research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new approach to alkaloid-like systems: synthesis and crystal structure of 1-(2-acetyl-11-meth­­oxy-5,6-di­hydro­[1,3]dioxolo[4,5-g]pyrrolo­[2,1-a]isoquinolin-1-yl)propan-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Pharmaceutical Chemistry, Faculty of Chemistry, VNU University of Science, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam, bOrganic Chemistry Department, Peoples' Friendship University of Russia, (RUDN University), Miklukho-Maklay St., 6, Moscow 117198, Russian Federation, and cInorganic Chemistry Department, Peoples' Friendship University of Russia, (RUDN University), Miklukho-Maklay St., 6, Moscow 117198, Russian Federation
*Correspondence e-mail: huschemical.lab@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 September 2017; accepted 17 October 2017; online 20 October 2017)

The title compound, C19H19NO5, (I), is the product of a domino reaction between cotarnine chloride and acetyl­acetylene catalysed by copper(I) iodide. The mol­ecule of (I) comprises a fused tetra­cyclic system containing two terminal five-membered rings (pyrrole and 1,3-dioxole) and two central six-membered rings (di­hydro­pyridine and benzene). The five-membered 1,3-dioxole ring has an envelope conformation and the central six-membered di­hydro­pyridine ring adopts a twist-boat conformation. The acyl substituent is almost coplanar with the pyrrole ring, whereas the meth­oxy substituent is twisted by 27.93 (16)° relative to the benzene ring. The 2-oxopropan-1-yl substituent is roughly perpendicular to the pyrrole ring. In the crystal, mol­ecules are stacked along the a-axis direction; the stacks are linked by weak C—H⋯O hydrogen bonds into puckered layers lying parallel to (001).

1. Chemical context

The 5,6-di­hydro­pyrrolo­[2,1-a]iso­quinoline fragment is included in several natural products, for example in lamellarin I and K alkaloids, which possess a variety of biological properties, in particular, anti­tumor activity (Komatsubara et al., 2014[Komatsubara, M., Umeki, T., Fukuda, T. & Iwao, M. (2014). J. Org. Chem. 79, 529-537.]; Imperatore et al., 2014[Imperatore, C., Aiello, A., D'Aniello, F., Senese, M. & Menna, M. (2014). Molecules, 19, 20391-20423.]).

The di­hydro­pyrrolo­[2,1-a]iso­quinoline skeleton can be constructed in two different ways. The first way is annelation of a pyrrole ring to an isoquiniline fragment (Ma et al., 2014[Ma, J., Yuan, X., Küçüköz, B., Li, S., Zhang, C., Majumdar, P., Karatay, A., Li, X., Yaglioglu, H. G., Elmali, A., Zhao, J. & Hayvali, M. (2014). J. Mater. Chem. C. 2, 3900-3913.]; Fujiya et al., 2016[Fujiya, A., Tanaka, M., Yamaguchi, E., Tada, N. & Itoh, A. (2016). J. Org. Chem. 81, 7262-7270.]; Nekkanti et al., 2016[Nekkanti, S., Kumar, N. P., Sharma, P., Kamal, A., Nachtigall, F. M., Forero-Doria, O., Santos, L. S. & Shankaraiah, N. (2016). RSC Adv. 6, 2671-2677.]). The second one, in contrast, is annelation of an isoquiniline fragment to pyrrole derivatives (Sun et al., 2012[Sun, L.-L., Liao, Z.-Y., Tang, R.-Y., Deng, C.-L. & Zhang, X.-G. (2012). J. Org. Chem. 77, 2850-2856.]; Wiest et al., 2016[Wiest, J. M., Pöthig, A. & Bach, T. (2016). Org. Lett. 18, 852-855.]). Previously, we developed synthetic approaches to substituted pyrrolo­[2,1-a]iso­quinolines via the inter­action of 1-aroyl-3,4-di­hydro­isoquinilines or 1-ethynyl-1,2,3,4-tetra­hydro­iso­quinolines with activated alkynes (Voskressensky, Titov et al., 2016[Voskressensky, L. G., Titov, A. A., Samavati, R., Borisova, T. N., Sorokina, E. A. & Varlamov, A. V. (2016). Chem. Heterocycl. Compd, 52, 316-321.]; Voskressensky et al., 2017[Voskressensky, L. G., Borisova, T. N., Matveeva, M. D., Khrustalev, V. N., Titov, A. A., Aksenov, A. V., Dyachenko, S. V. & Varlamov, A. V. (2017). Tetrahedron Lett. 2017 58, 877-879.]).

It is of fundamental importance for the preparation of 2,3-bifunctional substituted pyrrolo­[2,1-a]iso­quinolines to study the inter­action of iminium salts with activated alkynes. In this work, we modified the approach to the synthesis of alkaloid-like compounds by the reaction of cotarnine chloride with activated alkynes in the presence of copper halogenides as a catalyst. The synthetic method proposed is new and original. This process includes the formation of the pyrrole ring and its functionalization, which is necessary for the chemical diversity of pyrrolo­iso­quinoline systems.

The title compound (I)[link] is a product of a new domino reaction between cotarnine chloride and acetyl­acetylene catalysed by copper(I) iodide. The reaction sequence starts with nucleophilic addition of copper(I) acetyl­ide to cotarnine chloride followed by [2,3]-cyclo­addition and aromatization of the pyrrole ring (Voskressensky, Borisova et al., 2016[Voskressensky, L. G., Borisova, T. N., Matveeva, M. D., Khrustalev, V. N., Aksenov, A. V., Titov, A. A., Vartanova, A. E. & Varlamov, A. V. (2016). RSC Adv. 6, 74068-74071.]). The main speciality of the reaction is the conversion of the acetyl­ethynyl fragment to acetyl­methyl when the pyrrole ring is formed in an aprotic solvent. The structure of the product (I)[link] was unambiguously established by an X-ray diffraction study.

[Scheme 1]

2. Structural commentary

The mol­ecule of (I)[link], representing a new alkaloid-like skeleton, comprises a fused tetra­cyclic system containing two terminal five-membered rings (pyrrole and 1,3-dioxole) and two central six-membered rings (di­hydro­pyridine and benzene) (Fig. 1[link]). The five-membered 1,3-dioxole ring has its usual shallow envelope conformation, with the methyl­ene group as the flap, and the central six-membered di­hydro­pyridine ring adopts a twist-boat conformation. The dihedral angle between the pyrrole and benzene rings is 29.69 (3)°. The nitro­gen N4 atom is essentially planar (sum of bond angles = 359.73°). The acyl substituent is almost coplanar with the pyrrole ring (r.m.s. deviation for non-hydrogen atoms = 0.012 Å), whereas the meth­oxy substituent is twisted by 27.93 (16)° relative to the benzene ring. The propan-2-one-1-yl substituent is roughly perpendicular to the pyrrole ring, the dihedral angle being 76.81 (5)°, because of steric reasons.

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link]. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

3. Supra­molecular features

The crystal packing of mol­ecules of (I)[link] involves stacking along the a-axis direction (Fig. 2[link]), with mol­ecules linked by weak C—H⋯O hydrogen bonds into puckered layers lying parallel to (001) (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O13i 0.95 2.44 3.2840 (14) 147
C9—H9A⋯O17ii 0.99 2.46 3.2207 (15) 133
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.
[Figure 2]
Figure 2
Crystal structure of (I)[link] illustrating the hydrogen-bonded layers parallel to (001). Dashed lines indicate the inter­molecular C—H⋯O hydrogen bonds.

4. Synthesis and crystallization

Acetyl­acetylene (0.27 g, 3.9 mmol) was added to a stirred suspension of cotarnine chloride (0.10 g, 0.39 mmol) and CuI (0.011 g, 0.059 mmol) in CH2Cl2 (10 ml) under Ar at 256 K (Fig. 3[link]). After stirring at 256 K for 1 h, tri­ethyl­amine (0.059 g, 0.59 mmol) was added to the mixture under Ar at 256 K. The reaction mixture was stirred at 256 K for 30 min, and brought to room temperature and stirred for three days. The reaction progress was monitored by TLC (eluent EtOH). After the completion, the solvent was removed in vacuum, and the residue separated by column chromatography on silica gel (EtOAc–hexane, 1:1). After removing the solvent, the residue was recrystallized from an EtOAc–hexane solvent mixture to give 37 mg (28% yield) of yellow–orange crystals of the title compound, m.p. = 448–450 K (EtOAc–hexa­ne).

[Figure 3]
Figure 3
Synthesis of (I)[link] using a domino reaction between cotarnine chloride and acetyl­acetylene catalysed by copper(I) iodide.

1H NMR (CDCl3, 600 MHz): δ = 2.29 (3H, s, COCH3); 2.38 (3H, s, COCH3); 2.85–2.87 (2H, m, 6-CH2); 3.80 (3H, s, 11-OCH3); 3.94–3.96 (2H, m, 5-CH2); 4.00 (2H, s, CH2COCH3); 5.96 (2H, s, 9-CH2); 6.49 (1H, s, H-7); 7.37 (1H, s, H-3); 13C NMR (CDCl3, 150 MHz): δ = 27.4, 29.5, 31.5, 42.4, 44.9, 59.9, 101.0, 103.3, 115.4, 115.8, 123.0, 126.5, 127.5, 129.5, 136.5, 139.9, 147.8, 193.1, 207.4; m/z: 341 [M]+ (67), 299 (33), 298 (100), 284 (18), 283 (72), 282 (54), 268 (5), 256 (31), 255 (28), 254 (21), 241 (15), 240 (47), 212 (6), 182 (5), 168 (7), 167 (7), 154 (12), 127 (7), 43 (16). Analysis calculated for C19H19NO5 (%): C 66.85, H 5.61, N 4.10; found (%): C 66.92, H 5.55, N 4.15.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99 Å and refined using the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the CH3-groups and 1.2Ueq(C) for the other groups].

Table 2
Experimental details

Crystal data
Chemical formula C19H19NO5
Mr 341.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 7.2782 (4), 14.0016 (7), 15.7852 (8)
β (°) 99.546 (1)
V3) 1586.34 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.20 × 0.15 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.970, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 24316, 5762, 4535
Rint 0.042
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.03
No. of reflections 5762
No. of parameters 229
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.38
Computer programs: APEX2 (Bruker, 2005[Bruker. (2005). APEX2. Bruker Molecular Analysis Research Tool, Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-(2-Acetyl-11-methoxy-5,6-dihydro[1,3]dioxolo[4,5-g]pyrrolo[2,1-a]isoquinolin-1-yl)propan-2-one top
Crystal data top
C19H19NO5F(000) = 720
Mr = 341.35Dx = 1.429 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.2782 (4) ÅCell parameters from 5328 reflections
b = 14.0016 (7) Åθ = 2.6–31.9°
c = 15.7852 (8) ŵ = 0.10 mm1
β = 99.546 (1)°T = 120 K
V = 1586.34 (14) Å3Prism, orange
Z = 40.20 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
4535 reflections with I > 2σ(I)
Radiation source: fine-focus seales tubeRint = 0.042
φ and ω scansθmax = 32.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1110
Tmin = 0.970, Tmax = 0.980k = 2021
24316 measured reflectionsl = 2323
5762 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.068P)2 + 0.4867P]
where P = (Fo2 + 2Fc2)/3
5762 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20836 (15)0.37136 (8)0.45572 (7)0.01256 (19)
C20.24234 (15)0.46920 (8)0.48054 (7)0.0138 (2)
C30.28874 (16)0.47143 (8)0.56943 (7)0.0147 (2)
H30.31770.52690.60360.018*
N40.28561 (14)0.38096 (7)0.59883 (6)0.01391 (18)
C50.30680 (18)0.35126 (8)0.68855 (7)0.0174 (2)
H5A0.28560.40620.72520.021*
H5B0.43440.32680.70810.021*
C60.16472 (17)0.27329 (8)0.69533 (7)0.0165 (2)
H6A0.18200.24870.75490.020*
H6B0.03730.29990.68120.020*
C6A0.18777 (15)0.19242 (8)0.63407 (7)0.01320 (19)
C70.17044 (16)0.09736 (8)0.65958 (7)0.0150 (2)
H70.13890.08180.71400.018*
C7A0.20129 (16)0.02752 (8)0.60209 (7)0.0147 (2)
O80.19904 (13)0.06993 (6)0.61417 (6)0.01939 (18)
C90.22878 (17)0.11078 (8)0.53375 (8)0.0169 (2)
H9A0.32070.16340.54410.020*
H9B0.11050.13670.50200.020*
O100.29712 (13)0.03606 (6)0.48500 (6)0.01822 (18)
C10A0.25597 (15)0.04791 (8)0.52391 (7)0.0137 (2)
C110.27333 (15)0.14145 (8)0.49713 (7)0.01233 (19)
C11A0.23175 (15)0.21532 (8)0.55265 (7)0.01190 (19)
C11B0.24022 (15)0.31718 (8)0.53044 (7)0.01223 (19)
C120.13624 (15)0.34137 (8)0.36538 (7)0.0141 (2)
H12A0.02510.38020.34310.017*
H12B0.09630.27380.36560.017*
C130.27738 (16)0.35160 (8)0.30483 (7)0.0145 (2)
O130.44297 (12)0.36125 (7)0.33022 (6)0.02009 (19)
C140.19984 (19)0.34580 (11)0.21036 (8)0.0235 (3)
H14A0.29260.36970.17710.035*
H14B0.08670.38480.19790.035*
H14C0.16980.27920.19460.035*
C150.23042 (17)0.55343 (8)0.42517 (8)0.0165 (2)
O150.19111 (15)0.54807 (7)0.34639 (6)0.0253 (2)
C160.26736 (18)0.64920 (8)0.46885 (8)0.0196 (2)
H16A0.27450.69860.42550.029*
H16B0.38550.64670.50890.029*
H16C0.16600.66440.50050.029*
O170.33691 (12)0.16770 (6)0.42396 (5)0.01608 (17)
C170.31065 (19)0.10236 (9)0.35248 (8)0.0206 (2)
H17A0.33910.13480.30120.031*
H17B0.18110.08030.34180.031*
H17C0.39390.04740.36580.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0131 (4)0.0129 (4)0.0122 (4)0.0003 (4)0.0034 (4)0.0007 (4)
C20.0154 (5)0.0121 (5)0.0143 (5)0.0005 (4)0.0036 (4)0.0009 (4)
C30.0185 (5)0.0114 (4)0.0146 (5)0.0013 (4)0.0035 (4)0.0010 (4)
N40.0184 (4)0.0119 (4)0.0113 (4)0.0009 (3)0.0020 (3)0.0008 (3)
C50.0259 (6)0.0148 (5)0.0108 (4)0.0005 (4)0.0007 (4)0.0013 (4)
C60.0242 (6)0.0138 (5)0.0126 (5)0.0014 (4)0.0064 (4)0.0008 (4)
C6A0.0148 (5)0.0129 (4)0.0124 (4)0.0006 (4)0.0034 (4)0.0003 (4)
C70.0188 (5)0.0133 (5)0.0135 (5)0.0010 (4)0.0046 (4)0.0016 (4)
C7A0.0156 (5)0.0117 (4)0.0167 (5)0.0002 (4)0.0027 (4)0.0013 (4)
O80.0291 (5)0.0110 (4)0.0192 (4)0.0002 (3)0.0077 (3)0.0005 (3)
C90.0178 (5)0.0121 (5)0.0210 (5)0.0008 (4)0.0039 (4)0.0017 (4)
O100.0249 (4)0.0111 (4)0.0204 (4)0.0003 (3)0.0088 (3)0.0032 (3)
C10A0.0146 (5)0.0117 (4)0.0152 (5)0.0001 (4)0.0038 (4)0.0024 (4)
C110.0125 (4)0.0135 (5)0.0117 (4)0.0007 (4)0.0040 (3)0.0010 (4)
C11A0.0128 (4)0.0115 (4)0.0115 (4)0.0005 (3)0.0020 (3)0.0009 (3)
C11B0.0129 (4)0.0122 (4)0.0119 (4)0.0007 (3)0.0031 (4)0.0012 (3)
C120.0140 (5)0.0155 (5)0.0124 (4)0.0014 (4)0.0015 (4)0.0002 (4)
C130.0189 (5)0.0121 (4)0.0128 (4)0.0014 (4)0.0040 (4)0.0004 (4)
O130.0177 (4)0.0258 (5)0.0173 (4)0.0038 (3)0.0045 (3)0.0033 (3)
C140.0257 (6)0.0330 (7)0.0120 (5)0.0056 (5)0.0035 (4)0.0004 (5)
C150.0181 (5)0.0145 (5)0.0174 (5)0.0015 (4)0.0046 (4)0.0021 (4)
O150.0392 (6)0.0209 (4)0.0156 (4)0.0024 (4)0.0038 (4)0.0038 (3)
C160.0235 (6)0.0131 (5)0.0224 (6)0.0001 (4)0.0041 (5)0.0021 (4)
O170.0217 (4)0.0151 (4)0.0132 (4)0.0011 (3)0.0081 (3)0.0022 (3)
C170.0281 (6)0.0210 (6)0.0138 (5)0.0002 (5)0.0061 (4)0.0049 (4)
Geometric parameters (Å, º) top
C1—C11B1.3890 (15)C9—H9B0.9900
C1—C21.4350 (15)O10—C10A1.3820 (13)
C1—C121.4957 (15)C10A—C111.3884 (15)
C2—C31.3880 (16)C11—O171.3640 (13)
C2—C151.4620 (16)C11—C11A1.4204 (15)
C3—N41.3505 (14)C11A—C11B1.4723 (15)
C3—H30.9500C12—C131.5215 (16)
N4—C11B1.3977 (14)C12—H12A0.9900
N4—C51.4595 (14)C12—H12B0.9900
C5—C61.5197 (17)C13—O131.2129 (14)
C5—H5A0.9900C13—C141.5066 (16)
C5—H5B0.9900C14—H14A0.9800
C6—C6A1.5162 (15)C14—H14B0.9800
C6—H6A0.9900C14—H14C0.9800
C6—H6B0.9900C15—O151.2312 (15)
C6A—C71.4022 (16)C15—C161.5114 (17)
C6A—C11A1.4119 (15)C16—H16A0.9800
C7—C7A1.3777 (16)C16—H16B0.9800
C7—H70.9500C16—H16C0.9800
C7A—O81.3783 (14)O17—C171.4406 (14)
C7A—C10A1.3877 (16)C17—H17A0.9800
O8—C91.4411 (14)C17—H17B0.9800
C9—O101.4355 (15)C17—H17C0.9800
C9—H9A0.9900
C11B—C1—C2107.01 (9)O10—C10A—C11129.04 (10)
C11B—C1—C12129.72 (10)C7A—C10A—C11121.25 (10)
C2—C1—C12123.07 (10)O17—C11—C10A124.94 (10)
C3—C2—C1107.43 (10)O17—C11—C11A117.59 (9)
C3—C2—C15124.52 (10)C10A—C11—C11A117.37 (10)
C1—C2—C15128.05 (10)C6A—C11A—C11119.99 (10)
N4—C3—C2108.12 (10)C6A—C11A—C11B117.49 (9)
N4—C3—H3125.9C11—C11A—C11B122.47 (10)
C2—C3—H3125.9C1—C11B—N4106.96 (9)
C3—N4—C11B110.44 (9)C1—C11B—C11A136.34 (10)
C3—N4—C5126.55 (9)N4—C11B—C11A116.67 (9)
C11B—N4—C5122.74 (9)C1—C12—C13113.94 (9)
N4—C5—C6108.02 (9)C1—C12—H12A108.8
N4—C5—H5A110.1C13—C12—H12A108.8
C6—C5—H5A110.1C1—C12—H12B108.8
N4—C5—H5B110.1C13—C12—H12B108.8
C6—C5—H5B110.1H12A—C12—H12B107.7
H5A—C5—H5B108.4O13—C13—C14121.44 (11)
C6A—C6—C5110.06 (9)O13—C13—C12122.70 (10)
C6A—C6—H6A109.6C14—C13—C12115.83 (10)
C5—C6—H6A109.6C13—C14—H14A109.5
C6A—C6—H6B109.6C13—C14—H14B109.5
C5—C6—H6B109.6H14A—C14—H14B109.5
H6A—C6—H6B108.2C13—C14—H14C109.5
C7—C6A—C11A121.45 (10)H14A—C14—H14C109.5
C7—C6A—C6120.06 (10)H14B—C14—H14C109.5
C11A—C6A—C6118.46 (10)O15—C15—C2122.38 (11)
C7A—C7—C6A116.89 (10)O15—C15—C16120.58 (11)
C7A—C7—H7121.6C2—C15—C16117.03 (10)
C6A—C7—H7121.6C15—C16—H16A109.5
C7—C7A—O8127.20 (10)C15—C16—H16B109.5
C7—C7A—C10A122.82 (10)H16A—C16—H16B109.5
O8—C7A—C10A109.78 (10)C15—C16—H16C109.5
C7A—O8—C9105.31 (9)H16A—C16—H16C109.5
O10—C9—O8107.40 (9)H16B—C16—H16C109.5
O10—C9—H9A110.2C11—O17—C17118.20 (9)
O8—C9—H9A110.2O17—C17—H17A109.5
O10—C9—H9B110.2O17—C17—H17B109.5
O8—C9—H9B110.2H17A—C17—H17B109.5
H9A—C9—H9B108.5O17—C17—H17C109.5
C10A—O10—C9105.18 (9)H17A—C17—H17C109.5
O10—C10A—C7A109.60 (10)H17B—C17—H17C109.5
C11B—C1—C2—C31.55 (13)C7—C6A—C11A—C114.76 (17)
C12—C1—C2—C3173.73 (10)C6—C6A—C11A—C11173.48 (10)
C11B—C1—C2—C15179.00 (11)C7—C6A—C11A—C11B177.82 (10)
C12—C1—C2—C155.72 (18)C6—C6A—C11A—C11B3.93 (15)
C1—C2—C3—N40.40 (13)O17—C11—C11A—C6A172.16 (10)
C15—C2—C3—N4179.88 (11)C10A—C11—C11A—C6A4.35 (16)
C2—C3—N4—C11B0.91 (13)O17—C11—C11A—C11B5.12 (16)
C2—C3—N4—C5173.22 (11)C10A—C11—C11A—C11B178.37 (10)
C3—N4—C5—C6137.61 (11)C2—C1—C11B—N42.06 (12)
C11B—N4—C5—C635.84 (14)C12—C1—C11B—N4172.80 (11)
N4—C5—C6—C6A55.40 (12)C2—C1—C11B—C11A179.75 (12)
C5—C6—C6A—C7140.24 (11)C12—C1—C11B—C11A4.9 (2)
C5—C6—C6A—C11A38.03 (14)C3—N4—C11B—C11.89 (13)
C11A—C6A—C7—C7A1.02 (17)C5—N4—C11B—C1172.50 (10)
C6—C6A—C7—C7A177.19 (10)C3—N4—C11B—C11A179.90 (10)
C6A—C7—C7A—O8177.40 (11)C5—N4—C11B—C11A5.71 (16)
C6A—C7—C7A—C10A3.08 (17)C6A—C11A—C11B—C1150.28 (13)
C7—C7A—O8—C9176.86 (12)C11—C11A—C11B—C132.37 (19)
C10A—C7A—O8—C98.22 (13)C6A—C11A—C11B—N427.24 (15)
C7A—O8—C9—O1015.32 (12)C11—C11A—C11B—N4150.10 (10)
O8—C9—O10—C10A16.59 (12)C11B—C1—C12—C13114.40 (13)
C9—O10—C10A—C7A11.69 (12)C2—C1—C12—C1371.46 (14)
C9—O10—C10A—C11172.25 (11)C1—C12—C13—O1316.37 (16)
C7—C7A—C10A—O10172.97 (11)C1—C12—C13—C14165.56 (10)
O8—C7A—C10A—O102.22 (13)C3—C2—C15—O15179.01 (12)
C7—C7A—C10A—C113.45 (18)C1—C2—C15—O151.6 (2)
O8—C7A—C10A—C11178.64 (10)C3—C2—C15—C161.43 (17)
O10—C10A—C11—O170.16 (19)C1—C2—C15—C16177.94 (11)
C7A—C10A—C11—O17175.81 (11)C10A—C11—O17—C1727.93 (16)
O10—C10A—C11—C11A176.06 (11)C11A—C11—O17—C17155.86 (10)
C7A—C10A—C11—C11A0.40 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O13i0.952.443.2840 (14)147
C9—H9A···O17ii0.992.463.2207 (15)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Funding information

The publication was prepared with the support of the RUDN University Program `5–100' and by the Russian Foundation for Basic Research (project No. 17-53-540001-Viet-a. This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant No. 104.01–2015.27.

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker. (2005). APEX2. Bruker Molecular Analysis Research Tool, Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFujiya, A., Tanaka, M., Yamaguchi, E., Tada, N. & Itoh, A. (2016). J. Org. Chem. 81, 7262–7270.  CrossRef CAS PubMed
First citationImperatore, C., Aiello, A., D'Aniello, F., Senese, M. & Menna, M. (2014). Molecules, 19, 20391–20423.  CrossRef PubMed
First citationKomatsubara, M., Umeki, T., Fukuda, T. & Iwao, M. (2014). J. Org. Chem. 79, 529–537.  CrossRef CAS PubMed
First citationMa, J., Yuan, X., Küçüköz, B., Li, S., Zhang, C., Majumdar, P., Karatay, A., Li, X., Yaglioglu, H. G., Elmali, A., Zhao, J. & Hayvali, M. (2014). J. Mater. Chem. C. 2, 3900–3913.  CrossRef CAS
First citationNekkanti, S., Kumar, N. P., Sharma, P., Kamal, A., Nachtigall, F. M., Forero-Doria, O., Santos, L. S. & Shankaraiah, N. (2016). RSC Adv. 6, 2671–2677.  CrossRef CAS
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSun, L.-L., Liao, Z.-Y., Tang, R.-Y., Deng, C.-L. & Zhang, X.-G. (2012). J. Org. Chem. 77, 2850–2856.  CSD CrossRef CAS PubMed
First citationVoskressensky, L. G., Borisova, T. N., Matveeva, M. D., Khrustalev, V. N., Aksenov, A. V., Titov, A. A., Vartanova, A. E. & Varlamov, A. V. (2016). RSC Adv. 6, 74068–74071.  CSD CrossRef CAS
First citationVoskressensky, L. G., Borisova, T. N., Matveeva, M. D., Khrustalev, V. N., Titov, A. A., Aksenov, A. V., Dyachenko, S. V. & Varlamov, A. V. (2017). Tetrahedron Lett. 2017 58, 877–879.  CSD CrossRef CAS
First citationVoskressensky, L. G., Titov, A. A., Samavati, R., Borisova, T. N., Sorokina, E. A. & Varlamov, A. V. (2016). Chem. Heterocycl. Compd, 52, 316–321.  CrossRef CAS
First citationWiest, J. M., Pöthig, A. & Bach, T. (2016). Org. Lett. 18, 852–855.  CSD CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds