-type centrifuge equipped with two coil bobbins (PTFE tubing, ID 1.6 mm, column volume 125 ml) operated with the biphasic solvent system water/n-hexane/n-butanol (2:1:1 v/v/v) using the ion-pair reagent TFA (5.0 ml l−1). The rotation velocity was set to 1600 rpm (240 g field), and the flow rate of the aqueous mobile phase (5.0 ml min−1) (head-to-tail mode) resulted in a stationary phase retention of 60% after system equilibration.

For metabolite profiling, aliquots of the recovered HPCCC fractions were injected in sequence into an ESI-ion trap MS/MS (HCT Ultra ETD II, Bruker Daltonics, Bremen, Germany) in a standard protocol described by Jerz et al. (2014[Jerz, G., Elnakady, Y., Braun, A., Jäckel, K., Sasse, F., Al Ghamdi, A. A., Omar, M. O. M. & Winterhalter, P. (2014). J. Chromatogr. A, 1347, 17-29.]) and the target alkaloid akuammicine was detected with [M+H]+ at m/z 323 in fractions 61 to 69 (elution volume 304–345 ml). The combined fractions were re-chromatographed by preparative HPLC (Wellchrom K-1001, Knauer Gerätebau Berlin, Germany) using a C18 column (Prontosil C18Aq, 25 × 250 mm) and an isocratic flow rate of 4.5 ml min−1 (aceto­nitrile:water, 60:40 with 1% TFA). Alkaloids were monitored using a UV detector (Wellchrom K-2600, Knauer Gerätebau, Berlin, Germany) at λ 254, 280 and 300 nm.

The 10 mg amber-coloured HPLC fraction was finally purified by SiO2 column chromatography (Merck, Darmstadt, Germany) using ethyl acetate/n-hexane/ethanol/25% aqueous ammonia (100/5/5/3) to yield pure akuammicine (1.2 mg), detected by thin-layer chromatography (TLC) (SiO2 60 F254, Merck, Darmstadt, Germany) with this solvent system and sprayed with Dragendorff reagent (RF value 0.25). LC–ESI–MS, measured in the positive ionization mode using a Prontosil C18-Aq column (250 × 2.0 mm, 5 µm, 100 Å, Knauer Gerätebau, Berlin, Germany), detected akuammicine, ESI–MS/MS (pos) [M+H]+: m/z 323, MS/MS 291 (100%).

Akuammicine crystals grew in tube fractions during slow evaporation of the solvents, and an appropriate colourless crystal was chosen for X-ray analysis.

1H NMR (FT 300, Bruker Biospin, Rheinstetten, Germany, 300 MHz, CDCl3), calibrated to tetramethylsilane (TMS), δ (p.p.m.): 8.97 (1H, s, NH-1), 7.39 (1H, d, J = 7.5 Hz, H-9), 7.24 (1H, dt, J1 = 8.0 and J2 = 0.8 Hz, H-11), 6.98 (1H, t, J1 = 7.5 and J2 = <1 Hz, H-10), 6.87 (1H, d, J = 7.5 Hz, H-12), 5.72 (1H, q, J = 7.0 Hz, H-19), 4.71 (1H, sbr, H-3), 4.37 (1H, d, J = 15.0 Hz, Ha-21), 4.11 (1H, sbr, H-15), 4.02 (1H, m, Ha-5), 3.84 (3H, s, CH3-22), 3.37 (1H, d, J = 15.0 Hz, Hb-21), 3.31 (1H, dd, J1 = 12.0 and J2 = 6.5 Hz, Hb-5), 2.68 (1H, dt, J1 = 13.5 and J2 = 6.7 Hz, Ha-6), 2.59 (1H, J1 = 15.0 and J2 = 3.0 Hz, Hb-14), 2.19 (1H, dd, J1 = 13.0 and J2 = 6.0 Hz, Hb-6), 1.71 (3H, d, J = 7.0 Hz, CH3-18), 1.51 (1H, dt, J1 = 15.0 and J2 = 3.0 Hz, Ha-14).

13C NMR (75 MHz, CDCl3), calibrated with solvent signal at δ 77.26 p.p.m., δ (p.p.m.): 167.2 (C-17), 164.0 (C-2), 143.1 (C-13), 133.2 (C-8), 130.9 (C-20), 129.8 (C-19), 129.6 (C-11), 122.3 (C-10), 121.4 (C-9), 110.5 (C-12), 102.3 (C-16), 61.5 (C-3), 55.1 (C-21), 55.0 (C-7), 54.1 (C-5), 51.8 (C-22), 43.2 (C-6), 29.3 (C-14), 28.5 (C-15), 13.8 (C-18).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. N-bound H atoms were refined freely. Methyls were refined as idealized rigid groups, with C—H = 0.98 Å and H—C—H = 109.5°. Other H atoms were included using a riding model starting from calculated positions, with aromatic C—H = 0.95 Å, methyl­ene C—H = 0.99 Å and methine C—H = 1.00 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The Flack parameter of 0.10 (13) is adequate to determine the absolute configuration.

Table 3
Experimental details

Crystal data
Chemical formula C20H22N2O2
Mr 322.39
Crystal system, space group Triclinic, P1
Temperature (K) 100
a, b, c (Å) 7.4750 (7), 7.7067 (6), 14.6585 (9)
α, β, γ (°) 104.696 (6), 92.637 (6), 94.548 (7)
V3) 812.33 (11)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.15 × 0.03 × 0.03
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Atlas Nova
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.850, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 40686, 6159, 5741
Rint 0.065
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.04
No. of reflections 6159
No. of parameters 445
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.20
Absolute structure Flack x parameter determined using 2335 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.10 (13)
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXS97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.]) and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015).

(I) top
Crystal data top
C20H22N2O2Z = 2
Mr = 322.39F(000) = 344
Triclinic, P1Dx = 1.318 Mg m3
a = 7.4750 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.7067 (6) ÅCell parameters from 13753 reflections
c = 14.6585 (9) Åθ = 5.9–75.8°
α = 104.696 (6)°µ = 0.68 mm1
β = 92.637 (6)°T = 100 K
γ = 94.548 (7)°Needle, colourless
V = 812.33 (11) Å30.15 × 0.03 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur Atlas Nova
diffractometer
6159 independent reflections
Radiation source: micro-focus sealed X-ray tube5741 reflections with I > 2σ(I)
Detector resolution: 10.3543 pixels mm-1Rint = 0.065
ω scansθmax = 76.3°, θmin = 6.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 89
Tmin = 0.850, Tmax = 1.000k = 99
40686 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.0943P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
6159 reflectionsΔρmax = 0.21 e Å3
445 parametersΔρmin = 0.20 e Å3
3 restraintsAbsolute structure: Flack x determined using 2335 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5190 (4)0.4782 (3)0.28497 (16)0.0275 (5)
H010.565 (5)0.531 (4)0.344 (2)0.024 (8)*
C20.4136 (4)0.5639 (4)0.23483 (18)0.0256 (6)
C30.3872 (4)0.5708 (3)0.05848 (18)0.0265 (6)
H30.4889080.5446870.0165860.032*
N40.2147 (4)0.5149 (3)0.00030 (15)0.0284 (5)
C50.1620 (5)0.3308 (4)0.00788 (18)0.0297 (6)
H5A0.2273790.2421210.0360950.036*
H5B0.0311640.2995010.0074130.036*
C60.2121 (5)0.3316 (4)0.11087 (18)0.0286 (6)
H6A0.2275320.2085320.1169450.034*
H6B0.1200910.3840840.1533250.034*
C70.3933 (4)0.4526 (3)0.13233 (17)0.0261 (6)
C80.5463 (4)0.3352 (4)0.12953 (19)0.0275 (6)
C90.6187 (5)0.2186 (4)0.0552 (2)0.0306 (6)
H90.5778820.2093910.0083800.037*
C100.7526 (5)0.1152 (4)0.0754 (2)0.0342 (7)
H100.8047660.0360930.0251290.041*
C110.8104 (5)0.1269 (4)0.1685 (2)0.0340 (7)
H110.9013970.0549740.1810040.041*
C120.7372 (5)0.2422 (4)0.2439 (2)0.0313 (6)
H120.7748670.2483190.3075450.038*
C130.6079 (4)0.3472 (3)0.22279 (19)0.0273 (6)
C140.4024 (4)0.7722 (3)0.10664 (17)0.0276 (6)
H14A0.3742710.8408090.0599750.033*
H14B0.5262610.8132900.1348140.033*
C150.2670 (4)0.8033 (3)0.18458 (17)0.0262 (6)
H150.2615680.9358900.2102910.031*
C160.3457 (4)0.7262 (4)0.26288 (17)0.0259 (6)
C170.3919 (4)0.8359 (4)0.35900 (18)0.0272 (6)
C180.0906 (5)0.7944 (4)0.2884 (2)0.0329 (7)
H18A0.0207290.8668770.3176620.049*
H18B0.1168990.6983140.3200040.049*
H18C0.1899890.8712800.2946810.049*
C190.0685 (5)0.7125 (4)0.18548 (19)0.0298 (6)
H190.1730520.6500220.1487560.036*
C200.0805 (4)0.7177 (4)0.14015 (18)0.0279 (6)
C210.0755 (5)0.6384 (4)0.03389 (19)0.0310 (6)
H21A0.0442820.5721390.0125550.037*
H21B0.0880240.7387770.0031530.037*
C220.4099 (6)1.1314 (4)0.4623 (2)0.0376 (8)
H22A0.3071371.1452670.5018130.056*
H22B0.4538961.2489290.4535620.056*
H22C0.5062231.0829610.4931590.056*
O10.4602 (3)0.7814 (3)0.42280 (13)0.0304 (5)
O20.3547 (3)1.0088 (3)0.37120 (13)0.0334 (5)
N1'0.5324 (4)0.6183 (3)0.59211 (16)0.0282 (5)
H01'0.557 (6)0.652 (6)0.540 (3)0.043 (10)*
C2'0.6443 (4)0.5214 (4)0.63243 (17)0.0264 (6)
C3'0.7304 (5)0.5197 (4)0.80590 (18)0.0294 (6)
H3'0.7222760.6264750.8605120.035*
N4'0.6967 (4)0.3522 (3)0.83775 (16)0.0308 (6)
C5'0.5046 (5)0.2993 (4)0.81692 (19)0.0316 (7)
H5'10.4344940.3729640.8654860.038*
H5'20.4766100.1706640.8150710.038*
C6'0.4603 (5)0.3321 (3)0.71971 (18)0.0281 (6)
H6'10.3302740.3431240.7093900.034*
H6'20.4974340.2345510.6680360.034*
C7'0.5744 (4)0.5140 (3)0.72739 (17)0.0266 (6)
C8'0.4560 (5)0.6659 (4)0.74493 (19)0.0289 (6)
C9'0.3666 (5)0.7458 (4)0.8232 (2)0.0315 (6)
H9'0.3845870.7129960.8809730.038*
C10'0.2503 (5)0.8744 (4)0.8161 (2)0.0338 (7)
H10'0.1907980.9320320.8699010.041*
C11'0.2201 (5)0.9196 (4)0.7310 (2)0.0337 (7)
H11'0.1380241.0059230.7271520.040*
C12'0.3084 (5)0.8402 (4)0.6510 (2)0.0323 (7)
H12'0.2882830.8710580.5928670.039*
C13'0.4263 (4)0.7147 (4)0.65995 (19)0.0284 (6)
C14'0.9146 (5)0.5310 (4)0.7686 (2)0.0314 (7)
H14C1.0061950.5095170.8144760.038*
H14D0.9448010.6524620.7592630.038*
C15'0.9137 (4)0.3864 (4)0.67316 (19)0.0287 (6)
H15'1.0391420.3816040.6523870.034*
C16'0.7971 (4)0.4503 (4)0.60213 (18)0.0267 (6)
C17'0.8636 (5)0.4777 (4)0.51448 (18)0.0290 (6)
C18'0.8904 (5)0.0130 (4)0.5238 (2)0.0371 (7)
H18D0.9326260.1279750.5114690.056*
H18E0.7868060.0433590.4799190.056*
H18F0.9872670.0670220.5148630.056*
C19'0.8357 (5)0.0456 (4)0.6238 (2)0.0331 (7)
H19'0.7871630.0567610.6424940.040*
C20'0.8480 (5)0.2031 (4)0.68892 (19)0.0294 (6)
C21'0.8080 (5)0.2099 (4)0.79049 (19)0.0327 (7)
H21C0.7467070.0918380.7915620.039*
H21D0.9239950.2254330.8283590.039*
C22'1.1154 (5)0.4795 (5)0.4215 (2)0.0430 (8)
H22D1.0626680.3932870.3635500.065*
H22E1.2453900.4707930.4270880.065*
H22F1.0930330.6018950.4191770.065*
O1'0.7762 (3)0.5340 (3)0.45692 (14)0.0325 (5)
O2'1.0348 (3)0.4389 (3)0.50224 (15)0.0348 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0277 (15)0.0282 (10)0.0254 (10)0.0005 (10)0.0019 (10)0.0062 (8)
C20.0238 (17)0.0274 (11)0.0246 (11)0.0046 (11)0.0011 (11)0.0075 (9)
C30.0259 (17)0.0288 (12)0.0235 (11)0.0018 (11)0.0014 (11)0.0056 (9)
N40.0274 (16)0.0313 (11)0.0238 (10)0.0026 (10)0.0008 (10)0.0042 (8)
C50.0274 (18)0.0319 (13)0.0255 (12)0.0055 (12)0.0017 (11)0.0023 (10)
C60.0289 (18)0.0291 (12)0.0256 (12)0.0034 (12)0.0020 (11)0.0048 (9)
C70.0256 (18)0.0267 (12)0.0240 (11)0.0031 (11)0.0009 (11)0.0044 (9)
C80.0259 (18)0.0268 (11)0.0288 (12)0.0035 (12)0.0030 (11)0.0071 (9)
C90.0309 (19)0.0294 (12)0.0306 (12)0.0021 (12)0.0053 (12)0.0070 (10)
C100.033 (2)0.0281 (12)0.0412 (15)0.0001 (13)0.0105 (14)0.0077 (11)
C110.0252 (18)0.0300 (12)0.0483 (16)0.0007 (12)0.0044 (14)0.0131 (11)
C120.0288 (19)0.0298 (13)0.0357 (13)0.0009 (12)0.0026 (12)0.0104 (10)
C130.0238 (17)0.0250 (11)0.0324 (13)0.0037 (11)0.0029 (12)0.0076 (10)
C140.0300 (18)0.0279 (12)0.0242 (11)0.0026 (12)0.0010 (11)0.0073 (9)
C150.0274 (18)0.0271 (12)0.0228 (11)0.0006 (11)0.0001 (11)0.0052 (9)
C160.0233 (17)0.0285 (11)0.0242 (12)0.0041 (11)0.0005 (11)0.0058 (9)
C170.0251 (17)0.0302 (12)0.0241 (11)0.0032 (11)0.0017 (11)0.0047 (9)
C180.0303 (19)0.0381 (14)0.0320 (13)0.0026 (13)0.0037 (12)0.0118 (11)
C190.0273 (18)0.0312 (12)0.0304 (12)0.0003 (12)0.0010 (12)0.0084 (10)
C200.0277 (18)0.0297 (12)0.0249 (12)0.0030 (12)0.0012 (11)0.0051 (9)
C210.0288 (18)0.0363 (14)0.0258 (12)0.0006 (13)0.0029 (11)0.0055 (10)
C220.045 (2)0.0311 (13)0.0293 (13)0.0006 (14)0.0064 (13)0.0030 (10)
O10.0303 (13)0.0346 (9)0.0244 (8)0.0005 (9)0.0025 (8)0.0062 (7)
O20.0410 (15)0.0293 (9)0.0261 (9)0.0021 (9)0.0053 (9)0.0015 (7)
N1'0.0248 (15)0.0347 (11)0.0245 (10)0.0011 (10)0.0000 (10)0.0081 (9)
C2'0.0259 (17)0.0291 (12)0.0223 (11)0.0072 (11)0.0020 (11)0.0065 (9)
C3'0.0326 (19)0.0302 (12)0.0214 (11)0.0070 (12)0.0051 (11)0.0035 (9)
N4'0.0333 (16)0.0327 (11)0.0250 (10)0.0047 (11)0.0010 (10)0.0079 (8)
C5'0.035 (2)0.0307 (12)0.0264 (12)0.0072 (12)0.0017 (12)0.0061 (9)
C6'0.0265 (18)0.0293 (12)0.0258 (12)0.0053 (12)0.0003 (11)0.0050 (9)
C7'0.0240 (17)0.0309 (12)0.0227 (11)0.0057 (12)0.0001 (11)0.0057 (9)
C8'0.0255 (17)0.0297 (12)0.0275 (12)0.0062 (12)0.0004 (11)0.0030 (9)
C9'0.0304 (19)0.0310 (12)0.0291 (12)0.0076 (12)0.0035 (12)0.0038 (10)
C10'0.031 (2)0.0281 (12)0.0366 (13)0.0061 (13)0.0065 (13)0.0002 (10)
C11'0.0262 (18)0.0276 (12)0.0439 (15)0.0029 (12)0.0013 (13)0.0049 (11)
C12'0.0292 (19)0.0318 (13)0.0347 (13)0.0031 (12)0.0019 (12)0.0086 (10)
C13'0.0236 (17)0.0293 (12)0.0290 (12)0.0053 (12)0.0006 (11)0.0042 (10)
C14'0.0296 (19)0.0345 (13)0.0276 (12)0.0079 (12)0.0075 (12)0.0085 (10)
C15'0.0231 (17)0.0363 (13)0.0262 (12)0.0033 (12)0.0013 (11)0.0095 (10)
C16'0.0226 (16)0.0311 (12)0.0252 (12)0.0040 (11)0.0010 (11)0.0075 (9)
C17'0.0259 (18)0.0338 (13)0.0262 (12)0.0028 (12)0.0007 (11)0.0078 (10)
C18'0.032 (2)0.0423 (15)0.0335 (14)0.0024 (14)0.0013 (13)0.0044 (11)
C19'0.0296 (19)0.0366 (14)0.0325 (13)0.0007 (13)0.0022 (12)0.0094 (11)
C20'0.0261 (18)0.0348 (13)0.0277 (12)0.0002 (12)0.0021 (11)0.0101 (10)
C21'0.036 (2)0.0355 (13)0.0271 (12)0.0000 (13)0.0012 (12)0.0105 (10)
C22'0.029 (2)0.066 (2)0.0410 (16)0.0015 (17)0.0098 (14)0.0256 (15)
O1'0.0279 (13)0.0443 (11)0.0276 (9)0.0028 (10)0.0022 (9)0.0140 (8)
O2'0.0241 (13)0.0502 (12)0.0344 (10)0.0019 (10)0.0047 (9)0.0185 (9)
Geometric parameters (Å, º) top
N1—C21.368 (4)N1'—C2'1.373 (4)
N1—C131.409 (4)N1'—C13'1.401 (4)
N1—H010.90 (4)N1'—H01'0.89 (4)
C2—C161.360 (4)C2'—C16'1.351 (5)
C2—C71.523 (3)C2'—C7'1.522 (4)
C3—N41.483 (4)C3'—N4'1.488 (4)
C3—C141.526 (3)C3'—C14'1.509 (5)
C3—C71.583 (3)C3'—C7'1.590 (4)
C3—H31.0000C3'—H3'1.0000
N4—C51.475 (4)N4'—C5'1.458 (5)
N4—C211.483 (4)N4'—C21'1.479 (4)
C5—C61.537 (4)C5'—C6'1.535 (4)
C5—H5A0.9900C5'—H5'10.9900
C5—H5B0.9900C5'—H5'20.9900
C6—C71.554 (4)C6'—C7'1.558 (4)
C6—H6A0.9900C6'—H6'10.9900
C6—H6B0.9900C6'—H6'20.9900
C7—C81.509 (4)C7'—C8'1.501 (4)
C8—C91.387 (4)C8'—C9'1.385 (4)
C8—C131.400 (4)C8'—C13'1.403 (4)
C9—C101.394 (5)C9'—C10'1.389 (5)
C9—H90.9500C9'—H9'0.9500
C10—C111.392 (4)C10'—C11'1.391 (5)
C10—H100.9500C10'—H10'0.9500
C11—C121.395 (4)C11'—C12'1.399 (5)
C11—H110.9500C11'—H11'0.9500
C12—C131.382 (4)C12'—C13'1.385 (5)
C12—H120.9500C12'—H12'0.9500
C14—C151.547 (4)C14'—C15'1.551 (4)
C14—H14A0.9900C14'—H14C0.9900
C14—H14B0.9900C14'—H14D0.9900
C15—C201.535 (4)C15'—C16'1.526 (4)
C15—C161.535 (4)C15'—C20'1.535 (4)
C15—H151.0000C15'—H15'1.0000
C16—C171.457 (3)C16'—C17'1.457 (4)
C17—O11.225 (3)C17'—O1'1.228 (4)
C17—O21.352 (3)C17'—O2'1.346 (4)
C18—C191.503 (4)C18'—C19'1.504 (4)
C18—H18A0.9800C18'—H18D0.9800
C18—H18B0.9800C18'—H18E0.9800
C18—H18C0.9800C18'—H18F0.9800
C19—C201.326 (5)C19'—C20'1.334 (4)
C19—H190.9500C19'—H19'0.9500
C20—C211.520 (3)C20'—C21'1.521 (4)
C21—H21A0.9900C21'—H21C0.9900
C21—H21B0.9900C21'—H21D0.9900
C22—O21.447 (3)C22'—O2'1.444 (4)
C22—H22A0.9800C22'—H22D0.9800
C22—H22B0.9800C22'—H22E0.9800
C22—H22C0.9800C22'—H22F0.9800
C2—N1—C13110.1 (2)C2'—N1'—C13'110.3 (2)
C2—N1—H01122 (2)C2'—N1'—H01'122 (3)
C13—N1—H01122 (2)C13'—N1'—H01'122 (3)
C16—C2—N1129.7 (2)C16'—C2'—N1'129.9 (3)
C16—C2—C7122.0 (2)C16'—C2'—C7'122.3 (3)
N1—C2—C7108.0 (2)N1'—C2'—C7'107.7 (3)
N4—C3—C14110.6 (2)N4'—C3'—C14'110.8 (3)
N4—C3—C7107.2 (2)N4'—C3'—C7'106.4 (2)
C14—C3—C7112.2 (2)C14'—C3'—C7'112.1 (2)
N4—C3—H3108.9N4'—C3'—H3'109.1
C14—C3—H3108.9C14'—C3'—H3'109.1
C7—C3—H3108.9C7'—C3'—H3'109.1
C5—N4—C21111.7 (3)C5'—N4'—C21'112.5 (2)
C5—N4—C3104.9 (2)C5'—N4'—C3'105.1 (2)
C21—N4—C3111.9 (2)C21'—N4'—C3'112.0 (2)
N4—C5—C6105.9 (2)N4'—C5'—C6'105.5 (2)
N4—C5—H5A110.5N4'—C5'—H5'1110.6
C6—C5—H5A110.5C6'—C5'—H5'1110.6
N4—C5—H5B110.5N4'—C5'—H5'2110.6
C6—C5—H5B110.5C6'—C5'—H5'2110.6
H5A—C5—H5B108.7H5'1—C5'—H5'2108.8
C5—C6—C7102.1 (2)C5'—C6'—C7'101.8 (2)
C5—C6—H6A111.3C5'—C6'—H6'1111.4
C7—C6—H6A111.3C7'—C6'—H6'1111.4
C5—C6—H6B111.3C5'—C6'—H6'2111.4
C7—C6—H6B111.3C7'—C6'—H6'2111.4
H6A—C6—H6B109.2H6'1—C6'—H6'2109.3
C8—C7—C2101.4 (2)C8'—C7'—C2'101.4 (2)
C8—C7—C6109.2 (2)C8'—C7'—C6'110.1 (3)
C2—C7—C6111.2 (2)C2'—C7'—C6'111.1 (2)
C8—C7—C3117.4 (2)C8'—C7'—C3'117.5 (2)
C2—C7—C3113.5 (2)C2'—C7'—C3'113.2 (3)
C6—C7—C3104.2 (2)C6'—C7'—C3'103.8 (2)
C9—C8—C13120.0 (3)C9'—C8'—C13'119.6 (3)
C9—C8—C7131.8 (3)C9'—C8'—C7'131.8 (3)
C13—C8—C7108.0 (2)C13'—C8'—C7'108.3 (2)
C8—C9—C10118.8 (3)C8'—C9'—C10'119.2 (3)
C8—C9—H9120.6C8'—C9'—H9'120.4
C10—C9—H9120.6C10'—C9'—H9'120.4
C11—C10—C9120.6 (3)C9'—C10'—C11'120.6 (3)
C11—C10—H10119.7C9'—C10'—H10'119.7
C9—C10—H10119.7C11'—C10'—H10'119.7
C10—C11—C12121.2 (3)C10'—C11'—C12'121.2 (3)
C10—C11—H11119.4C10'—C11'—H11'119.4
C12—C11—H11119.4C12'—C11'—H11'119.4
C13—C12—C11117.6 (3)C13'—C12'—C11'117.3 (3)
C13—C12—H12121.2C13'—C12'—H12'121.3
C11—C12—H12121.2C11'—C12'—H12'121.3
C12—C13—C8121.9 (3)C12'—C13'—N1'128.8 (3)
C12—C13—N1128.8 (3)C12'—C13'—C8'122.1 (3)
C8—C13—N1109.3 (2)N1'—C13'—C8'109.1 (3)
C3—C14—C15107.8 (2)C3'—C14'—C15'108.5 (2)
C3—C14—H14A110.1C3'—C14'—H14C110.0
C15—C14—H14A110.1C15'—C14'—H14C110.0
C3—C14—H14B110.1C3'—C14'—H14D110.0
C15—C14—H14B110.1C15'—C14'—H14D110.0
H14A—C14—H14B108.5H14C—C14'—H14D108.4
C20—C15—C16115.8 (2)C16'—C15'—C20'115.4 (2)
C20—C15—C14108.6 (2)C16'—C15'—C14'106.2 (2)
C16—C15—C14105.6 (2)C20'—C15'—C14'108.2 (2)
C20—C15—H15108.9C16'—C15'—H15'109.0
C16—C15—H15108.9C20'—C15'—H15'109.0
C14—C15—H15108.9C14'—C15'—H15'109.0
C2—C16—C17118.7 (3)C2'—C16'—C17'118.8 (3)
C2—C16—C15116.7 (2)C2'—C16'—C15'117.0 (2)
C17—C16—C15122.6 (2)C17'—C16'—C15'122.4 (3)
O1—C17—O2122.4 (2)O1'—C17'—O2'121.9 (3)
O1—C17—C16124.7 (3)O1'—C17'—C16'124.5 (3)
O2—C17—C16112.9 (2)O2'—C17'—C16'113.6 (2)
C19—C18—H18A109.5C19'—C18'—H18D109.5
C19—C18—H18B109.5C19'—C18'—H18E109.5
H18A—C18—H18B109.5H18D—C18'—H18E109.5
C19—C18—H18C109.5C19'—C18'—H18F109.5
H18A—C18—H18C109.5H18D—C18'—H18F109.5
H18B—C18—H18C109.5H18E—C18'—H18F109.5
C20—C19—C18127.3 (3)C20'—C19'—C18'126.9 (3)
C20—C19—H19116.3C20'—C19'—H19'116.6
C18—C19—H19116.4C18'—C19'—H19'116.6
C19—C20—C21120.2 (3)C19'—C20'—C21'120.2 (3)
C19—C20—C15126.1 (2)C19'—C20'—C15'125.5 (3)
C21—C20—C15113.7 (3)C21'—C20'—C15'114.1 (2)
N4—C21—C20115.7 (2)N4'—C21'—C20'116.7 (2)
N4—C21—H21A108.3N4'—C21'—H21C108.1
C20—C21—H21A108.3C20'—C21'—H21C108.1
N4—C21—H21B108.3N4'—C21'—H21D108.1
C20—C21—H21B108.3C20'—C21'—H21D108.1
H21A—C21—H21B107.4H21C—C21'—H21D107.3
O2—C22—H22A109.5O2'—C22'—H22D109.5
O2—C22—H22B109.5O2'—C22'—H22E109.5
H22A—C22—H22B109.5H22D—C22'—H22E109.5
O2—C22—H22C109.5O2'—C22'—H22F109.5
H22A—C22—H22C109.5H22D—C22'—H22F109.5
H22B—C22—H22C109.5H22E—C22'—H22F109.5
C17—O2—C22116.7 (2)C17'—O2'—C22'116.7 (2)
C13—N1—C2—C16159.8 (3)C13'—N1'—C2'—C16'160.4 (3)
C13—N1—C2—C714.9 (3)C13'—N1'—C2'—C7'15.6 (3)
C14—C3—N4—C5145.6 (2)C14'—C3'—N4'—C5'146.4 (2)
C7—C3—N4—C523.1 (3)C7'—C3'—N4'—C5'24.3 (3)
C14—C3—N4—C2124.3 (3)C14'—C3'—N4'—C21'24.0 (3)
C7—C3—N4—C2198.2 (3)C7'—C3'—N4'—C21'98.1 (3)
C21—N4—C5—C682.6 (3)C21'—N4'—C5'—C6'81.1 (3)
C3—N4—C5—C638.8 (3)C3'—N4'—C5'—C6'41.0 (3)
N4—C5—C6—C738.5 (3)N4'—C5'—C6'—C7'40.5 (3)
C16—C2—C7—C8157.7 (3)C16'—C2'—C7'—C8'158.3 (3)
N1—C2—C7—C817.5 (3)N1'—C2'—C7'—C8'18.1 (3)
C16—C2—C7—C686.3 (3)C16'—C2'—C7'—C6'84.7 (3)
N1—C2—C7—C698.5 (3)N1'—C2'—C7'—C6'98.8 (3)
C16—C2—C7—C330.8 (4)C16'—C2'—C7'—C3'31.6 (4)
N1—C2—C7—C3144.4 (3)N1'—C2'—C7'—C3'144.8 (2)
C5—C6—C7—C8103.4 (2)C5'—C6'—C7'—C8'102.6 (3)
C5—C6—C7—C2145.5 (2)C5'—C6'—C7'—C2'145.9 (3)
C5—C6—C7—C322.9 (3)C5'—C6'—C7'—C3'24.0 (3)
N4—C3—C7—C8120.2 (3)N4'—C3'—C7'—C8'120.9 (3)
C14—C3—C7—C8118.2 (3)C14'—C3'—C7'—C8'117.8 (3)
N4—C3—C7—C2121.8 (3)N4'—C3'—C7'—C2'121.4 (2)
C14—C3—C7—C20.2 (4)C14'—C3'—C7'—C2'0.1 (3)
N4—C3—C7—C60.7 (3)N4'—C3'—C7'—C6'0.8 (3)
C14—C3—C7—C6120.9 (3)C14'—C3'—C7'—C6'120.5 (2)
C2—C7—C8—C9170.8 (3)C2'—C7'—C8'—C9'171.9 (3)
C6—C7—C8—C971.7 (4)C6'—C7'—C8'—C9'70.4 (4)
C3—C7—C8—C946.6 (4)C3'—C7'—C8'—C9'48.1 (5)
C2—C7—C8—C1314.1 (3)C2'—C7'—C8'—C13'14.5 (3)
C6—C7—C8—C13103.3 (3)C6'—C7'—C8'—C13'103.2 (3)
C3—C7—C8—C13138.4 (2)C3'—C7'—C8'—C13'138.3 (3)
C13—C8—C9—C100.0 (4)C13'—C8'—C9'—C10'0.6 (4)
C7—C8—C9—C10174.6 (3)C7'—C8'—C9'—C10'173.6 (3)
C8—C9—C10—C111.0 (5)C8'—C9'—C10'—C11'1.6 (5)
C9—C10—C11—C120.3 (5)C9'—C10'—C11'—C12'1.4 (5)
C10—C11—C12—C131.3 (5)C10'—C11'—C12'—C13'0.2 (5)
C11—C12—C13—C82.3 (4)C11'—C12'—C13'—N1'179.0 (3)
C11—C12—C13—N1177.3 (3)C11'—C12'—C13'—C8'0.8 (5)
C9—C8—C13—C121.6 (4)C2'—N1'—C13'—C12'173.8 (3)
C7—C8—C13—C12174.1 (3)C2'—N1'—C13'—C8'6.1 (3)
C9—C8—C13—N1178.0 (3)C9'—C8'—C13'—C12'0.6 (5)
C7—C8—C13—N16.3 (3)C7'—C8'—C13'—C12'173.9 (3)
C2—N1—C13—C12174.0 (3)C9'—C8'—C13'—N1'179.3 (3)
C2—N1—C13—C85.6 (3)C7'—C8'—C13'—N1'6.2 (3)
N4—C3—C14—C1570.9 (3)N4'—C3'—C14'—C15'70.5 (3)
C7—C3—C14—C1548.7 (3)C7'—C3'—C14'—C15'48.2 (3)
C3—C14—C15—C2053.1 (3)C3'—C14'—C15'—C16'70.4 (3)
C3—C14—C15—C1671.7 (3)C3'—C14'—C15'—C20'54.0 (3)
N1—C2—C16—C172.5 (5)N1'—C2'—C16'—C17'1.2 (4)
C7—C2—C16—C17171.5 (3)C7'—C2'—C16'—C17'174.3 (2)
N1—C2—C16—C15166.9 (3)N1'—C2'—C16'—C15'166.6 (3)
C7—C2—C16—C157.1 (4)C7'—C2'—C16'—C15'9.0 (4)
C20—C15—C16—C276.4 (4)C20'—C15'—C16'—C2'78.4 (3)
C14—C15—C16—C243.8 (3)C14'—C15'—C16'—C2'41.4 (3)
C20—C15—C16—C17119.9 (3)C20'—C15'—C16'—C17'116.8 (3)
C14—C15—C16—C17120.0 (3)C14'—C15'—C16'—C17'123.4 (3)
C2—C16—C17—O114.1 (5)C2'—C16'—C17'—O1'13.2 (4)
C15—C16—C17—O1177.6 (3)C15'—C16'—C17'—O1'177.7 (3)
C2—C16—C17—O2164.7 (3)C2'—C16'—C17'—O2'165.4 (3)
C15—C16—C17—O21.2 (4)C15'—C16'—C17'—O2'0.9 (4)
C18—C19—C20—C21175.7 (3)C18'—C19'—C20'—C21'172.5 (3)
C18—C19—C20—C152.6 (5)C18'—C19'—C20'—C15'3.0 (6)
C16—C15—C20—C1959.4 (4)C16'—C15'—C20'—C19'63.8 (4)
C14—C15—C20—C19177.9 (3)C14'—C15'—C20'—C19'177.4 (3)
C16—C15—C20—C21122.2 (3)C16'—C15'—C20'—C21'120.4 (3)
C14—C15—C20—C213.6 (3)C14'—C15'—C20'—C21'1.6 (4)
C5—N4—C21—C2082.5 (3)C5'—N4'—C21'—C20'84.4 (3)
C3—N4—C21—C2034.8 (3)C3'—N4'—C21'—C20'33.8 (4)
C19—C20—C21—N4130.9 (3)C19'—C20'—C21'—N4'136.0 (3)
C15—C20—C21—N450.6 (3)C15'—C20'—C21'—N4'48.0 (4)
O1—C17—O2—C223.8 (5)O1'—C17'—O2'—C22'4.5 (4)
C16—C17—O2—C22175.0 (3)C16'—C17'—O2'—C22'174.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···O10.90 (4)2.20 (3)2.754 (3)119 (3)
N1—H01···O10.90 (4)2.23 (4)3.018 (3)146 (3)
N1—H01···O10.89 (4)2.20 (4)2.745 (4)119 (3)
N1—H01···O10.89 (4)2.31 (4)3.098 (3)147 (4)
C18—H18A···O20.982.643.609 (4)168
C18—H18D···O20.982.503.469 (4)173
 

Footnotes

On leave from Yasouj University, Yasouj, Kohgiluyeh Va Boyer Ahmad, Iran.

Acknowledgements

The financial support of the research visit of Mahdi Yahyaza­deh by the Iranian Ministry of Science, Research and Technology is gratefully acknowledged.

References

First citationBuckingham, J., Baggaley, K. H., Roberts, A. D. & Szabó, L. F. (2010). Editors. Dictionary of Alkaloids, 2nd ed., p. 47. Boca Raton: CRC Press, Taylor & Francis Group.
First citationDer Heijden, R. van, Jacobs, D. I., Snoeijer, W., Hallard, D. & Verpoorte, R. (2004). Curr. Med. Chem. 11, 607–628.  PubMed
First citationIto, Y. (2005). J. Chromatogr. A, 1065, 145–168.  CrossRef PubMed CAS
First citationJerz, G., Elnakady, Y., Braun, A., Jäckel, K., Sasse, F., Al Ghamdi, A. A., Omar, M. O. M. & Winterhalter, P. (2014). J. Chromatogr. A, 1347, 17–29.  CrossRef CAS PubMed
First citationNoble, R. L. (1990). Biochem. Cell Biol. 68, 1344–1351.  CrossRef CAS PubMed
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals
First citationRenault, J. H., Nuzillard, J. M., Le Crouérour, G., Thépenier, P., Zèches-Hanrot, M. & Le Men-Olivier, L. (1999). J. Chromatogr. A, 849, 421–431.  CrossRef PubMed CAS
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.
First citationSoriano-García, M., Rodríguez-Romero, A., Walls, F., Toscano, R. & Iribe, R. V. (1991). J. Crystallogr. Spectrosc. Res. 21, 681–685.
First citationSottomayor, M., López-Serrano, M., DiCosmo, F. & Ros Barceló, A. (1998). FEBS Lett. 428, 299–303.  CrossRef CAS PubMed
First citationSreevalli, Y., Kulkarni, R. N., Baskaran, K. & Chandrashekara, R. S. (2004). Ind. Crops Prod. 19, 191–195.  CrossRef CAS
First citationVerma, A., Laakso, I., Seppänen-Laakso, T., Huhtikangas, A. & Riekkola, M. L. (2007). Molecules, 12, 1307–1315.  PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds