research communications
The crystal structures of two isomers of 5-(phenylisothiazolyl)-1,3,4-oxathiazol-2-one
aTeva Pharmaceuticals, 3333 N Torrey Pines Ct, Suite 400, La Jolla, CA 92130, bDepartment of Chemistry, Crandall University, PO Box 6004, Moncton, New Brunswick, E1C 9L7, Canada, and cThe Atlantic Centre for Green Chemistry and the Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
*Correspondence e-mail: mel.schriver@crandallu.ca
The syntheses and crystal structures of two isomers of phenyl isothiazolyl oxathiazolone, C11H6N2O2S2, are described [systematic names: 5-(3-phenylisothiazol-5-yl)-1,3,4-oxathiazol-2-one, (I), and 5-(3-phenylisothiazol-4-yl)-1,3,4-oxathiazol-2-one, (II)]. There are two almost planar (r.m.s. deviations = 0.032 and 0.063 Å) molecules of isomer (I) in the which form centrosymmetric tetramers linked by strong S⋯N [3.072 (2) Å] and S⋯O contacts [3.089 (1) Å]. The tetramers are π-stacked parallel to the a-axis direction. The single molecule in the of isomer (II) is twisted into a non-planar conformation by steric repulsion [dihedral angles between the central isothiazolyl ring and the pendant oxathiazolone and phenyl rings are 13.27 (6) and 61.18 (7)°, respectively], which disrupts the π-conjugation between the heteroaromatic isothiazoloyl ring and the non-aromatic oxathiazolone heterocycle. In the crystal of isomer (II), the strong S⋯O [3.020 (1) Å] and S⋯C contacts [3.299 (2) Å] and the non-planar structure of the molecule lead to a form of π-stacking not observed in isomer (I) or other oxathiazolone derivatives.
Keywords: crystal structure; isothiazoyl; oxathiazolone; conjugation; nitrile sulfide; π-stacking.
1. Chemical context
Compounds containing the isothiazolyl moiety are well known in organic and pharmacological research, with extensive reviews on the synthesis and chemistry of the ring (Abdel-Sattar & Elgazwy, 2003) and the medicinal and industrial uses of compounds containing the isothiazolyl heterocycle (Kaberdin & Potkin 2002). The solid-state structural features of isothiazole derivatives have been reviewed (Abdel-Sattar & Elgazwy, 2003). In general, the isothiazolyl ring is recognised as a heteroaromatic ring with extensive π-delocalization (incorporating the empty sulfur 3d-orbitals) within the ring leading to almost planar heterocycles.
Derivatives of the oxathiazolone heterocycle have been known since their first preparation fifty years ago (Muhlbauer & Weiss, 1967). The facile synthesis of the heterocycle from commercially available reacting with chlorocarbonyl sulfenyl chloride under a range of conditions has resulted in the publication of significant libraries of substituted oxathiazolone compounds (Senning & Rasmussen, 1973; Howe et al., 1978; Lin et al., 2009; Fordyce et al., 2010; Russo et al., 2015) leading to hundreds of known oxathiazolone derivatives. The predominant chemistry of the heterocycle has been the thermal cycloreversion to the short lived nitrile sulfide [R—C≡N(+)—S(−)] , a propargyl allenyl 1,3-dipole, which can be trapped by electron-deficient π bonds in reasonable yield to give families of new heterocycles (Paton, 1989), including isothiazole derivatives. As a result of the electronic properties of the short-lived nitrile sulfide intermediates, optimal conditions for require trapping reactions with electron-deficient dipolariphiles. Industrially, various derivatives of the oxathiazolone heterocycle have been reported as potential fungicides (Klaus et al., 1965), pesticides (Hölzl, 2004) and as polymer additives (Crosby 1978). More recently, the medicinal properties of the oxathiazolone heterocycle have been explored as selective inhibitors for tuberculosis (Lin et al., 2009), inflammatory diseases (Fan et al., 2014) and as proteasome inhibitors (Russo et al., 2015).
In previous structural studies on oxathiazolone compounds, the non-aromatic heterocyclic rings were found to be planar with largely localized C=N and C=O double bonds. The extent of π-delocalization within the oxathiazolone ring and to the substituent group and the effect on the structure and chemical properties have been discussed spectroscopically (Markgraf et al., 2007) and structurally (Krayushkin et al., 2010a,b). Our interest in this system was prompted by the possibility that catenated systems of isothiazolone heterocycles may have useful electronic properties as the number of π systems is increased.
2. Structural commentary
There are two independent molecules in the (Fig. 1). In general, the two molecules are not significantly different with the exception of the C—S bonds in the oxathiazolone rings. In one of the molecules, the C1—S1 distance [1.762 (2) Å] is longer than the same bond in the second molecule, C12—S3 [1.746 (2) Å]. The difference may arise from the nature of the intermolecular contacts to the sulfur atoms, with a strong pair of co-planar S⋯N contacts [3.086 (2) Å] in the first molecule but only one S⋯N contact [3.072 (2) Å] in the second molecule (which is also twisted out of the plane of the molecule). These differences are due to the position of the independent molecules in the tetramer that will be described below. For the purposes of further structural analysis, we will restrict our discussion to the first molecule in the The of (II) is shown in Fig. 2.
of (I)The bond distances and angles within the terminal phenyl rings in compounds (I) and (II) are not significantly different from the those reported for related compounds (Schriver & Zaworotko, 1995; Krayushkin et al., 2010a,b). The sum of the endocyclic bond angles in the isothiazole moieties for both (I) and (II) (540.0°) is consistent with planar (ideal sum = 540°) π-delocalized five-membered rings, as expected. The bond lengths of the endocyclic bonds in the isothiazolyl moieties in (I) and (II) are not significantly (δ > 3σ) different from the statistical averages from previous structural studies (Bridson et al., 1994, 1995). While the C=N bonds in the isothiazolyl rings of (I) [1.327 (3) Å] and (II) [1.321 (2) Å] and the C=C bonds in (I) [1.361 (3) Å] and (II) [1.374 (2) Å] are mostly longer than the statistical averages for C=N [1.308 ± 0.016 Å] and C=C bonds [1.369 ± 0.002 Å], the differences are not sufficient to warrant an assessment of their cause or their effect on the structure.
The bond distances and angles within the oxathiazolone rings in compounds (I) and (II) are not significantly different (δ ≥ 3σ) from the statistical averages for published crystal structures (Schriver & Zaworotko, 1995; Bridson et al. 1994, 1995; Vorontsova et al., 1996; McMillan et al., 2006; Krayushkin et al., 2010a,b; Nason et al., 2017). The sum of the endocyclic bond angles in the oxathiazolone rings for both (I) and (II) (540.0°) is consistent with planar rings (ideal sum = 540°). The S—N bonds in the oxathiazolone rings of (I) [1.685 (2) Å] and (II) [1.682 (1) Å], the Csub—O bonds in (I) [1.364 (2) Å] and (II) [1.375 (1) Å] and the inter-ring Csp2—Csp2 bonds in (I) [1.449 (3) Å] and (II) [1.451 (2) Å] are all consistently shorter than the statistical averages for S—N [1.696 ± 0.022 Å], Csub—O [1.392 ± 0.030 Å] and C=C bonds [1.461 ± 0.025 Å]. These differences, however, are not sufficient to warrant an assessment of their cause or their effect on the structure.
The three rings in the molecules of (I) are nearly co-planar, with the dihedral angles between central isothiazolyl ring and the pendant oxathiazolone and phenyl rings being 3.06 (11) and 1.10 (12)°, respectively, for the S1 molecule and 2.62 (9) and 6.84 (10)°, respectively, for the S3 molecule. Overall r.m.s. deviations for the S1 and S3 molecules are 0.032 and 0.063 Å, respectively. In contrast to the near planarity of both asymmetric molecules of (I), the single molecule of (II) features significant twists between the central isothiazolyl ring and the pendant oxathiazolone and phenyl rings [dihedral angles of 13.27 (6) and 61.18 (7)°, respectively], which may be ascribed to steric crowding. It has been argued, based on spectroscopic and structural evidence, that π-delocalization extends between the rings of oxathiazolone heterocycles attached to aromatic rings, resulting in observable differences (Schriver & Zaworotko, 1995; Krayushkin et al., 2010a,b; Markgraf et al., 2007). In this work it can be seen that nearly identical molecules result, even when torsion angles are present that would effectively disrupt any π conjugation between the rings, suggesting that the presence or absence of inter-ring π delocalization does not have a significant effect on the structure of the molecules.
3. Supramolecular features
In all previous reports on the solid-state structures of compounds containing the oxathiazolone heterocycle, the intermolecular interactions have been ignored or described as insignificant, with the exception of the recent observation of π-stacking in the styryl derivative (Nason et al., 2017). The strongest intermolecular contacts in (I) are S3⋯N3 [3.086 (2) Å], S1⋯N4 [3.072 (2) Å] and S4⋯O1 [3.089 (1) Å] (Fig. 3). The S3⋯N3 contacts assist in the formation of a co-planar pair of identical molecules within the The other molecules in the are connected via the S1⋯N4 [3.072 (2) Å] and S4⋯O1 [3.089 (1) Å] contacts. Taken together, the contacts between two pairs of identical molecules in the form a centrosymmetric tetramer that in turn form π-stacks parallel to the a axis. The intermolecular contacts between sulfur and nitrogen and oxygen have been observed in another oxathiazolone ring that also resulted in π-stacking of the planar molecules (Nason et al., 2017).
The strongest intermolecular contacts in (II) are S2⋯O2 [3.020 (1) Å], S1⋯C10 [3.299 (2) Å] and C4⋯O2 [3.100 (2) Å] (Fig. 4). The C4⋯O2 contact, while significantly shorter than the sum of van der Waals radii for the atoms, is to some extent, the result of the adjacent stronger S2⋯O2 contact. The geometry of the molecule (II) reduces the opportunity for the formation of π-stacks but it is observed that the centroid of the terminal phenyl ring is 3.632 (2) Å above and parallel to the nearly planar portion of an adjacent molecule formed by the two heterocyclic rings (Fig. 4).
3.1. Database survey
A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016) revealed that eleven crystal structures of oxathiazolone derivatives in peer-reviewed journals have been reported previously (Bridson et al., 1994, 1995; Schriver & Zaworotko, 1995; Vorontsova et al., 1996; McMillan et al., 2006; Krayushkin et al., 2010a,b; Nason et al., 2017), which have been partially reviewed (McMillan et al., 2006 and Krayushkin et al., 2010a,b). An additional five X-ray oxathiazolone crystal structures have been reported in theses (Demas, 1982; Zhu, 1997). There are also two published gas-phase electron-diffraction structures of oxathiazolone derivatives (Bak et al., 1978, 1982). The structures fall into two groups: those that feature a Csp2—Csp3 bond between the heterocycle and the saturated organic substituent and those that feature a Csp2—Csp2 bond between the heterocycle and the unsaturated organic substituent (either a phenyl group, heterocyclic ring or alkenyl moiety).
4. Synthesis and crystallization
Compound (I) was prepared following a local variation of literature methods (Howe et al., 1978). 3-Phenylisothiazole-4-carbonamide (Zhu, 1997) (2.90 g, 14.2 mmol) was placed in 50 ml of toluene under nitrogen and chlorocarbonyl sulfenyl chloride (4.20 g, 32.0 mmol, approximately 2 × molar excess) was added dropwise to the stirred solution. The resulting mixture was heated (363–373 K) under nitrogen for 1.5 h and allowed to evaporate to a solid residue. The evaporate was recrystallized from toluene solution to give colourless needle-shaped crystals (Fig. 5) (3.20 g, 12.2 mmol, 86%). Elemental analysis: calculated % (Found %): 50.35 (50.2); H 2.3 (2.4); N 10.7 (10.7). IR (KBr): 3100 (w), 1812 (w), 1749 (s), 1735 (s), 1598 (s), 1182 (m), 1088 (m), 1014 (w), 959 (s), 884 (ms). 834 (ms), 765 (s), 734 (s), 692 (ms). 1H NMR (400 MHz, CDCl3, δ p.p.m.): 9.28 (5, 1H), 7.61 (m, 2H), 7.46 (m, 3H). 13C NMR (100 MHz, CDCl3, δ p.p.m.): 172.7,167.0, 154.1, 152.1, 134.0, 129.6, 129.0, 128.2, 123.3. MS (EI): C11H6N2O2S2 requires (M+), 262.301, found m/e (%, assign.): 262 (22, M+), 218 (2, M--CO2), 188 (78, M–CONS), 186 (100, C6H5[CCCNS)CN), 160 (1 3, M–COCONS), 135 (26, C6H5CNS), 103 (13, C6H5CN), 77 (29, C6H5). UV–visible spectroscopy (hexane) λxax (log ∊) : 275–230 nm (4.11), 197 nm (4.72).
Compound (II) prepared following a local variation of literature methods (Howe et al., 1978). 3-Phenylisothiazole-5-carbonamide (Zhu, 1997) (4.08 g, 20.0 mmol) was placed in 50 ml of toluene under nitrogen and chlorocarbonyl sulfenyl chloride (6.50 g, 50.0 mmol, approximately 2.5 × molar excess) was added dropwise to the stirred solution. The resulting mixture was heated (363–373 K) under nitrogen for 8.5 h and allowed to evaporate to a solid residue (6.093 g). The evaporate was recrystallized from toluene solution to give colourless block-shaped crystals (Fig. 6) (4.20 g, 20.6 mmol, 83%), Elemental analysis: calculated % (found%) 50.35 (50.0); H 2.3 (2.35); N 10.7 (10.5). IR (KBr): 3097 (w), 3066 (w), 3032 (w), 1813 (ms), 1759 (s), 1738 (s), 1600 (ms), 1590 (ms), 1517 (s), 1496 (s), 1055 (ms), 973 (s), 902 (s), 776 (s), 695 (s) cm−1. 1H NMR (400 MHz, CDCl3, δ p.p.m.): 7.425–7.487 (m, 3H), 7.906–7.937 (m, 2H), 7.976 (5, 1H). 13C NMR (100MHz, CDCl3, δ p.p.m.): 171.5, 167.9, 150.7, 150.5, 133.4, 129.9, 128.9, 126.8, 122.5. MS (EI): C11H6N2O2S2 requires (M+), 262.301, found m/e (%, assign.): 262 (52, M+), 218 (3, M-CO2), 188 (100, M–CONS), 160 (9, M–COCONS), 135 (2, M–HC–CCOCONS). UV–visible spectroscopy (hexane) λxax (log ∊) : 283 nm (4.25), 248 nm (4.36), 203 nm (94.49).
5. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 1Supporting information
https://doi.org/10.1107/S2056989017015067/hb7705sup1.cif
contains datablocks I, II, ms003_0m. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017015067/hb7705Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017015067/hb7705IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017015067/hb7705Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017015067/hb7705IIsup5.cml
For both structures, data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).C11H6N2O2S2 | Z = 4 |
Mr = 262.30 | F(000) = 536 |
Triclinic, P1 | Dx = 1.557 Mg m−3 |
a = 7.2739 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.2713 (11) Å | Cell parameters from 5699 reflections |
c = 14.6909 (15) Å | θ = 2.4–28.6° |
α = 87.562 (1)° | µ = 0.46 mm−1 |
β = 78.341 (1)° | T = 296 K |
γ = 71.624 (1)° | Needle, colourless |
V = 1119.16 (19) Å3 | 0.49 × 0.25 × 0.14 mm |
Bruker APEXII CCD diffractometer | 3485 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.015 |
φ and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −5→8 |
Tmin = 0.804, Tmax = 0.936 | k = −13→13 |
7476 measured reflections | l = −17→17 |
3862 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0697P)2 + 0.2729P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.106 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.33 e Å−3 |
3862 reflections | Δρmin = −0.23 e Å−3 |
308 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.031 (3) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.85294 (8) | 0.03895 (4) | 0.15683 (4) | 0.05223 (17) | |
O1 | 0.8238 (2) | 0.18576 (13) | 0.30252 (9) | 0.0593 (4) | |
N1 | 0.8263 (3) | 0.12000 (15) | 0.05875 (12) | 0.0510 (4) | |
C1 | 0.8229 (3) | 0.17293 (17) | 0.22295 (13) | 0.0446 (4) | |
S2 | 0.77918 (10) | 0.29901 (5) | −0.10629 (4) | 0.05823 (18) | |
O2 | 0.7971 (2) | 0.27252 (11) | 0.16249 (8) | 0.0443 (3) | |
N2 | 0.7537 (3) | 0.44255 (17) | −0.14107 (11) | 0.0541 (4) | |
C2 | 0.8016 (3) | 0.23440 (17) | 0.07498 (12) | 0.0415 (4) | |
S3 | 0.59888 (8) | 0.83750 (5) | 0.55508 (4) | 0.05152 (17) | |
O3 | 0.6679 (3) | 0.59670 (16) | 0.59752 (14) | 0.0797 (5) | |
N3 | 0.4193 (2) | 0.89051 (14) | 0.49359 (11) | 0.0454 (4) | |
C3 | 0.7806 (3) | 0.33109 (18) | 0.00604 (12) | 0.0415 (4) | |
S4 | 0.09624 (8) | 0.94818 (4) | 0.37616 (4) | 0.05119 (17) | |
O4 | 0.4345 (2) | 0.68529 (12) | 0.51338 (9) | 0.0472 (3) | |
N4 | −0.0487 (3) | 0.89146 (15) | 0.33086 (11) | 0.0479 (4) | |
C4 | 0.7628 (3) | 0.45417 (17) | 0.01441 (12) | 0.0419 (4) | |
H4B | 0.7607 | 0.4931 | 0.0693 | 0.050* | |
C5 | 0.7479 (3) | 0.51552 (18) | −0.07130 (12) | 0.0410 (4) | |
C6 | 0.7266 (3) | 0.64887 (18) | −0.08776 (13) | 0.0425 (4) | |
C7 | 0.7228 (3) | 0.72818 (19) | −0.01704 (14) | 0.0503 (5) | |
H7A | 0.7348 | 0.6969 | 0.0418 | 0.060* | |
C8 | 0.7015 (3) | 0.8528 (2) | −0.03326 (18) | 0.0604 (6) | |
H8A | 0.6980 | 0.9050 | 0.0149 | 0.073* | |
C9 | 0.6854 (3) | 0.9007 (2) | −0.12035 (19) | 0.0652 (6) | |
H9A | 0.6719 | 0.9847 | −0.1312 | 0.078* | |
C10 | 0.6895 (4) | 0.8231 (2) | −0.19106 (17) | 0.0658 (6) | |
H10A | 0.6784 | 0.8551 | −0.2498 | 0.079* | |
C11 | 0.7101 (3) | 0.6982 (2) | −0.17573 (15) | 0.0553 (5) | |
H11A | 0.7129 | 0.6467 | −0.2242 | 0.066* | |
C12 | 0.5796 (3) | 0.68671 (19) | 0.56116 (15) | 0.0526 (5) | |
C13 | 0.3557 (3) | 0.80060 (16) | 0.47969 (12) | 0.0396 (4) | |
C14 | 0.2024 (3) | 0.81178 (16) | 0.42756 (12) | 0.0399 (4) | |
C15 | 0.1224 (3) | 0.72317 (17) | 0.40912 (12) | 0.0411 (4) | |
H15A | 0.1576 | 0.6415 | 0.4299 | 0.049* | |
C16 | −0.0219 (3) | 0.77277 (16) | 0.35387 (12) | 0.0400 (4) | |
C17 | −0.1434 (3) | 0.70474 (18) | 0.32326 (12) | 0.0430 (4) | |
C18 | −0.2967 (3) | 0.7675 (2) | 0.27896 (14) | 0.0523 (5) | |
H18A | −0.3229 | 0.8525 | 0.2681 | 0.063* | |
C19 | −0.4109 (3) | 0.7038 (2) | 0.25083 (15) | 0.0595 (6) | |
H19A | −0.5127 | 0.7462 | 0.2207 | 0.071* | |
C20 | −0.3750 (3) | 0.5778 (2) | 0.26715 (16) | 0.0622 (6) | |
H20A | −0.4528 | 0.5355 | 0.2485 | 0.075* | |
C21 | −0.2239 (4) | 0.5153 (2) | 0.31101 (18) | 0.0665 (6) | |
H21A | −0.1988 | 0.4303 | 0.3219 | 0.080* | |
C22 | −0.1083 (3) | 0.5782 (2) | 0.33915 (16) | 0.0551 (5) | |
H22A | −0.0063 | 0.5351 | 0.3690 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0666 (4) | 0.0408 (3) | 0.0557 (3) | −0.0208 (2) | −0.0206 (2) | 0.0026 (2) |
O1 | 0.0852 (11) | 0.0496 (8) | 0.0412 (8) | −0.0173 (7) | −0.0144 (7) | 0.0018 (6) |
N1 | 0.0606 (11) | 0.0476 (9) | 0.0501 (9) | −0.0188 (8) | −0.0199 (8) | −0.0004 (7) |
C1 | 0.0459 (10) | 0.0403 (9) | 0.0471 (11) | −0.0130 (8) | −0.0093 (8) | 0.0029 (8) |
S2 | 0.0818 (4) | 0.0563 (3) | 0.0435 (3) | −0.0271 (3) | −0.0187 (3) | −0.0022 (2) |
O2 | 0.0543 (8) | 0.0386 (7) | 0.0404 (7) | −0.0131 (6) | −0.0127 (6) | 0.0008 (5) |
N2 | 0.0673 (11) | 0.0586 (10) | 0.0407 (9) | −0.0234 (9) | −0.0148 (8) | 0.0033 (7) |
C2 | 0.0387 (9) | 0.0452 (10) | 0.0420 (9) | −0.0133 (8) | −0.0108 (7) | −0.0007 (7) |
S3 | 0.0545 (3) | 0.0546 (3) | 0.0554 (3) | −0.0224 (2) | −0.0255 (2) | 0.0045 (2) |
O3 | 0.0906 (13) | 0.0567 (10) | 0.1022 (14) | −0.0145 (9) | −0.0602 (11) | 0.0188 (9) |
N3 | 0.0500 (9) | 0.0432 (8) | 0.0505 (9) | −0.0191 (7) | −0.0202 (7) | 0.0050 (7) |
C3 | 0.0358 (9) | 0.0496 (10) | 0.0399 (9) | −0.0125 (8) | −0.0105 (7) | 0.0008 (7) |
S4 | 0.0666 (3) | 0.0398 (3) | 0.0594 (3) | −0.0221 (2) | −0.0330 (3) | 0.0094 (2) |
O4 | 0.0534 (8) | 0.0396 (7) | 0.0538 (8) | −0.0150 (6) | −0.0225 (6) | 0.0052 (6) |
N4 | 0.0575 (10) | 0.0443 (9) | 0.0500 (9) | −0.0191 (7) | −0.0244 (7) | 0.0048 (7) |
C4 | 0.0408 (10) | 0.0469 (10) | 0.0387 (9) | −0.0130 (8) | −0.0099 (7) | −0.0016 (7) |
C5 | 0.0322 (9) | 0.0530 (10) | 0.0381 (9) | −0.0136 (7) | −0.0070 (7) | −0.0002 (8) |
C6 | 0.0329 (9) | 0.0512 (10) | 0.0434 (9) | −0.0129 (7) | −0.0084 (7) | 0.0039 (8) |
C7 | 0.0424 (10) | 0.0569 (12) | 0.0515 (11) | −0.0151 (9) | −0.0098 (8) | 0.0013 (9) |
C8 | 0.0518 (12) | 0.0536 (12) | 0.0756 (15) | −0.0155 (10) | −0.0120 (11) | −0.0060 (10) |
C9 | 0.0525 (13) | 0.0535 (12) | 0.0885 (17) | −0.0163 (10) | −0.0142 (11) | 0.0128 (12) |
C10 | 0.0649 (15) | 0.0684 (14) | 0.0657 (14) | −0.0224 (11) | −0.0186 (11) | 0.0252 (12) |
C11 | 0.0554 (12) | 0.0638 (13) | 0.0487 (11) | −0.0201 (10) | −0.0139 (9) | 0.0073 (9) |
C12 | 0.0551 (12) | 0.0499 (11) | 0.0563 (12) | −0.0133 (9) | −0.0248 (9) | 0.0056 (9) |
C13 | 0.0423 (10) | 0.0378 (9) | 0.0394 (9) | −0.0129 (7) | −0.0094 (7) | 0.0012 (7) |
C14 | 0.0419 (10) | 0.0391 (9) | 0.0399 (9) | −0.0125 (7) | −0.0115 (7) | 0.0016 (7) |
C15 | 0.0418 (10) | 0.0377 (9) | 0.0456 (10) | −0.0134 (7) | −0.0119 (8) | 0.0033 (7) |
C16 | 0.0411 (10) | 0.0416 (9) | 0.0380 (9) | −0.0139 (7) | −0.0081 (7) | 0.0002 (7) |
C17 | 0.0419 (10) | 0.0496 (10) | 0.0391 (9) | −0.0179 (8) | −0.0046 (7) | −0.0051 (7) |
C18 | 0.0532 (12) | 0.0622 (12) | 0.0491 (11) | −0.0252 (10) | −0.0164 (9) | 0.0030 (9) |
C19 | 0.0531 (12) | 0.0857 (16) | 0.0502 (11) | −0.0313 (11) | −0.0171 (9) | −0.0032 (11) |
C20 | 0.0600 (14) | 0.0822 (16) | 0.0566 (12) | −0.0385 (12) | −0.0090 (10) | −0.0175 (11) |
C21 | 0.0719 (16) | 0.0575 (13) | 0.0790 (16) | −0.0310 (11) | −0.0153 (12) | −0.0107 (11) |
C22 | 0.0540 (12) | 0.0494 (11) | 0.0671 (13) | −0.0195 (9) | −0.0170 (10) | −0.0051 (9) |
S1—N1 | 1.6845 (17) | C7—C8 | 1.380 (3) |
S1—C1 | 1.7616 (19) | C7—H7A | 0.9300 |
O1—C1 | 1.185 (2) | C8—C9 | 1.380 (3) |
N1—C2 | 1.271 (2) | C8—H8A | 0.9300 |
C1—O2 | 1.391 (2) | C9—C10 | 1.376 (4) |
S2—N2 | 1.6406 (18) | C9—H9A | 0.9300 |
S2—C3 | 1.7071 (18) | C10—C11 | 1.382 (3) |
O2—C2 | 1.364 (2) | C10—H10A | 0.9300 |
N2—C5 | 1.327 (2) | C11—H11A | 0.9300 |
C2—C3 | 1.449 (3) | C13—C14 | 1.447 (3) |
S3—N3 | 1.6790 (16) | C14—C15 | 1.365 (3) |
S3—C12 | 1.746 (2) | C15—C16 | 1.417 (3) |
O3—C12 | 1.187 (3) | C15—H15A | 0.9300 |
N3—C13 | 1.278 (2) | C16—C17 | 1.479 (3) |
C3—C4 | 1.361 (3) | C17—C22 | 1.386 (3) |
S4—N4 | 1.6457 (17) | C17—C18 | 1.387 (3) |
S4—C14 | 1.7084 (18) | C18—C19 | 1.384 (3) |
O4—C13 | 1.361 (2) | C18—H18A | 0.9300 |
O4—C12 | 1.385 (2) | C19—C20 | 1.380 (4) |
N4—C16 | 1.329 (2) | C19—H19A | 0.9300 |
C4—C5 | 1.417 (3) | C20—C21 | 1.371 (4) |
C4—H4B | 0.9300 | C20—H20A | 0.9300 |
C5—C6 | 1.476 (3) | C21—C22 | 1.386 (3) |
C6—C7 | 1.390 (3) | C21—H21A | 0.9300 |
C6—C11 | 1.398 (3) | C22—H22A | 0.9300 |
N1—S1—C1 | 93.13 (8) | C9—C10—H10A | 119.6 |
C2—N1—S1 | 109.43 (14) | C11—C10—H10A | 119.6 |
O1—C1—O2 | 122.21 (17) | C10—C11—C6 | 120.3 (2) |
O1—C1—S1 | 131.23 (16) | C10—C11—H11A | 119.9 |
O2—C1—S1 | 106.56 (13) | C6—C11—H11A | 119.9 |
N2—S2—C3 | 94.78 (9) | O3—C12—O4 | 122.3 (2) |
C2—O2—C1 | 111.28 (14) | O3—C12—S3 | 130.15 (18) |
C5—N2—S2 | 110.54 (13) | O4—C12—S3 | 107.58 (13) |
N1—C2—O2 | 119.58 (17) | N3—C13—O4 | 120.27 (17) |
N1—C2—C3 | 124.86 (17) | N3—C13—C14 | 123.90 (17) |
O2—C2—C3 | 115.55 (16) | O4—C13—C14 | 115.82 (16) |
N3—S3—C12 | 93.31 (9) | C15—C14—C13 | 128.92 (17) |
C13—N3—S3 | 108.63 (13) | C15—C14—S4 | 109.41 (14) |
C4—C3—C2 | 129.89 (17) | C13—C14—S4 | 121.66 (14) |
C4—C3—S2 | 108.82 (14) | C14—C15—C16 | 110.62 (16) |
C2—C3—S2 | 121.28 (14) | C14—C15—H15A | 124.7 |
N4—S4—C14 | 94.50 (9) | C16—C15—H15A | 124.7 |
C13—O4—C12 | 110.20 (15) | N4—C16—C15 | 115.12 (16) |
C16—N4—S4 | 110.35 (13) | N4—C16—C17 | 119.36 (16) |
C3—C4—C5 | 111.36 (16) | C15—C16—C17 | 125.51 (16) |
C3—C4—H4B | 124.3 | C22—C17—C18 | 118.80 (18) |
C5—C4—H4B | 124.3 | C22—C17—C16 | 120.93 (18) |
N2—C5—C4 | 114.50 (17) | C18—C17—C16 | 120.26 (17) |
N2—C5—C6 | 119.40 (16) | C19—C18—C17 | 120.2 (2) |
C4—C5—C6 | 126.10 (16) | C19—C18—H18A | 119.9 |
C7—C6—C11 | 118.40 (19) | C17—C18—H18A | 119.9 |
C7—C6—C5 | 121.30 (17) | C20—C19—C18 | 120.6 (2) |
C11—C6—C5 | 120.29 (18) | C20—C19—H19A | 119.7 |
C8—C7—C6 | 120.7 (2) | C18—C19—H19A | 119.7 |
C8—C7—H7A | 119.7 | C21—C20—C19 | 119.5 (2) |
C6—C7—H7A | 119.7 | C21—C20—H20A | 120.2 |
C7—C8—C9 | 120.5 (2) | C19—C20—H20A | 120.2 |
C7—C8—H8A | 119.7 | C20—C21—C22 | 120.3 (2) |
C9—C8—H8A | 119.7 | C20—C21—H21A | 119.8 |
C10—C9—C8 | 119.4 (2) | C22—C21—H21A | 119.8 |
C10—C9—H9A | 120.3 | C17—C22—C21 | 120.6 (2) |
C8—C9—H9A | 120.3 | C17—C22—H22A | 119.7 |
C9—C10—C11 | 120.7 (2) | C21—C22—H22A | 119.7 |
C11H6N2O2S2 | F(000) = 536 |
Mr = 262.30 | Dx = 1.602 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.7202 (6) Å | Cell parameters from 6714 reflections |
b = 9.9723 (6) Å | θ = 2.7–28.3° |
c = 11.2165 (7) Å | µ = 0.48 mm−1 |
β = 90.399 (1)° | T = 296 K |
V = 1087.22 (12) Å3 | Block, colorless |
Z = 4 | 0.48 × 0.43 × 0.37 mm |
Bruker APEXII CCD diffractometer | 2228 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.017 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 27.0°, θmin = 2.9° |
Tmin = 0.719, Tmax = 0.837 | h = −12→12 |
8041 measured reflections | k = −12→9 |
2362 independent reflections | l = −14→14 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0465P)2 + 0.4061P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.083 | (Δ/σ)max = 0.001 |
S = 1.02 | Δρmax = 0.37 e Å−3 |
2362 reflections | Δρmin = −0.28 e Å−3 |
155 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.018 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S2 | 0.45224 (4) | 0.17168 (4) | 0.50567 (3) | 0.04262 (13) | |
S1 | 0.88687 (4) | 0.63218 (4) | 0.59213 (4) | 0.04650 (14) | |
O1 | 0.65815 (9) | 0.53305 (10) | 0.65111 (8) | 0.0330 (2) | |
C1 | 0.74809 (14) | 0.63165 (15) | 0.69017 (12) | 0.0365 (3) | |
C3 | 0.62185 (13) | 0.35992 (13) | 0.50912 (11) | 0.0288 (3) | |
O2 | 0.72696 (12) | 0.69783 (14) | 0.77664 (11) | 0.0542 (3) | |
C2 | 0.70630 (13) | 0.47087 (13) | 0.55025 (10) | 0.0288 (3) | |
N2 | 0.55493 (14) | 0.18187 (13) | 0.38899 (11) | 0.0427 (3) | |
N1 | 0.82008 (12) | 0.51010 (13) | 0.50596 (10) | 0.0395 (3) | |
C4 | 0.51836 (13) | 0.30589 (14) | 0.57667 (12) | 0.0330 (3) | |
H4 | 0.4894 | 0.3384 | 0.6501 | 0.040* | |
C5 | 0.63936 (13) | 0.28477 (14) | 0.40146 (11) | 0.0325 (3) | |
C6 | 0.74116 (14) | 0.31005 (14) | 0.30578 (11) | 0.0337 (3) | |
C11 | 0.83741 (15) | 0.21201 (15) | 0.27851 (13) | 0.0386 (3) | |
H11A | 0.8384 | 0.1317 | 0.3206 | 0.046* | |
C7 | 0.73957 (18) | 0.42883 (17) | 0.24153 (14) | 0.0472 (4) | |
H7A | 0.6757 | 0.4951 | 0.2595 | 0.057* | |
C10 | 0.93225 (15) | 0.23383 (18) | 0.18830 (14) | 0.0465 (4) | |
H10A | 0.9976 | 0.1687 | 0.1710 | 0.056* | |
C9 | 0.92952 (19) | 0.3518 (2) | 0.12467 (15) | 0.0530 (4) | |
H9A | 0.9927 | 0.3662 | 0.0641 | 0.064* | |
C8 | 0.8330 (2) | 0.4488 (2) | 0.15076 (15) | 0.0560 (4) | |
H8A | 0.8307 | 0.5280 | 0.1070 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S2 | 0.0448 (2) | 0.0372 (2) | 0.0460 (2) | −0.01130 (15) | 0.00795 (16) | −0.00051 (15) |
S1 | 0.0414 (2) | 0.0518 (3) | 0.0465 (2) | −0.01591 (16) | 0.01521 (16) | −0.01786 (17) |
O1 | 0.0314 (4) | 0.0366 (5) | 0.0311 (4) | −0.0004 (4) | 0.0070 (3) | −0.0061 (4) |
C1 | 0.0343 (6) | 0.0385 (7) | 0.0368 (7) | 0.0007 (5) | 0.0045 (5) | −0.0079 (6) |
C3 | 0.0290 (6) | 0.0297 (6) | 0.0277 (6) | 0.0022 (5) | 0.0018 (4) | 0.0015 (5) |
O2 | 0.0487 (6) | 0.0632 (7) | 0.0508 (6) | −0.0034 (5) | 0.0123 (5) | −0.0286 (6) |
C2 | 0.0309 (6) | 0.0307 (6) | 0.0248 (5) | 0.0034 (5) | 0.0032 (4) | −0.0011 (5) |
N2 | 0.0485 (7) | 0.0387 (7) | 0.0409 (6) | −0.0091 (5) | 0.0072 (5) | −0.0070 (5) |
N1 | 0.0380 (6) | 0.0447 (7) | 0.0359 (6) | −0.0089 (5) | 0.0103 (5) | −0.0122 (5) |
C4 | 0.0341 (6) | 0.0325 (6) | 0.0325 (6) | 0.0005 (5) | 0.0038 (5) | 0.0025 (5) |
C5 | 0.0345 (6) | 0.0321 (6) | 0.0310 (6) | 0.0003 (5) | 0.0017 (5) | −0.0014 (5) |
C6 | 0.0359 (7) | 0.0375 (7) | 0.0277 (6) | −0.0039 (5) | 0.0018 (5) | −0.0069 (5) |
C11 | 0.0390 (7) | 0.0394 (7) | 0.0375 (7) | −0.0018 (6) | −0.0013 (5) | −0.0091 (6) |
C7 | 0.0556 (9) | 0.0439 (9) | 0.0422 (8) | 0.0062 (7) | 0.0132 (7) | 0.0012 (7) |
C10 | 0.0381 (7) | 0.0568 (10) | 0.0448 (8) | −0.0001 (7) | 0.0056 (6) | −0.0179 (7) |
C9 | 0.0525 (9) | 0.0679 (11) | 0.0389 (8) | −0.0095 (8) | 0.0164 (7) | −0.0097 (8) |
C8 | 0.0709 (11) | 0.0543 (10) | 0.0432 (8) | −0.0021 (8) | 0.0166 (8) | 0.0065 (7) |
S2—N2 | 1.6546 (13) | C5—C6 | 1.4864 (18) |
S2—C4 | 1.6827 (14) | C6—C7 | 1.386 (2) |
S1—N1 | 1.6820 (12) | C6—C11 | 1.389 (2) |
S1—C1 | 1.7463 (14) | C11—C10 | 1.391 (2) |
O1—C2 | 1.3750 (14) | C11—H11A | 0.9300 |
O1—C1 | 1.3849 (17) | C7—C8 | 1.383 (2) |
C1—O2 | 1.1921 (17) | C7—H7A | 0.9300 |
C3—C4 | 1.3737 (18) | C10—C9 | 1.376 (3) |
C3—C5 | 1.4324 (17) | C10—H10A | 0.9300 |
C3—C2 | 1.4511 (18) | C9—C8 | 1.380 (3) |
C2—N1 | 1.2770 (17) | C9—H9A | 0.9300 |
N2—C5 | 1.3208 (18) | C8—H8A | 0.9300 |
C4—H4 | 0.9300 | ||
N2—S2—C4 | 95.45 (6) | C3—C5—C6 | 127.12 (12) |
N1—S1—C1 | 93.61 (6) | C7—C6—C11 | 119.48 (13) |
C2—O1—C1 | 111.27 (10) | C7—C6—C5 | 121.01 (13) |
O2—C1—O1 | 122.58 (13) | C11—C6—C5 | 119.50 (13) |
O2—C1—S1 | 130.46 (12) | C6—C11—C10 | 120.07 (15) |
O1—C1—S1 | 106.96 (9) | C6—C11—H11A | 120.0 |
C4—C3—C5 | 110.58 (12) | C10—C11—H11A | 120.0 |
C4—C3—C2 | 122.58 (12) | C8—C7—C6 | 120.03 (15) |
C5—C3—C2 | 126.64 (11) | C8—C7—H7A | 120.0 |
N1—C2—O1 | 118.86 (12) | C6—C7—H7A | 120.0 |
N1—C2—C3 | 126.82 (12) | C9—C10—C11 | 120.04 (15) |
O1—C2—C3 | 114.23 (11) | C9—C10—H10A | 120.0 |
C5—N2—S2 | 109.98 (10) | C11—C10—H10A | 120.0 |
C2—N1—S1 | 109.27 (9) | C10—C9—C8 | 119.98 (15) |
C3—C4—S2 | 109.25 (10) | C10—C9—H9A | 120.0 |
C3—C4—H4 | 125.4 | C8—C9—H9A | 120.0 |
S2—C4—H4 | 125.4 | C9—C8—C7 | 120.40 (17) |
N2—C5—C3 | 114.74 (12) | C9—C8—H8A | 119.8 |
N2—C5—C6 | 118.14 (12) | C7—C8—H8A | 119.8 |
Acknowledgements
SZ and MJS thank John Bridson and David Miller of the Chemistry Department of Memorial University for preliminary crystallographic work. MS would like to acknowledge the work of many student co-workers in the course Chemistry 2113 who worked on the oxathiazolone synthesis and characterization project, and the support of Crandall University. MS would like to acknowledge the Stephen and Ella Steeves Research Fund for operating funds. JDM would like to acknowledge the Canadian Foundation for Innovation Leaders Opportunity fund (CFI–LFO) for upgrades to the diffractometer, the Natural Science and Engineering Council of Canada (NSERC) for operating funds and Saint Mary's University for support.
References
Bak, B., Nielsen, O., Svanholt, H., Almenningen, A., Bastiansen, O., Braathen, G., Fernholt, L., Gundersen, G., Nielsen, C. J., Cyvin, B. N. & Cyvin, S. J. (1982). Acta Chem. Scand. 36a, 283–295. CrossRef
Bak, B., Nielsen, O., Svanholt, H., Almenningen, A., Bastiansen, O., Fernholt, L., Gundersen, G., Nielsen, C. J., Cyvin, B. N. & Cyvin, S. J. (1978). Acta Chem. Scand. 32a, 1005–1016. CrossRef
Bridson, J. N., Copp, S. B., Schriver, M. J., Zhu, S. & Zaworotko, M. J. (1994). Can. J. Chem. 72, 1143–1153. CSD CrossRef CAS Web of Science
Bridson, J. N., Schriver, M. J. & Zhu, S. (1995). Can. J. Chem. 73, 212–222. CSD CrossRef CAS Web of Science
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Crosby, J. (1978). US Patent No. 4067862. Washington, DC: US Patent and Trademark Office.
Demas, A. (1982). PhD thesis, University Edinburgh, Edinburgh.
Elgazwy, A. S. H. (2003). Tetrahedron, 59, 7445–7463.
Fan, H., Angelo, N. G., Warren, J. D., Nathan, C. F. & Lin, G. (2014). ACS Med. Chem. Lett. 5, 405–410. CrossRef CAS PubMed
Fordyce, E. A., Morrison, A. J., Sharp, R. D. & Paton, R. M. (2010). Tetrahedron, 66, 7192–7197. CrossRef CAS
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Hölzl, W. & Schnyder, M. (2004). US Patent No. 6689372. Washington, DC: US Patent and Trademark Office.
Howe, R. K., Gruner, T. A., Carter, L. G., Black, L. L. & Franz, J. E. (1978). J. Org. Chem. 43, 3736–3742. CrossRef CAS
Kaberdin, R. V. & Potkin, V. I. (2002). Russ. Chem. Rev. 71, 673–694. CrossRef CAS
Klaus, S., Ludwig, E. & Richard, W. (1965). US Patent No. 3182068. Washington, DC: US Patent and Trademark Office.
Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010a). Chem. Heterocycl. C. 46, 484–489. CrossRef CAS
Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010b). Khim. Geterotsikl. Soedin. 2010, 610–617.
Lin, G., Li, D., de Carvalho, L. P. S., Deng, H., Tao, H., Vogt, G., Wu, K., Schneider, J., Chidawanyika, T., Warren, J. D., Li, H. & Nathan, C. (2009). Nature, 461, 621–626. Web of Science CrossRef PubMed CAS
Markgraf, J. H., Hong, L., Richardson, D. P. & Schofield, M. H. (2007). Magn. Reson. Chem. 45, 985–988. Web of Science CrossRef PubMed CAS
McMillan, K. G., Tackett, M. N., Dawson, A., Fordyce, E. & Paton, R. M. (2006). Carbohydr. Res. 341, 41–48. Web of Science CSD CrossRef PubMed CAS
Muhlbauer, E. & Weiss, W. (1967). UK Patent 1079348.
Nason, T. R., Schriver, M. J., Hendsbee, A. D. & Masuda, J. D. (2017). Acta Cryst. E73, 1298–1301. CSD CrossRef IUCr Journals
Paton, R. M. (1989). Chem. Soc. Rev. 18, 33–52. CrossRef CAS Web of Science
Russo, F., Gising, J., Åkerbladh, L., Roos, A. K., Naworyta, A., Mowbray, S. L., Sokolowski, A., Henderson, I., Alling, T., Bailey, M. A., Files, M., Parish, T., Karlen, A. & Larhed, M. (2015). Chemistry Open, 4, 342–362. CAS PubMed
Schriver, M. J. & Zaworotko, M. J. (1995). J. Chem. Crystallogr. 25, 25–28. CSD CrossRef CAS Web of Science
Senning, A., Rasmussen, J. S., Olsen, J. H., Pajunen, P., Koskikallio, J. & Swahn, C. (1973). Acta Chem. Scand. 27, 2161–2170. CrossRef CAS
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Vorontsova, L. G., Kurella, M. G., Kalik, M. A. & Krayushkin, M. M. (1996). Crystallogr. Rep. 41, 362–364.
Zhu, S. (1997). PhD thesis, Memorial University of Newfoundland, St. John's, Canada.
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.