research communications
A new approach to alkaloid-like systems: synthesis and g]pyrrolo[2,1-a]isoquinolin-1-yl)propan-2-one
of 1-(2-acetyl-11-methoxy-5,6-dihydro[1,3]dioxolo[4,5-aDepartment of Pharmaceutical Chemistry, Faculty of Chemistry, VNU University of Science, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam, bOrganic Chemistry Department, Peoples' Friendship University of Russia, (RUDN University), Miklukho-Maklay St., 6, Moscow 117198, Russian Federation, and cInorganic Chemistry Department, Peoples' Friendship University of Russia, (RUDN University), Miklukho-Maklay St., 6, Moscow 117198, Russian Federation
*Correspondence e-mail: huschemical.lab@gmail.com
The title compound, C19H19NO5, (I), is the product of a domino reaction between cotarnine chloride and acetylacetylene catalysed by copper(I) iodide. The molecule of (I) comprises a fused tetracyclic system containing two terminal five-membered rings (pyrrole and 1,3-dioxole) and two central six-membered rings (dihydropyridine and benzene). The five-membered 1,3-dioxole ring has an and the central six-membered dihydropyridine ring adopts a twist-boat conformation. The acyl substituent is almost coplanar with the pyrrole ring, whereas the methoxy substituent is twisted by 27.93 (16)° relative to the benzene ring. The 2-oxopropan-1-yl substituent is roughly perpendicular to the pyrrole ring. In the crystal, molecules are stacked along the a-axis direction; the stacks are linked by weak C—H⋯O hydrogen bonds into puckered layers lying parallel to (001).
Keywords: alkaloids; lamellarin; cotarnine; dihydropyrrolo[2,1-a]isoquinolines; domino reaction; crystal structure.
CCDC reference: 1580424
1. Chemical context
The 5,6-dihydropyrrolo[2,1-a]isoquinoline fragment is included in several natural products, for example in lamellarin I and K which possess a variety of biological properties, in particular, antitumor activity (Komatsubara et al., 2014; Imperatore et al., 2014).
The dihydropyrrolo[2,1-a]isoquinoline skeleton can be constructed in two different ways. The first way is annelation of a pyrrole ring to an isoquiniline fragment (Ma et al., 2014; Fujiya et al., 2016; Nekkanti et al., 2016). The second one, in contrast, is annelation of an isoquiniline fragment to pyrrole derivatives (Sun et al., 2012; Wiest et al., 2016). Previously, we developed synthetic approaches to substituted pyrrolo[2,1-a]isoquinolines via the interaction of 1-aroyl-3,4-dihydroisoquinilines or 1-ethynyl-1,2,3,4-tetrahydroisoquinolines with activated (Voskressensky, Titov et al., 2016; Voskressensky et al., 2017).
It is of fundamental importance for the preparation of 2,3-bifunctional substituted pyrrolo[2,1-a]isoquinolines to study the interaction of iminium salts with activated In this work, we modified the approach to the synthesis of alkaloid-like compounds by the reaction of cotarnine chloride with activated in the presence of copper halogenides as a catalyst. The synthetic method proposed is new and original. This process includes the formation of the pyrrole ring and its functionalization, which is necessary for the chemical diversity of pyrroloisoquinoline systems.
The title compound (I) is a product of a new domino reaction between cotarnine chloride and acetylacetylene catalysed by copper(I) iodide. The reaction sequence starts with nucleophilic addition of copper(I) acetylide to cotarnine chloride followed by [2,3]-cycloaddition and aromatization of the pyrrole ring (Voskressensky, Borisova et al., 2016). The main speciality of the reaction is the conversion of the acetylethynyl fragment to acetylmethyl when the pyrrole ring is formed in an aprotic solvent. The structure of the product (I) was unambiguously established by an X-ray diffraction study.
2. Structural commentary
The molecule of (I), representing a new alkaloid-like skeleton, comprises a fused tetracyclic system containing two terminal five-membered rings (pyrrole and 1,3-dioxole) and two central six-membered rings (dihydropyridine and benzene) (Fig. 1). The five-membered 1,3-dioxole ring has its usual shallow with the methylene group as the flap, and the central six-membered dihydropyridine ring adopts a twist-boat conformation. The dihedral angle between the pyrrole and benzene rings is 29.69 (3)°. The nitrogen N4 atom is essentially planar (sum of bond angles = 359.73°). The acyl substituent is almost coplanar with the pyrrole ring (r.m.s. deviation for non-hydrogen atoms = 0.012 Å), whereas the methoxy substituent is twisted by 27.93 (16)° relative to the benzene ring. The propan-2-one-1-yl substituent is roughly perpendicular to the pyrrole ring, the dihedral angle being 76.81 (5)°, because of steric reasons.
3. Supramolecular features
The crystal packing of molecules of (I) involves stacking along the a-axis direction (Fig. 2), with molecules linked by weak C—H⋯O hydrogen bonds into puckered layers lying parallel to (001) (Table 1, Fig. 2).
4. Synthesis and crystallization
Acetylacetylene (0.27 g, 3.9 mmol) was added to a stirred suspension of cotarnine chloride (0.10 g, 0.39 mmol) and CuI (0.011 g, 0.059 mmol) in CH2Cl2 (10 ml) under Ar at 256 K (Fig. 3). After stirring at 256 K for 1 h, triethylamine (0.059 g, 0.59 mmol) was added to the mixture under Ar at 256 K. The reaction mixture was stirred at 256 K for 30 min, and brought to room temperature and stirred for three days. The reaction progress was monitored by TLC (eluent EtOH). After the completion, the solvent was removed in vacuum, and the residue separated by on silica gel (EtOAc–hexane, 1:1). After removing the solvent, the residue was recrystallized from an EtOAc–hexane solvent mixture to give 37 mg (28% yield) of yellow–orange crystals of the title compound, m.p. = 448–450 K (EtOAc–hexane).
1H NMR (CDCl3, 600 MHz): δ = 2.29 (3H, s, COCH3); 2.38 (3H, s, COCH3); 2.85–2.87 (2H, m, 6-CH2); 3.80 (3H, s, 11-OCH3); 3.94–3.96 (2H, m, 5-CH2); 4.00 (2H, s, CH2COCH3); 5.96 (2H, s, 9-CH2); 6.49 (1H, s, H-7); 7.37 (1H, s, H-3); 13C NMR (CDCl3, 150 MHz): δ = 27.4, 29.5, 31.5, 42.4, 44.9, 59.9, 101.0, 103.3, 115.4, 115.8, 123.0, 126.5, 127.5, 129.5, 136.5, 139.9, 147.8, 193.1, 207.4; m/z: 341 [M]+ (67), 299 (33), 298 (100), 284 (18), 283 (72), 282 (54), 268 (5), 256 (31), 255 (28), 254 (21), 241 (15), 240 (47), 212 (6), 182 (5), 168 (7), 167 (7), 154 (12), 127 (7), 43 (16). Analysis calculated for C19H19NO5 (%): C 66.85, H 5.61, N 4.10; found (%): C 66.92, H 5.55, N 4.15.
5. Refinement
Crystal data, data collection and structure . Hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99 Å and refined using the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the CH3-groups and 1.2Ueq(C) for the other groups].
details are summarized in Table 2Supporting information
CCDC reference: 1580424
https://doi.org/10.1107/S2056989017015110/hb7707sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017015110/hb7707Isup2.hkl
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C19H19NO5 | F(000) = 720 |
Mr = 341.35 | Dx = 1.429 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2782 (4) Å | Cell parameters from 5328 reflections |
b = 14.0016 (7) Å | θ = 2.6–31.9° |
c = 15.7852 (8) Å | µ = 0.10 mm−1 |
β = 99.546 (1)° | T = 120 K |
V = 1586.34 (14) Å3 | Prism, orange |
Z = 4 | 0.20 × 0.15 × 0.15 mm |
Bruker APEXII CCD diffractometer | 4535 reflections with I > 2σ(I) |
Radiation source: fine-focus seales tube | Rint = 0.042 |
φ and ω scans | θmax = 32.6°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −11→10 |
Tmin = 0.970, Tmax = 0.980 | k = −20→21 |
24316 measured reflections | l = −23→23 |
5762 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.068P)2 + 0.4867P] where P = (Fo2 + 2Fc2)/3 |
5762 reflections | (Δ/σ)max < 0.001 |
229 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.20836 (15) | 0.37136 (8) | 0.45572 (7) | 0.01256 (19) | |
C2 | 0.24234 (15) | 0.46920 (8) | 0.48054 (7) | 0.0138 (2) | |
C3 | 0.28874 (16) | 0.47143 (8) | 0.56943 (7) | 0.0147 (2) | |
H3 | 0.3177 | 0.5269 | 0.6036 | 0.018* | |
N4 | 0.28561 (14) | 0.38096 (7) | 0.59883 (6) | 0.01391 (18) | |
C5 | 0.30680 (18) | 0.35126 (8) | 0.68855 (7) | 0.0174 (2) | |
H5A | 0.2856 | 0.4062 | 0.7252 | 0.021* | |
H5B | 0.4344 | 0.3268 | 0.7081 | 0.021* | |
C6 | 0.16472 (17) | 0.27329 (8) | 0.69533 (7) | 0.0165 (2) | |
H6A | 0.1820 | 0.2487 | 0.7549 | 0.020* | |
H6B | 0.0373 | 0.2999 | 0.6812 | 0.020* | |
C6A | 0.18777 (15) | 0.19242 (8) | 0.63407 (7) | 0.01320 (19) | |
C7 | 0.17044 (16) | 0.09736 (8) | 0.65958 (7) | 0.0150 (2) | |
H7 | 0.1389 | 0.0818 | 0.7140 | 0.018* | |
C7A | 0.20129 (16) | 0.02752 (8) | 0.60209 (7) | 0.0147 (2) | |
O8 | 0.19904 (13) | −0.06993 (6) | 0.61417 (6) | 0.01939 (18) | |
C9 | 0.22878 (17) | −0.11078 (8) | 0.53375 (8) | 0.0169 (2) | |
H9A | 0.3207 | −0.1634 | 0.5441 | 0.020* | |
H9B | 0.1105 | −0.1367 | 0.5020 | 0.020* | |
O10 | 0.29712 (13) | −0.03606 (6) | 0.48500 (6) | 0.01822 (18) | |
C10A | 0.25597 (15) | 0.04791 (8) | 0.52391 (7) | 0.0137 (2) | |
C11 | 0.27333 (15) | 0.14145 (8) | 0.49713 (7) | 0.01233 (19) | |
C11A | 0.23175 (15) | 0.21532 (8) | 0.55265 (7) | 0.01190 (19) | |
C11B | 0.24022 (15) | 0.31718 (8) | 0.53044 (7) | 0.01223 (19) | |
C12 | 0.13624 (15) | 0.34137 (8) | 0.36538 (7) | 0.0141 (2) | |
H12A | 0.0251 | 0.3802 | 0.3431 | 0.017* | |
H12B | 0.0963 | 0.2738 | 0.3656 | 0.017* | |
C13 | 0.27738 (16) | 0.35160 (8) | 0.30483 (7) | 0.0145 (2) | |
O13 | 0.44297 (12) | 0.36125 (7) | 0.33022 (6) | 0.02009 (19) | |
C14 | 0.19984 (19) | 0.34580 (11) | 0.21036 (8) | 0.0235 (3) | |
H14A | 0.2926 | 0.3697 | 0.1771 | 0.035* | |
H14B | 0.0867 | 0.3848 | 0.1979 | 0.035* | |
H14C | 0.1698 | 0.2792 | 0.1946 | 0.035* | |
C15 | 0.23042 (17) | 0.55343 (8) | 0.42517 (8) | 0.0165 (2) | |
O15 | 0.19111 (15) | 0.54807 (7) | 0.34639 (6) | 0.0253 (2) | |
C16 | 0.26736 (18) | 0.64920 (8) | 0.46885 (8) | 0.0196 (2) | |
H16A | 0.2745 | 0.6986 | 0.4255 | 0.029* | |
H16B | 0.3855 | 0.6467 | 0.5089 | 0.029* | |
H16C | 0.1660 | 0.6644 | 0.5005 | 0.029* | |
O17 | 0.33691 (12) | 0.16770 (6) | 0.42396 (5) | 0.01608 (17) | |
C17 | 0.31065 (19) | 0.10236 (9) | 0.35248 (8) | 0.0206 (2) | |
H17A | 0.3391 | 0.1348 | 0.3012 | 0.031* | |
H17B | 0.1811 | 0.0803 | 0.3418 | 0.031* | |
H17C | 0.3939 | 0.0474 | 0.3658 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0131 (4) | 0.0129 (4) | 0.0122 (4) | −0.0003 (4) | 0.0034 (4) | −0.0007 (4) |
C2 | 0.0154 (5) | 0.0121 (5) | 0.0143 (5) | 0.0005 (4) | 0.0036 (4) | 0.0009 (4) |
C3 | 0.0185 (5) | 0.0114 (4) | 0.0146 (5) | −0.0013 (4) | 0.0035 (4) | −0.0010 (4) |
N4 | 0.0184 (4) | 0.0119 (4) | 0.0113 (4) | −0.0009 (3) | 0.0020 (3) | −0.0008 (3) |
C5 | 0.0259 (6) | 0.0148 (5) | 0.0108 (4) | −0.0005 (4) | 0.0007 (4) | −0.0013 (4) |
C6 | 0.0242 (6) | 0.0138 (5) | 0.0126 (5) | 0.0014 (4) | 0.0064 (4) | −0.0008 (4) |
C6A | 0.0148 (5) | 0.0129 (4) | 0.0124 (4) | 0.0006 (4) | 0.0034 (4) | −0.0003 (4) |
C7 | 0.0188 (5) | 0.0133 (5) | 0.0135 (5) | 0.0010 (4) | 0.0046 (4) | 0.0016 (4) |
C7A | 0.0156 (5) | 0.0117 (4) | 0.0167 (5) | 0.0002 (4) | 0.0027 (4) | 0.0013 (4) |
O8 | 0.0291 (5) | 0.0110 (4) | 0.0192 (4) | 0.0002 (3) | 0.0077 (3) | 0.0005 (3) |
C9 | 0.0178 (5) | 0.0121 (5) | 0.0210 (5) | −0.0008 (4) | 0.0039 (4) | −0.0017 (4) |
O10 | 0.0249 (4) | 0.0111 (4) | 0.0204 (4) | −0.0003 (3) | 0.0088 (3) | −0.0032 (3) |
C10A | 0.0146 (5) | 0.0117 (4) | 0.0152 (5) | −0.0001 (4) | 0.0038 (4) | −0.0024 (4) |
C11 | 0.0125 (4) | 0.0135 (5) | 0.0117 (4) | −0.0007 (4) | 0.0040 (3) | −0.0010 (4) |
C11A | 0.0128 (4) | 0.0115 (4) | 0.0115 (4) | −0.0005 (3) | 0.0020 (3) | −0.0009 (3) |
C11B | 0.0129 (4) | 0.0122 (4) | 0.0119 (4) | −0.0007 (3) | 0.0031 (4) | −0.0012 (3) |
C12 | 0.0140 (5) | 0.0155 (5) | 0.0124 (4) | −0.0014 (4) | 0.0015 (4) | −0.0002 (4) |
C13 | 0.0189 (5) | 0.0121 (4) | 0.0128 (4) | −0.0014 (4) | 0.0040 (4) | −0.0004 (4) |
O13 | 0.0177 (4) | 0.0258 (5) | 0.0173 (4) | −0.0038 (3) | 0.0045 (3) | −0.0033 (3) |
C14 | 0.0257 (6) | 0.0330 (7) | 0.0120 (5) | −0.0056 (5) | 0.0035 (4) | −0.0004 (5) |
C15 | 0.0181 (5) | 0.0145 (5) | 0.0174 (5) | 0.0015 (4) | 0.0046 (4) | 0.0021 (4) |
O15 | 0.0392 (6) | 0.0209 (4) | 0.0156 (4) | 0.0024 (4) | 0.0038 (4) | 0.0038 (3) |
C16 | 0.0235 (6) | 0.0131 (5) | 0.0224 (6) | 0.0001 (4) | 0.0041 (5) | 0.0021 (4) |
O17 | 0.0217 (4) | 0.0151 (4) | 0.0132 (4) | −0.0011 (3) | 0.0081 (3) | −0.0022 (3) |
C17 | 0.0281 (6) | 0.0210 (6) | 0.0138 (5) | 0.0002 (5) | 0.0061 (4) | −0.0049 (4) |
C1—C11B | 1.3890 (15) | C9—H9B | 0.9900 |
C1—C2 | 1.4350 (15) | O10—C10A | 1.3820 (13) |
C1—C12 | 1.4957 (15) | C10A—C11 | 1.3884 (15) |
C2—C3 | 1.3880 (16) | C11—O17 | 1.3640 (13) |
C2—C15 | 1.4620 (16) | C11—C11A | 1.4204 (15) |
C3—N4 | 1.3505 (14) | C11A—C11B | 1.4723 (15) |
C3—H3 | 0.9500 | C12—C13 | 1.5215 (16) |
N4—C11B | 1.3977 (14) | C12—H12A | 0.9900 |
N4—C5 | 1.4595 (14) | C12—H12B | 0.9900 |
C5—C6 | 1.5197 (17) | C13—O13 | 1.2129 (14) |
C5—H5A | 0.9900 | C13—C14 | 1.5066 (16) |
C5—H5B | 0.9900 | C14—H14A | 0.9800 |
C6—C6A | 1.5162 (15) | C14—H14B | 0.9800 |
C6—H6A | 0.9900 | C14—H14C | 0.9800 |
C6—H6B | 0.9900 | C15—O15 | 1.2312 (15) |
C6A—C7 | 1.4022 (16) | C15—C16 | 1.5114 (17) |
C6A—C11A | 1.4119 (15) | C16—H16A | 0.9800 |
C7—C7A | 1.3777 (16) | C16—H16B | 0.9800 |
C7—H7 | 0.9500 | C16—H16C | 0.9800 |
C7A—O8 | 1.3783 (14) | O17—C17 | 1.4406 (14) |
C7A—C10A | 1.3877 (16) | C17—H17A | 0.9800 |
O8—C9 | 1.4411 (14) | C17—H17B | 0.9800 |
C9—O10 | 1.4355 (15) | C17—H17C | 0.9800 |
C9—H9A | 0.9900 | ||
C11B—C1—C2 | 107.01 (9) | O10—C10A—C11 | 129.04 (10) |
C11B—C1—C12 | 129.72 (10) | C7A—C10A—C11 | 121.25 (10) |
C2—C1—C12 | 123.07 (10) | O17—C11—C10A | 124.94 (10) |
C3—C2—C1 | 107.43 (10) | O17—C11—C11A | 117.59 (9) |
C3—C2—C15 | 124.52 (10) | C10A—C11—C11A | 117.37 (10) |
C1—C2—C15 | 128.05 (10) | C6A—C11A—C11 | 119.99 (10) |
N4—C3—C2 | 108.12 (10) | C6A—C11A—C11B | 117.49 (9) |
N4—C3—H3 | 125.9 | C11—C11A—C11B | 122.47 (10) |
C2—C3—H3 | 125.9 | C1—C11B—N4 | 106.96 (9) |
C3—N4—C11B | 110.44 (9) | C1—C11B—C11A | 136.34 (10) |
C3—N4—C5 | 126.55 (9) | N4—C11B—C11A | 116.67 (9) |
C11B—N4—C5 | 122.74 (9) | C1—C12—C13 | 113.94 (9) |
N4—C5—C6 | 108.02 (9) | C1—C12—H12A | 108.8 |
N4—C5—H5A | 110.1 | C13—C12—H12A | 108.8 |
C6—C5—H5A | 110.1 | C1—C12—H12B | 108.8 |
N4—C5—H5B | 110.1 | C13—C12—H12B | 108.8 |
C6—C5—H5B | 110.1 | H12A—C12—H12B | 107.7 |
H5A—C5—H5B | 108.4 | O13—C13—C14 | 121.44 (11) |
C6A—C6—C5 | 110.06 (9) | O13—C13—C12 | 122.70 (10) |
C6A—C6—H6A | 109.6 | C14—C13—C12 | 115.83 (10) |
C5—C6—H6A | 109.6 | C13—C14—H14A | 109.5 |
C6A—C6—H6B | 109.6 | C13—C14—H14B | 109.5 |
C5—C6—H6B | 109.6 | H14A—C14—H14B | 109.5 |
H6A—C6—H6B | 108.2 | C13—C14—H14C | 109.5 |
C7—C6A—C11A | 121.45 (10) | H14A—C14—H14C | 109.5 |
C7—C6A—C6 | 120.06 (10) | H14B—C14—H14C | 109.5 |
C11A—C6A—C6 | 118.46 (10) | O15—C15—C2 | 122.38 (11) |
C7A—C7—C6A | 116.89 (10) | O15—C15—C16 | 120.58 (11) |
C7A—C7—H7 | 121.6 | C2—C15—C16 | 117.03 (10) |
C6A—C7—H7 | 121.6 | C15—C16—H16A | 109.5 |
C7—C7A—O8 | 127.20 (10) | C15—C16—H16B | 109.5 |
C7—C7A—C10A | 122.82 (10) | H16A—C16—H16B | 109.5 |
O8—C7A—C10A | 109.78 (10) | C15—C16—H16C | 109.5 |
C7A—O8—C9 | 105.31 (9) | H16A—C16—H16C | 109.5 |
O10—C9—O8 | 107.40 (9) | H16B—C16—H16C | 109.5 |
O10—C9—H9A | 110.2 | C11—O17—C17 | 118.20 (9) |
O8—C9—H9A | 110.2 | O17—C17—H17A | 109.5 |
O10—C9—H9B | 110.2 | O17—C17—H17B | 109.5 |
O8—C9—H9B | 110.2 | H17A—C17—H17B | 109.5 |
H9A—C9—H9B | 108.5 | O17—C17—H17C | 109.5 |
C10A—O10—C9 | 105.18 (9) | H17A—C17—H17C | 109.5 |
O10—C10A—C7A | 109.60 (10) | H17B—C17—H17C | 109.5 |
C11B—C1—C2—C3 | −1.55 (13) | C7—C6A—C11A—C11 | −4.76 (17) |
C12—C1—C2—C3 | 173.73 (10) | C6—C6A—C11A—C11 | 173.48 (10) |
C11B—C1—C2—C15 | 179.00 (11) | C7—C6A—C11A—C11B | 177.82 (10) |
C12—C1—C2—C15 | −5.72 (18) | C6—C6A—C11A—C11B | −3.93 (15) |
C1—C2—C3—N4 | 0.40 (13) | O17—C11—C11A—C6A | −172.16 (10) |
C15—C2—C3—N4 | 179.88 (11) | C10A—C11—C11A—C6A | 4.35 (16) |
C2—C3—N4—C11B | 0.91 (13) | O17—C11—C11A—C11B | 5.12 (16) |
C2—C3—N4—C5 | −173.22 (11) | C10A—C11—C11A—C11B | −178.37 (10) |
C3—N4—C5—C6 | 137.61 (11) | C2—C1—C11B—N4 | 2.06 (12) |
C11B—N4—C5—C6 | −35.84 (14) | C12—C1—C11B—N4 | −172.80 (11) |
N4—C5—C6—C6A | 55.40 (12) | C2—C1—C11B—C11A | 179.75 (12) |
C5—C6—C6A—C7 | 140.24 (11) | C12—C1—C11B—C11A | 4.9 (2) |
C5—C6—C6A—C11A | −38.03 (14) | C3—N4—C11B—C1 | −1.89 (13) |
C11A—C6A—C7—C7A | 1.02 (17) | C5—N4—C11B—C1 | 172.50 (10) |
C6—C6A—C7—C7A | −177.19 (10) | C3—N4—C11B—C11A | 179.90 (10) |
C6A—C7—C7A—O8 | 177.40 (11) | C5—N4—C11B—C11A | −5.71 (16) |
C6A—C7—C7A—C10A | 3.08 (17) | C6A—C11A—C11B—C1 | −150.28 (13) |
C7—C7A—O8—C9 | 176.86 (12) | C11—C11A—C11B—C1 | 32.37 (19) |
C10A—C7A—O8—C9 | −8.22 (13) | C6A—C11A—C11B—N4 | 27.24 (15) |
C7A—O8—C9—O10 | 15.32 (12) | C11—C11A—C11B—N4 | −150.10 (10) |
O8—C9—O10—C10A | −16.59 (12) | C11B—C1—C12—C13 | −114.40 (13) |
C9—O10—C10A—C7A | 11.69 (12) | C2—C1—C12—C13 | 71.46 (14) |
C9—O10—C10A—C11 | −172.25 (11) | C1—C12—C13—O13 | 16.37 (16) |
C7—C7A—C10A—O10 | 172.97 (11) | C1—C12—C13—C14 | −165.56 (10) |
O8—C7A—C10A—O10 | −2.22 (13) | C3—C2—C15—O15 | 179.01 (12) |
C7—C7A—C10A—C11 | −3.45 (18) | C1—C2—C15—O15 | −1.6 (2) |
O8—C7A—C10A—C11 | −178.64 (10) | C3—C2—C15—C16 | −1.43 (17) |
O10—C10A—C11—O17 | 0.16 (19) | C1—C2—C15—C16 | 177.94 (11) |
C7A—C10A—C11—O17 | 175.81 (11) | C10A—C11—O17—C17 | 27.93 (16) |
O10—C10A—C11—C11A | −176.06 (11) | C11A—C11—O17—C17 | −155.86 (10) |
C7A—C10A—C11—C11A | −0.40 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O13i | 0.95 | 2.44 | 3.2840 (14) | 147 |
C9—H9A···O17ii | 0.99 | 2.46 | 3.2207 (15) | 133 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1. |
Funding information
The publication was prepared with the support of the RUDN University Program `5–100' and by the Russian Foundation for Basic Research (project No. 17-53-540001-Viet-a. This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant No. 104.01–2015.27.
References
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker. (2005). APEX2. Bruker Molecular Analysis Research Tool, Bruker AXS Inc., Madison, Wisconsin, USA.
Fujiya, A., Tanaka, M., Yamaguchi, E., Tada, N. & Itoh, A. (2016). J. Org. Chem. 81, 7262–7270. CrossRef CAS PubMed
Imperatore, C., Aiello, A., D'Aniello, F., Senese, M. & Menna, M. (2014). Molecules, 19, 20391–20423. CrossRef PubMed
Komatsubara, M., Umeki, T., Fukuda, T. & Iwao, M. (2014). J. Org. Chem. 79, 529–537. CrossRef CAS PubMed
Ma, J., Yuan, X., Küçüköz, B., Li, S., Zhang, C., Majumdar, P., Karatay, A., Li, X., Yaglioglu, H. G., Elmali, A., Zhao, J. & Hayvali, M. (2014). J. Mater. Chem. C. 2, 3900–3913. CrossRef CAS
Nekkanti, S., Kumar, N. P., Sharma, P., Kamal, A., Nachtigall, F. M., Forero-Doria, O., Santos, L. S. & Shankaraiah, N. (2016). RSC Adv. 6, 2671–2677. CrossRef CAS
Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Sun, L.-L., Liao, Z.-Y., Tang, R.-Y., Deng, C.-L. & Zhang, X.-G. (2012). J. Org. Chem. 77, 2850–2856. CSD CrossRef CAS PubMed
Voskressensky, L. G., Borisova, T. N., Matveeva, M. D., Khrustalev, V. N., Aksenov, A. V., Titov, A. A., Vartanova, A. E. & Varlamov, A. V. (2016). RSC Adv. 6, 74068–74071. CSD CrossRef CAS
Voskressensky, L. G., Borisova, T. N., Matveeva, M. D., Khrustalev, V. N., Titov, A. A., Aksenov, A. V., Dyachenko, S. V. & Varlamov, A. V. (2017). Tetrahedron Lett. 2017 58, 877–879. CSD CrossRef CAS
Voskressensky, L. G., Titov, A. A., Samavati, R., Borisova, T. N., Sorokina, E. A. & Varlamov, A. V. (2016). Chem. Heterocycl. Compd, 52, 316–321. CrossRef CAS
Wiest, J. M., Pöthig, A. & Bach, T. (2016). Org. Lett. 18, 852–855. CSD CrossRef CAS PubMed
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.