research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Zwitterionic 1-{(1E)-[(4-hy­dr­oxy­phen­yl)iminio]meth­yl}naphthalen-2-olate: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aResearch & Development Centre, Bharathiar University, Coimbatore 641 046, India, bGovt. Science College, Nrupathunga Road, Bangalore 560 001, India, cSSMRV College, Jayanagar 4th T block, Bangalore 560 041, India, dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and eResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 4 October 2017; accepted 10 October 2017; online 20 October 2017)

The title zwitterion, C17H13NO2 (systematic name: 1-{(1E)-[(4-hy­droxy­phen­yl)iminium­yl]meth­yl}naphthalen-2-olate), features an intra­molecular charge-assisted N+—H⋯O hydrogen bond. A twist in the mol­ecule is evident around the N—C(hy­droxy­benzene) bond [C—N—C—C torsion angle = 39.42 (8)°] and is reflected in the dihedral angle of 39.42 (8)° formed between the aromatic regions of the mol­ecule. In the crystal, zigzag supra­molecular chains along the a axis are formed by charge-assisted hy­droxy-O—H⋯O(phenoxide) hydrogen bonding. These are connected into a layer in the ab plane by charge-assisted hy­droxy­benzene-C—H⋯O(phenoxide) inter­actions and ππ contacts [inter-centroid distance between naphthyl-C6 rings = 3.4905 (12) Å]. Layers stack along the c axis with no specific inter­actions between them. The Hirshfeld surface analysis points to the significance C⋯H contacts between layers.

1. Chemical context

Schiff bases derived from o-hy­droxy­naphthalehyde have attracted significant attention owing to their biological properties, such as anti­-tumour activity (Richardson & Bernhardt, 1999[Richardson, D. R. & Bernhardt, P. V. (1999). J. Biol. Inorg. Chem. 4, 266-273.]; Gou et al., 2015[Gou, Y., Qi, J., Ajayi, J.-P., Zhang, Y., Zhou, Z., Wu, X., Yang, F. & Liang, H. (2015). Mol. Pharm. 12, 3597-3609.]), and their photophysical properties, such as thermo- and photochromism (Matijević-Sosa et al., 2006[Matijević-Sosa, J., Vinković, M. & Vikić-Topić, D. (2006). Croat. Chem. Acta, 79, 489-495.]). Furthermore, the physical properties of these mol­ecules led to their application in various areas of materials science, such as in the control and measurement of radiation intensity, display systems and optical memory devices (Dürr, 1989[Dürr, H. (1989). Angew. Chem. Int. Ed. 28, 413-431.]; Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]). These Schiff bases have also been used as tools for assessing the nature of hydrogen bonding (Richardson & Bernhardt, 1999[Richardson, D. R. & Bernhardt, P. V. (1999). J. Biol. Inorg. Chem. 4, 266-273.]), as well as keto–amine and phenol–imine tautomerism (Ünver et al., 2000[Ünver, H., Zengin, D. M. & Güven, K. G. (2000). J. Chem. Crystallogr. 30, 359-364.]) in related mol­ecules. In view of these various applications, our recent investigations have focused on the structure determination of Schiff bases of this type, e.g. of (E)-N-[(2-meth­oxy­naphthalen-1-yl)methyl­idene]-3-nitro­aniline (Bhai et al., 2015[Bhai R., D., Girija, C. R., Suresh, S. & Reddy, R. (2015). Acta Cryst. E71, o941-o942.]). As a continuation of these studies, the crystal and mol­ecular structures of the title compound, (I)[link], are described herein along with an analysis of the Hirshfeld surface, performed in order to gain more information on the nature of the mol­ecular packing.

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. Crystallography established the mol­ecule to exist in a zwitterionic form with the putative H atom of the naphthyl-hy­droxy group being located on the imine-N atom. This assignment is supported by the short C9—O2 bond length of 1.283 (2) Å. The mol­ecule features two planar regions connected by an imine (iminium­yl) bridge; the configuration about the imine bond [C1=N = 1.308 (2) Å] is E. The twist in the mol­ecule occurs around the N1—C2 bond, is seen in the value of the C1—N1—C2—C7 torsion angle of 31.1 (3)°. The dihedral angle between the two aromatic regions is 39.42 (8)°. The coplanar relationship between the imine and naphthyl residues is stabilized by an intra­molecular charge-assisted N+—H⋯O hydrogen bond, Table 1[link].

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.88 (1) 1.81 (2) 2.553 (2) 141 (2)
O1—H1O⋯O2i 0.89 (1) 1.74 (1) 2.622 (2) 173 (1)
C7—H7⋯O1ii 0.93 2.60 3.487 (3) 160
Symmetry codes: (i) [-x-{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, -y-1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

3. Supra­molecular features

The most prominent feature of the mol­ecular packing is the formation of a zigzag (glide symmetry) supra­molecular chain along the a axis mediated by hy­droxy-O—H⋯O(phenoxide) charge-assisted hydrogen bonding, Fig. 2[link]a and Table 1[link]. Chains are connected into a supra­molecular layer in the ab plane by charge-assisted hy­droxy­benzene-C—H⋯O(phenoxide) inter­actions, Table 1[link], as well as ππ contacts between the two rings of the naphthyl residue; the inter-centroid separation for (C8–C12,C17)⋯(C12–C17)i = 3.4905 (12) Å and angle of inclination = 2.68 (8)° [symmetry code (i) [{3\over 2}] − x, [{1\over 2}] + y, z], Fig. 2[link]b. Layers stack along the c axis with no directional inter­actions between them, Fig. 2[link]c.

[Figure 2]
Figure 2
The mol­ecular packing for (I)[link]: (a) a view of the zigzag supra­molecular chain along the a axis mediated by charge-assisted hy­droxy-O—H⋯O(phenoxide) hydrogen bonding, (b) a view of the supra­molecular layer in the ab plane stabilized by charge-assisted hy­droxy­benzene-C—H⋯O(phenoxide) inter­actions and ππ contacts and (c) a view of the unit-cell contents shown in projection down the b axis, highlighting the stacking of layers along the c axis. The O—H⋯O, C—H⋯O and ππ inter­actions are shown as orange, blue and purple dashed lines, respectively.

4. Analysis of the Hirshfeld surface

The Hirshfeld surface was calculated for (I)[link] according to earlier work on organic mol­ecules (Tan et al., 2017[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001-1008.]) and provides more detailed information on the inter­molecular inter­actions influential in the crystal. In addition to the bright-red spots near those atoms participating in charge-assisted O1—H1O⋯O2 and C7—H7⋯O1 inter­actions on the Hirshfeld surface mapped over dnorm, Fig. 3[link], the bright-red spots appearing near the benzene-C4, -C5 and -H7, and naphthyl-H13 atoms are indicative of short inter­atomic C⋯H/H⋯C contacts significant in the crystal, Table 2[link]. The C4⋯H13 contact occurs in the inter-layer region. Further, the short inter­atomic C⋯C contacts between the naphthyl-C9 and -C17 atoms, Table 2[link], assigned to ππ stacking inter­actions, appear as faint-red spots in Fig. 3[link]. The donors and acceptors of the aforementioned inter­actions appear as blue and red regions, respectively, around the atoms on the Hirshfeld surface mapped over electrostatic potential in the views shown in Fig. 4[link]. The short inter­atomic contacts together with the charge-assisted O—H⋯O and C—H⋯O inter­actions formed with the atoms of a reference mol­ecule within shape-index mapped Hirshfeld surface are highlighted in the views of Fig. 5[link].

Table 2
Summary of short inter­atomic contacts (Å) in (I)[link]

Contact Distance Symmetry operation
C4⋯H13 2.69 [{3\over 2}] − x, − y, [{1\over 2}] + z
C5⋯H7 2.69 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
C9⋯H1O 2.638 (16) [{1\over 2}] + x, y, [{1\over 2}] − z
C9⋯C17 3.367 (2) [{3\over 2}] − x, − [{1\over 2}] + y, z
H15⋯H16 2.38 1 − x, − y, − z
[Figure 3]
Figure 3
Views of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.150 to +1.460 a.u.
[Figure 4]
Figure 4
Views of the Hirshfeld surface for (I)[link] mapped over the electrostatic potential in the range ±0.116 a.u.
[Figure 5]
Figure 5
Views of the Hirshfeld surfaces about a reference mol­ecule mapped over the shape-index property highlighting (a) inter­molecular O—H⋯O and C—H⋯O inter­actions, and short inter­atomic C⋯H/H⋯C contacts by black, red and sky-blue dashed lines, respectively, and (b) short inter­atomic C⋯C and H⋯H contacts, and ππ stacking inter­actions by red, sky-blue and black dashed lines, respectively.

The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and C⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Figs. 6[link]be, respectively; the relative contributions from different inter­atomic contacts to the Hirshfeld surfaces are summarized in Table 3[link]. The presence of a small peak in the centre at de + di ∼ 2.3 Å in the fingerprint plot delineated into H⋯H contacts, Fig. 6[link]b, results from the short inter­atomic H⋯H contact between symmetry related naphthyl-H15 and -H16 atoms, Table 2[link]. In the fingerprint plot delineated into C⋯H/H⋯C contacts, Fig. 6[link]c, the short inter­atomic contacts summarized in Table 2[link] appear as the points distributed as the pair of thick spikes with tips at de + di ∼ 2.6 Å. The presence of charge-assisted O—H⋯O hydrogen bonds in the structure are characterized by the distinctive spikes with tips at de + di ∼ 1.7 Å, Fig. 6[link]d, whereas the points belong to inter­molecular C—H⋯O hydrogen bond are merged within the plot. The fingerprint plot delineated into C⋯C contacts, Fig. 6[link]e, indicate the presence of the ππ stacking inter­actions between symmetry related naphthyl-(C8–C12/C17) and -(C12–C17) rings through the arrow-shaped distribution with the green points spread about de = di = 1.8 Å. The small contributions from other inter­atomic contacts summarized in Table 3[link] have negligible effect on the mol­ecular packing.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)[link]

Contact Percentage contribution
H⋯H 46.5
C⋯H/H⋯C 24.9
O⋯H/H⋯O 14.9
C⋯C 10.5
C⋯O/O⋯C 1.0
N⋯H/H⋯N 1.0
N⋯O /O⋯N 0.6
C⋯N/N⋯C 0.6
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plots for (I)[link], and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) C⋯C contacts.

5. Database survey

The most closely related structure to (I)[link] in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) is that of the ethanol hemisolvate of (I)[link], i.e. (I)·0.5EtOH (Safia et al., 2015[Safia, C., Saida, K., Fatiha, B., Lydia, K. & Ali, O. (2015). Private communication (refcode: UGIPEH). CCDC, Cambridge, England.]). Here, there are two mol­ecules in the asymmetric unit and each exists in the zwitterionic form with C—O = 1.288 (4) and 1.2943 (19) Å. By contrast to (I)[link], the zwitterions in (I)·0.5EtOH are more planar than in (I)[link], with the dihedral angles between the aromatic residues being 7.59 (4)° in one of the independent zwitterions and 8.01 (4)° in the other. The other structure deserving of comment is that of 2-{[(4-hy­droxy­phen­yl)imino]­meth­yl}phenol, where the 2-oxidonaphthyl group of (I)[link] has been replaced by a 2-oxido­benzene residue. This has been crystallized in two forms, viz. a P21/c form with Z′ = 2 (Ersanlı et al., 2004[Ersanlı, C. C., Albayrak, Ç., Odabaşoğlu, M. & Erdönmez, A. (2004). Acta Cryst. E60, o389-o391.]) and a C2/c form with Z′ = 1 (Wang et al., 2011[Wang, Y., Yu, Z., Sun, Y., Wang, Y. & Lu, L. (2011). Spectrochim. Acta Part A, 79, 1475-1482.]). The common feature of the three mol­ecules is the formation of hydrox­yl/imine tautomer, as opposed to zwitterionic (I)[link] and (I)·0.5EtOH (Safia et al., 2015[Safia, C., Saida, K., Fatiha, B., Lydia, K. & Ali, O. (2015). Private communication (refcode: UGIPEH). CCDC, Cambridge, England.]). The three mol­ecules have smaller deviations from planarity than (I)[link], as seen in the dihedral angles between the aromatic rings of 10.43 (6) and 15.70 (6)° for the P21/c form, and 14.91 (9)° for the C2/c form. Finally, a deprotonated form of (I)[link], with the 4-hy­droxy group intact, forms a six-membered {Pd—O—C C—C=N} chelate ring in its bis-complex with palladium(II) (Tardiff et al., 2007[Tardiff, B. J., Smith, J. C., Duffy, S. J., Vogels, C. M., Decken, A. & Westcott, S. A. (2007). Can. J. Chem. 85, 392-399.]).

6. Synthesis and crystallization

4-Hy­droxy­aniline (0.00916 mol, 1.00 g) was added to a solution of 2-hy­droxy-1-napthaldehyde (0.00916 mol, 1.58 g) in ethanol (25 ml). The resulting mixture was refluxed at 333 K and stirred for 2.5 h. The reaction mixture was cooled to room temperature and the resulting orange precipitate was filtered off and washed with cold ethanol to obtain the pure product in 65% yield. Crystals of (I)[link] were grown from a mixture of chloro­form and methanol (1:1 v/v) by slow evaporation.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) values set at 1.2Ueq(C). The O- and N-bound H atoms were located in a difference Fourier map, but were refined with distance restraints of O—H = 0.82±0.01 Å and N—H = 0.86±0.01 Å, and with Uiso(H) values set at 1.5Ueq(O) and 1.2Ueq(N), respectively. To confirm the positions of the acidic-H atoms, a separate refinement was conducted whereby no distance restraints were applied resulting in O—H and N—H bond lengths of 0.93 (2) and 1.00 (3) Å, respectively.

Table 4
Experimental details

Crystal data
Chemical formula C17H13NO2
Mr 263.28
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 15.7473 (14), 7.3042 (5), 22.7257 (19)
V3) 2613.9 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.35 × 0.25 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.941, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 17744, 2253, 1518
Rint 0.043
(sin θ/λ)max−1) 0.591
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.04
No. of reflections 2253
No. of parameters 189
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.16
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

1-{(1E)-[(4-Hydroxyphenyl)iminio]methyl}naphthalen-2-olate top
Crystal data top
C17H13NO2Dx = 1.338 Mg m3
Mr = 263.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3652 reflections
a = 15.7473 (14) Åθ = 2.5–22.5°
b = 7.3042 (5) ŵ = 0.09 mm1
c = 22.7257 (19) ÅT = 293 K
V = 2613.9 (4) Å3Block, colourless
Z = 80.35 × 0.25 × 0.10 mm
F(000) = 1104
Data collection top
Bruker AXS Kappa APEXII CCD
diffractometer
1518 reflections with I > 2σ(I)
ω and φ scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 24.8°, θmin = 2.2°
Tmin = 0.941, Tmax = 0.982h = 1718
17744 measured reflectionsk = 85
2253 independent reflectionsl = 2626
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.3444P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.15 e Å3
2253 reflectionsΔρmin = 0.16 e Å3
189 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0094 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50441 (9)0.2166 (2)0.36926 (6)0.0610 (4)
O20.85495 (9)0.0585 (2)0.13238 (6)0.0619 (4)
N10.70553 (11)0.0841 (2)0.17521 (7)0.0508 (4)
C10.68015 (13)0.0167 (2)0.12484 (8)0.0478 (5)
H10.62230.00340.11990.057*
C20.65339 (12)0.1142 (3)0.22458 (8)0.0466 (5)
C30.67240 (12)0.2537 (3)0.26274 (8)0.0510 (5)
H30.71990.32650.25620.061*
C40.62150 (13)0.2861 (3)0.31052 (8)0.0522 (5)
H40.63420.38210.33590.063*
C50.55214 (12)0.1784 (3)0.32124 (7)0.0471 (5)
C60.53407 (13)0.0373 (3)0.28381 (8)0.0606 (6)
H620.48730.03730.29080.073*
C70.58493 (14)0.0058 (3)0.23593 (9)0.0617 (6)
H70.57250.09100.21080.074*
C80.73349 (12)0.0267 (2)0.07838 (7)0.0436 (5)
C90.82215 (13)0.0075 (2)0.08526 (9)0.0492 (5)
C100.87583 (14)0.0632 (3)0.03806 (10)0.0588 (6)
H100.93450.05570.04230.071*
C110.84314 (15)0.1261 (3)0.01218 (10)0.0643 (6)
H110.88010.16210.04190.077*
C120.75490 (14)0.1402 (3)0.02208 (8)0.0533 (5)
C130.72247 (18)0.1984 (3)0.07628 (10)0.0704 (7)
H130.75990.23050.10620.084*
C140.63811 (19)0.2091 (3)0.08611 (10)0.0742 (7)
H140.61760.24760.12240.089*
C150.58281 (16)0.1625 (3)0.04171 (10)0.0679 (6)
H150.52460.16970.04820.082*
C160.61235 (14)0.1058 (3)0.01170 (9)0.0571 (5)
H160.57370.07610.04110.069*
C170.69907 (13)0.0913 (2)0.02326 (8)0.0460 (5)
H1O0.4563 (9)0.154 (2)0.3685 (9)0.069*
H1N0.7609 (7)0.095 (3)0.1766 (9)0.082 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0498 (9)0.0847 (11)0.0486 (8)0.0037 (7)0.0043 (7)0.0102 (7)
O20.0443 (9)0.0836 (10)0.0577 (9)0.0018 (7)0.0002 (7)0.0086 (7)
N10.0434 (11)0.0608 (11)0.0482 (10)0.0001 (8)0.0060 (8)0.0034 (7)
C10.0427 (12)0.0513 (11)0.0493 (12)0.0016 (9)0.0034 (9)0.0052 (9)
C20.0397 (11)0.0558 (11)0.0444 (11)0.0003 (9)0.0040 (9)0.0028 (9)
C30.0431 (12)0.0576 (12)0.0524 (12)0.0095 (9)0.0018 (9)0.0015 (9)
C40.0519 (13)0.0567 (12)0.0480 (11)0.0030 (10)0.0056 (9)0.0067 (9)
C50.0394 (12)0.0626 (12)0.0392 (10)0.0029 (9)0.0030 (9)0.0021 (8)
C60.0510 (13)0.0763 (14)0.0546 (12)0.0212 (11)0.0115 (10)0.0124 (11)
C70.0611 (15)0.0691 (14)0.0550 (13)0.0174 (11)0.0104 (10)0.0177 (10)
C80.0409 (12)0.0443 (10)0.0455 (10)0.0046 (8)0.0055 (9)0.0082 (8)
C90.0467 (12)0.0484 (11)0.0527 (12)0.0055 (9)0.0060 (10)0.0132 (9)
C100.0441 (13)0.0581 (13)0.0743 (15)0.0068 (10)0.0167 (11)0.0091 (11)
C110.0722 (17)0.0536 (13)0.0671 (15)0.0053 (11)0.0281 (13)0.0009 (11)
C120.0642 (15)0.0428 (11)0.0530 (12)0.0023 (10)0.0136 (11)0.0065 (9)
C130.098 (2)0.0580 (13)0.0553 (14)0.0023 (12)0.0181 (13)0.0011 (10)
C140.104 (2)0.0611 (14)0.0575 (14)0.0012 (13)0.0080 (15)0.0014 (11)
C150.0748 (17)0.0584 (14)0.0706 (15)0.0020 (11)0.0147 (13)0.0028 (11)
C160.0608 (15)0.0538 (12)0.0568 (13)0.0057 (10)0.0004 (11)0.0038 (10)
C170.0520 (13)0.0366 (10)0.0495 (11)0.0049 (8)0.0053 (9)0.0085 (8)
Geometric parameters (Å, º) top
O1—C51.354 (2)C8—C91.412 (3)
O1—H1O0.886 (10)C8—C171.444 (3)
O2—C91.283 (2)C9—C101.425 (3)
N1—C11.308 (2)C10—C111.334 (3)
N1—C21.408 (2)C10—H100.9300
N1—H1N0.877 (10)C11—C121.411 (3)
C1—C81.386 (2)C11—H110.9300
C1—H10.9300C12—C131.400 (3)
C2—C71.362 (3)C12—C171.401 (3)
C2—C31.371 (2)C13—C141.349 (3)
C3—C41.370 (3)C13—H130.9300
C3—H30.9300C14—C151.376 (3)
C4—C51.368 (3)C14—H140.9300
C4—H40.9300C15—C161.364 (3)
C5—C61.366 (2)C15—H150.9300
C6—C71.371 (3)C16—C171.395 (3)
C6—H620.9300C16—H160.9300
C7—H70.9300
C5—O1—H1O110.6 (13)O2—C9—C8121.87 (17)
C1—N1—C2125.31 (18)O2—C9—C10119.78 (19)
C1—N1—H1N111.7 (15)C8—C9—C10118.35 (19)
C2—N1—H1N122.5 (15)C11—C10—C9120.9 (2)
N1—C1—C8124.56 (19)C11—C10—H10119.5
N1—C1—H1117.7C9—C10—H10119.5
C8—C1—H1117.7C10—C11—C12122.8 (2)
C7—C2—C3119.01 (17)C10—C11—H11118.6
C7—C2—N1121.44 (17)C12—C11—H11118.6
C3—C2—N1119.55 (17)C13—C12—C17119.7 (2)
C4—C3—C2120.11 (18)C13—C12—C11121.5 (2)
C4—C3—H3119.9C17—C12—C11118.81 (19)
C2—C3—H3119.9C14—C13—C12121.5 (2)
C5—C4—C3120.62 (18)C14—C13—H13119.3
C5—C4—H4119.7C12—C13—H13119.3
C3—C4—H4119.7C13—C14—C15119.2 (2)
O1—C5—C6122.77 (18)C13—C14—H14120.4
O1—C5—C4117.95 (17)C15—C14—H14120.4
C6—C5—C4119.28 (17)C16—C15—C14120.8 (2)
C5—C6—C7119.95 (19)C16—C15—H15119.6
C5—C6—H62120.0C14—C15—H15119.6
C7—C6—H62120.0C15—C16—C17121.6 (2)
C2—C7—C6121.01 (18)C15—C16—H16119.2
C2—C7—H7119.5C17—C16—H16119.2
C6—C7—H7119.5C16—C17—C12117.17 (19)
C1—C8—C9119.49 (18)C16—C17—C8123.76 (17)
C1—C8—C17120.53 (18)C12—C17—C8119.06 (19)
C9—C8—C17119.98 (17)
C2—N1—C1—C8174.22 (17)C8—C9—C10—C112.3 (3)
C1—N1—C2—C731.1 (3)C9—C10—C11—C120.5 (3)
C1—N1—C2—C3149.93 (18)C10—C11—C12—C13176.90 (19)
C7—C2—C3—C41.9 (3)C10—C11—C12—C171.9 (3)
N1—C2—C3—C4179.13 (17)C17—C12—C13—C140.1 (3)
C2—C3—C4—C51.0 (3)C11—C12—C13—C14178.9 (2)
C3—C4—C5—O1179.76 (17)C12—C13—C14—C150.3 (3)
C3—C4—C5—C60.2 (3)C13—C14—C15—C160.1 (3)
O1—C5—C6—C7179.99 (19)C14—C15—C16—C170.6 (3)
C4—C5—C6—C70.5 (3)C15—C16—C17—C120.9 (3)
C3—C2—C7—C61.7 (3)C15—C16—C17—C8178.00 (18)
N1—C2—C7—C6179.39 (19)C13—C12—C17—C160.7 (3)
C5—C6—C7—C20.5 (3)C11—C12—C17—C16179.54 (17)
N1—C1—C8—C93.4 (3)C13—C12—C17—C8178.30 (16)
N1—C1—C8—C17176.69 (16)C11—C12—C17—C80.6 (3)
C1—C8—C9—O23.8 (3)C1—C8—C17—C163.3 (3)
C17—C8—C9—O2176.27 (16)C9—C8—C17—C16176.73 (17)
C1—C8—C9—C10176.36 (16)C1—C8—C17—C12177.76 (16)
C17—C8—C9—C103.6 (2)C9—C8—C17—C122.2 (2)
O2—C9—C10—C11177.56 (18)
Hydrogen-bond geometry (Å, º) top
Hydrogen-bond geometry (Å, °) for (I).
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.88 (1)1.81 (2)2.553 (2)141 (2)
O1—H1O···O2i0.89 (1)1.74 (1)2.622 (2)173 (1)
C7—H7···O1ii0.932.603.487 (3)160
Symmetry codes: (i) x3/2, y1/2, z; (ii) x+3/2, y1, z+1/2.
Summary of short interatomic contacts (Å) in (I). top
ContactDistanceSymmetry operation
C4···H132.691 1/2 - x, - y, 1/2 + z
C5···H72.691 - x, 1/2 + y, 1/2 - z
C9···H1O2.638 (16)1/2 + x, y, 1/2 - z
C9···C173.367 (2)1 1/2 - x, - 1/2 + y, z
H15···H162.381 - x, - y, - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I). top
ContactPercentage contribution
H···H46.5
C···H/H···C24.9
O···H/H···O14.9
C···C10.5
C···O/O···C1.0
N···H/H···N1.0
N···O /O···N0.6
C···N/N···C0.6
 

Footnotes

Additional correspondence author: girija.shivakumar@rediffmail.com.

Acknowledgements

CRG is thankful to the Government Science College, Bangalore, and SSMRV Degree College, Bangalore, for providing necessary facilities to carry out the present work. The authors also acknowledge SAIF, IIT, Chennai, for providing the X-ray intensity data.

References

First citationBhai R., D., Girija, C. R., Suresh, S. & Reddy, R. (2015). Acta Cryst. E71, o941–o942.
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationDürr, H. (1989). Angew. Chem. Int. Ed. 28, 413–431.
First citationErsanlı, C. C., Albayrak, Ç., Odabaşoğlu, M. & Erdönmez, A. (2004). Acta Cryst. E60, o389–o391.  Web of Science CSD CrossRef IUCr Journals
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGou, Y., Qi, J., Ajayi, J.-P., Zhang, Y., Zhou, Z., Wu, X., Yang, F. & Liang, H. (2015). Mol. Pharm. 12, 3597–3609.  CAS PubMed
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588.  Web of Science PubMed CAS
First citationMatijević-Sosa, J., Vinković, M. & Vikić-Topić, D. (2006). Croat. Chem. Acta, 79, 489–495.
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef
First citationRichardson, D. R. & Bernhardt, P. V. (1999). J. Biol. Inorg. Chem. 4, 266–273.  Web of Science CSD CrossRef PubMed CAS
First citationSafia, C., Saida, K., Fatiha, B., Lydia, K. & Ali, O. (2015). Private communication (refcode: UGIPEH). CCDC, Cambridge, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationTan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001–1008.  Web of Science CSD CrossRef IUCr Journals
First citationTardiff, B. J., Smith, J. C., Duffy, S. J., Vogels, C. M., Decken, A. & Westcott, S. A. (2007). Can. J. Chem. 85, 392–399.  CAS
First citationÜnver, H., Zengin, D. M. & Güven, K. G. (2000). J. Chem. Crystallogr. 30, 359–364.
First citationWang, Y., Yu, Z., Sun, Y., Wang, Y. & Lu, L. (2011). Spectrochim. Acta Part A, 79, 1475–1482.  CSD CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds