research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{(E)-[(2E)-3-(4-Meth­­oxy­phen­yl)-1-phenyl­prop-2-en-1-yl­­idene]amino}-3-phenyl­urea: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, 50932 Setapak, Kuala Lumpur, Malaysia, bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia, cDepartment of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, NS B2G 2W5, Canada, dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and eResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 September 2017; accepted 30 September 2017; online 6 October 2017)

The title compound, C23H21N3O2, is constructed about an almost planar disubstituted amino­urea residue (r.m.s. deviation = 0.0201 Å), which features an intra­molecular amine-N—H⋯N(imine) hydrogen bond. In the `all-trans' chain connecting this to the terminal meth­oxy­benzene residue, the conformation about each of the imine and ethyl­ene double bonds is E. In the crystal, amide-N—H⋯O(carbon­yl) hydrogen bonds connect centrosymmetrically related mol­ecules into dimeric aggregates, which also incorporate ethyl­ene-C—H⋯O(amide) inter­actions. The dimers are linked by amine–phenyl-C—H⋯π(imine–phen­yl) and meth­oxy­benzene-C—H⋯π(amine–phen­yl) inter­actions to generate a three-dimensional network. The importance of C—H⋯π inter­actions in the mol­ecular packing is reflected in the relatively high contributions made by C⋯H/H⋯C contacts to the Hirshfeld surface, i.e. 31.6%.

1. Chemical context

Chalcones are natural or synthetic compounds comprising an open-chain flavonoid structure in which the two aromatic rings are connected via a three-carbon-atom α,β-unsaturated carbonyl system. These compounds have attracted much attention due to their diverse pharmacological and biological activities (Gaonkar & Vignesh, 2017[Gaonkar, S. L. & Vignesh, U. N. (2017). Res .Chem. Intermed. https://doi. org/10.1007/s11164-017-2977-5.]), including their anti-cancer (Mahapatra et al., 2015[Mahapatra, D. K., Bharti, S. K. & Asati, V. (2015). Eur. J. Med. Chem. 98, 69-114.]), anti-malarial (Syahri et al., 2017[Syahri, J., Rullah, K., Armunanto, R., Yuanita, E., Nurohmah, B. A., Mohd Aluwi, M. F. F., Wai, L. K. & Purwono, B. (2017). Asia. Pac. J. Trop. Dis. 7, 8-13.]), anti-inflammatory (Li et al., 2017[Li, J., Li, D., Xu, Y., Guo, Z., Liu, X., Yang, H., Wu, L. & Wang, L. (2017). Bioorg. Med. Chem. Lett. 27, 602-606.]), anti-microbial (Kumar et al., 2017[Kumar, A., Gupta, V., Singh, S. & Gupta, Y. (2017). Asia. J. Rese. Chem. 10, 225-239.]), xanthine oxidase inhibitory (Xie et al., 2017[Xie, Z., Luo, X., Zou, Z., Zhang, X., Huang, F., Li, R., Liao, S. & Liu, Y. (2017). Bioorg. Med. Chem. Lett. 27, 3602-3606.]) and aldol reductase inhibitory (Zhuang et al., 2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810.]) properties. The present work is part of an on-going project on the synthesis of chalcone-derived Schiff bases, their ultilization in the synthesis of new transition metal complexes and their investigation as anti-proliferative and anti-bacterial agents. In this context, crystal-structure determinations of a chalcone-derived thio­semicarbazone and a zinc complex have been published (Tan et al., 2015[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o1047-o1048.], 2017[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001-1008.]).

In this contribution, a chalcone residue has been incorporated into a semicarbazide skeleton to form the title chalcone­semicarbazone, (I)[link]. While chalconesemicarbazone derivatives have shown potential anti-convulsant (Sharma et al., 2014[Sharma, C., Verma, T., Singh, H. & Kumar, N. (2014). Med. Chem. Res. 23, 4814-4824.]), anti-inflammatory (Singha et al., 2010[Singh, H. P., Singhal, M., Chauhan, C., Pandey, S., Paul, A. & Sharma, Y. C. S. (2010). Pharmacologyonline, 1, 448-458.]) and anti-oxidant activities (Singhal et al., 2011[Singhal, M., Paul, A., Tiwari, A. K. & Songara, R. K. (2011). Res. Rev. BioSciences, 5, 131-133.]), no crystal structures of chalconesemicarbazone derivatives have been published. Herein, the crystal and mol­ecular structures of (I)[link] have been determined and the study augmented by an analysis of the calculated Hirshfeld surfaces.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], comprises a doubly substituted amino­urea residue which is close to planar (r.m.s. deviation of CN3O = 0.0201 Å), owing in part to an intra­molecular amine-N—H⋯N(imine) hydrogen bond, Table 1[link]. The amine-bound phenyl ring is inclined to the CN3O plane, forming a dihedral angle of 46.88 (4)°. The imine/ethyl­ene sequence of bonds, i.e. N3=C8—C9=C10—C11, has an all-trans conformation but the N3—C8—C9—C10 and C8—C9—C10—C11 torsion angles of 154.62 (12) and −169.19 (11)°, respectively, indicate some twisting in this residue, especially about the C8—C9 bond; the conformation about each of the double bonds is E. The imine-bound phenyl ring forms a dihedral angle of 63.30 (7)° with the C4N atoms of the imine/ethyl­ene sequence, and the corresponding angle for the terminal meth­oxy­benzene ring is significantly less, at 8.29 (13)°. The meth­oxy group is twisted out of the plane of the ring to which it is connected as seen in the value of the C17—O18—C14—C15 torsion angle of 15.55 (17)°.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C81–C86 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.87 (1) 2.18 (2) 2.6029 (15) 110 (1)
N2—H2N⋯O1i 0.88 (1) 2.05 (1) 2.9184 (14) 171 (1)
C9—H9⋯O1i 0.95 2.39 3.2913 (15) 159
C15—H15⋯Cg1i 0.95 2.88 3.5125 (14) 125
C6—H6⋯Cg2ii 0.95 2.92 3.8296 (14) 161
C12—H12⋯Cg1iii 0.95 2.75 3.4715 (14) 133
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

3. Supra­molecular features

The most notable feature of the mol­ecular packing of (I)[link] is the presence of a centrosymmetric, eight-membered amide synthon, {⋯OCNH}2, Table 1[link]. The resultant dimeric aggregate also incorporates two additional ethyl­ene-C—H⋯O(amide) inter­actions, Fig. 2[link]a, as well as meth­oxy-C—H⋯π(amine-phen­yl) contacts, Table 1[link]. The aggregates are assembled into a three-dimensional network via amine-phenyl-C—H⋯π(imine-phen­yl) and meth­oxy-benzene-C—H⋯π(amine-phen­yl) inter­actions, Fig. 2[link]b.

[Figure 2]
Figure 2
The mol­ecular packing in (I)[link]: (a) a view of the supra­molecular dimer sustained by amine-N—H⋯O(carbon­yl) hydrogen bonds and supported by ethyl­ene-C—H⋯O(amide) inter­actions, shown as blue and orange dashed lines, respectively, and (b) a view of the unit-cell contents shown in projection down the c axis. The C—H⋯π inter­actions are shown as purple dashed lines.

4. Analysis of the Hirshfeld surface

The Hirshfeld surface was calculated for (I)[link] in accord with a recent report on a related mol­ecule (Tan et al., 2017[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001-1008.]) to provide more detailed information on the relative significance of the various inter­molecular inter­actions. The donors and acceptors of inter­molecular N—H⋯O and C—H⋯O inter­actions in (I)[link] are viewed as the bright-red spots near the ethyl­ene-H9, amide-H2N and carbonyl-O1 atoms on the Hirshfeld surface mapped over dnorm in Fig. 3[link]a. The appearance of diminutive red spots near the N3 and C17 atoms, Fig. 3[link]a, and the tiny faint-red spots near the C9 and H82 atoms in Fig. 3[link]b, indicate the influence of short inter­atomic N3⋯C17 and C9⋯H82 contacts, Table 2[link]. The donors and acceptors of inter­molecular hydrogen bonds also appear as blue and red regions, respectively, around the participating atoms on the Hirshfeld surface mapped over the calculated electrostatic potential in Fig. 4[link]. The involvement of the imine-phenyl (C81–C86) and amine-phenyl (C2–C7) rings as acceptors for C—H⋯π inter­actions are also evident through the light-red regions around these rings on the Hirshfeld surfaces in the views of Fig. 4[link]. Referring to Fig. 5[link]a, the concave region around the imine-phenyl ring on one side and the biconcave region around the amine-phenyl ring indicate their involvement in one and two C—H⋯π contacts, respectively. The short inter­atomic O⋯H/H⋯O contacts (Table 3[link]) as well as N—H⋯O and C—H⋯O inter­actions about a reference mol­ecule within shape-index mapped Hirshfeld surface, and the H⋯H, C⋯H/H⋯C and C⋯N/N⋯C contacts within the dnorm-mapped Hirshfeld surface are shown in Fig. 5[link]b and c, respectively.

Table 2
Summary of short inter­atomic contacts (Å) in (I)

Contact Distance Symmetry operation
C17⋯N3 3.1147 (18) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
C9⋯H82 2.72 1 − x, 1 − y, 1 − z
H86⋯H86 2.26 1 − x, 1 − y, −z
H12⋯H17C 2.26 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
O1⋯H16 2.61 2 − x, 1 − y, 1 − z
O18⋯H84 2.67 [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
C8⋯H82 2.87 1 − x, 1 − y, 1 − z
C12⋯H17C 2.79 [{1\over 2}] + x, [{1\over 2}] − y, − [{1\over 2}] + z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 50.2
C⋯H/H⋯C 31.6
O⋯H/H⋯O 10.7
N⋯H/H⋯N 4.2
N⋯O /O⋯N 0.9
C⋯O/O⋯C 0.9
C⋯C 0.8
C⋯N/N⋯C 0.7
[Figure 3]
Figure 3
Two views of the Hirshfeld surface for (I)[link] mapped over dnorm in the ranges (a) −0.225 to +1.332 a.u. and (b) −0.110 to +1.332 a.u.
[Figure 4]
Figure 4
Two views of the Hirshfeld surface for (I)[link] mapped over the electrostatic potential in the range −0.095 to +0.108 a.u. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 5]
Figure 5
Views of the Hirshfeld surfaces about a reference mol­ecule mapped over (a) the shape-index property showing C—H⋯π/π⋯H—C inter­actions involving the C6 atom with the imine–phenyl C81–C86 ring (black dotted lines) and the C12 and C15 atoms with the amine–phenyl C2–C7 rings by red and white dotted lines, respectively, (b) the shape-index property about a reference mol­ecule showing short O⋯H/H⋯O contacts by red dotted lines and inter­molecular N—H⋯O and C—H⋯O inter­actions by black dashed lines and (c) dnorm showing short inter­atomic H⋯H, C⋯N/N⋯C and C⋯H/H⋯C contacts by sky-blue, black and red dashed lines, respectively.

The overall two dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]be, respectively; the relative contributions from different inter­atomic contacts to the Hirshfeld surfaces are summarized in Table 3[link]. The presence of a small but, distinctive peak at de + di ∼ 2.3 Å in the fingerprint plot delineated into H⋯H contacts, and highlighted by a red arrow in Fig. 6[link]b, results from the short inter­atomic H⋯H contact between symmetry-related imine-phenyl-H86 atoms, Table 2[link], whereas the flanking peaks, at the same de + di ∼ 2.3 Å distance correspond to short inter­atomic H⋯H contacts between meth­oxy­benzene-H12 and meth­oxy-H17C atoms, Table 2[link].

[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot for (I)[link] and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) N⋯H/H⋯N contacts.

The C⋯H/H⋯C contacts in the crystal make the second largest contribution, i.e. 31.6%, to the Hirshfeld surface of (I)[link], Fig. 6[link]c, which is due to the presence of a significant number of C—H⋯π inter­actions involving the imine- and amine-phenyl rings, as well as short inter­atomic C⋯H/H⋯C contacts, Table 3[link], between the atoms of the meth­oxy-phenyl and imine-phenyl rings, Fig. 5[link]c. The pair of forceps-like long tips at de + di = 2.1 Å in the fingerprint plot delineated into O⋯H/H⋯O contacts, Fig. 6[link]d, reflect the presence the N—H⋯O hydrogen bond; the pair of spikes corresponding to the C—H⋯O contacts and the points related to short inter­atomic O⋯H/H⋯O contacts, Table 2[link], are merged within the plot. Although the N⋯H/H⋯N contacts have a notable contribution of 4.2% to the Hirshfeld surface, Fig. 6[link]e, as their inter­atomic distances are greater than their van der Waals separations, they do not make a specific contribution to the mol­ecular packing. The participation of the methyl-C17 atom in two close inter­atomic contacts, Table 2[link], brings into close proximity the methyl-C17 and imine-N3 atoms, Table 2[link], but these are inter­spersed by the H17A and H17B atoms so are not surface contacts. Finally, the small contributions from other inter­atomic contacts summarized in Table 3[link] have a negligible effect on the structure.

5. Database survey

The title compound was prepared from the de­hydrogenation reaction of 4-phenyl­semicarbazide and 4-meth­oxy­chalcone. A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed no direct precedents for this type of mol­ecule. The most closely related structure is one where the ethyl­ene bond is incorporated within a five-membered pyrazolone ring (Chai et al., 2005[Chai, H., Liu, G., Liu, L., Jia, D., Guo, Z. & Lang, J. (2005). J. Mol. Struct. 752, 124-129.]). Here, the intra­molecular amine-N—H⋯N(imine) hydrogen bond persists in each of the two independent mol­ecules comprising the asymmetric unit, as do the E-conformations about the two analogous double bonds in the mol­ecule. However, there is considerable twisting about the equivalent bonds to C8—C9 in (I)[link], i.e. the N—C—C—C torsion angles are 130.3 (6) and 136.0 (6)°, cf. 154.62 (12)° in (I)[link], an observation attributed to the need to reduce steric hindrance between the rings in the mol­ecules.

6. Synthesis and crystallization

Analytical grade reagents were used as procured without further purification. 4-Phenyl­semicarbazide (1.51 g, 0.01 mol) and 4-meth­oxy­chalcone (2.38 g, 0.01 mol) were dissolved separately in hot absolute ethanol (30 ml) and mixed with stirring. A few drops of concentrated hydro­chloric acid were added as a catalyst. The reaction mixture was heated and stirred for about 20 min., then stirred for a further 30 min. at room temperature. The resulting yellow precipitate was filtered, washed with cold ethanol and dried in vacuo; yield: 75%. Single crystals were grown at room temperature from the slow evaporation of mixed ethanol and aceto­nitrile solvents (1:1 v/v; 20 ml), m.p. 407 K. IR (cm−1): 3336 ν(N—H), 1679 ν(C=O), 1526 ν(C=N), 1242 ν(C—N), 1025 ν(C=S). MS (m/z): 371.25 [M+1]+.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The nitro­gen-bound H atoms were located in a difference-Fourier map but were refined with a distance restraint of N—H = 0.88±0.01 Å, and with Uiso(H) set to 1.2Ueq(N).

Table 4
Experimental details

Crystal data
Chemical formula C23H21N3O2
Mr 371.43
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.2879 (2), 21.9137 (3), 9.6740 (2)
β (°) 105.187 (2)
V3) 1900.21 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.31 × 0.29 × 0.16
 
Data collection
Diffractometer Oxford Diffraction Xcaliber Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.904, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25449, 3678, 3380
Rint 0.025
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.03
No. of reflections 3678
No. of parameters 260
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.24
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

1-{(E)-[(2E)-3-(4-Methoxyphenyl)-1-phenylprop-2-en-1-ylidene]amino}-3-phenylurea top
Crystal data top
C23H21N3O2F(000) = 784
Mr = 371.43Dx = 1.298 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 9.2879 (2) ÅCell parameters from 12038 reflections
b = 21.9137 (3) Åθ = 4.0–71.3°
c = 9.6740 (2) ŵ = 0.68 mm1
β = 105.187 (2)°T = 100 K
V = 1900.21 (6) Å3Slab (cut), light-yellow
Z = 40.31 × 0.29 × 0.16 mm
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
3678 independent reflections
Radiation source: fine-focus sealed tube3380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.1952 pixels mm-1θmax = 71.4°, θmin = 4.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2626
Tmin = 0.904, Tmax = 1.000l = 1111
25449 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.6586P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3678 reflectionsΔρmax = 0.22 e Å3
260 parametersΔρmin = 0.24 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.01879 (9)0.56831 (4)0.59686 (10)0.0282 (2)
O180.65222 (10)0.14747 (4)0.28503 (10)0.0303 (2)
N10.81663 (12)0.63230 (5)0.54527 (11)0.0253 (2)
H1N0.7293 (12)0.6365 (7)0.4858 (14)0.030*
N20.80445 (11)0.53742 (5)0.44127 (11)0.0230 (2)
H2N0.8494 (16)0.5033 (5)0.4302 (16)0.028*
N30.65679 (11)0.55029 (5)0.37877 (11)0.0224 (2)
C10.88811 (13)0.57941 (6)0.53281 (13)0.0227 (3)
C20.86973 (13)0.67870 (6)0.64749 (13)0.0234 (3)
C30.94222 (14)0.66456 (6)0.78919 (14)0.0267 (3)
H30.96570.62340.81680.032*
C40.97992 (14)0.71113 (7)0.88961 (14)0.0314 (3)
H41.03000.70170.98610.038*
C50.94507 (14)0.77139 (7)0.85028 (15)0.0337 (3)
H50.96880.80290.92000.040*
C60.87558 (14)0.78537 (6)0.70894 (16)0.0312 (3)
H60.85270.82660.68160.037*
C70.83916 (13)0.73922 (6)0.60681 (14)0.0263 (3)
H70.79350.74900.50950.032*
C80.57139 (13)0.50863 (5)0.30443 (12)0.0215 (3)
C90.61677 (13)0.44598 (6)0.28545 (13)0.0221 (3)
H90.71950.43820.29450.026*
C100.52152 (13)0.39879 (6)0.25590 (12)0.0223 (3)
H100.41800.40810.23050.027*
C110.56261 (13)0.33419 (6)0.25920 (12)0.0216 (3)
C120.45125 (13)0.28994 (6)0.21358 (13)0.0239 (3)
H120.35050.30260.17760.029*
C130.48453 (14)0.22853 (6)0.21976 (13)0.0253 (3)
H130.40780.19940.18500.030*
C140.63070 (14)0.20925 (6)0.27707 (13)0.0232 (3)
C150.74391 (14)0.25212 (6)0.32357 (13)0.0253 (3)
H150.84410.23920.36190.030*
C160.70944 (14)0.31380 (6)0.31361 (13)0.0247 (3)
H160.78720.34290.34440.030*
C170.78852 (18)0.12581 (7)0.37548 (15)0.0384 (4)
H17A0.87110.13730.33510.058*
H17B0.78450.08130.38290.058*
H17C0.80410.14390.47090.058*
C810.41306 (13)0.52769 (5)0.24448 (13)0.0222 (3)
C820.33269 (14)0.55311 (6)0.33371 (14)0.0259 (3)
H820.37950.55870.43270.031*
C830.18453 (15)0.57034 (6)0.27873 (15)0.0299 (3)
H830.12980.58650.34080.036*
C840.11639 (14)0.56408 (6)0.13362 (16)0.0314 (3)
H840.01570.57650.09600.038*
C850.19547 (15)0.53967 (7)0.04391 (15)0.0345 (3)
H850.14940.53570.05570.041*
C860.34221 (15)0.52092 (6)0.09928 (14)0.0298 (3)
H860.39500.50330.03740.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0186 (4)0.0265 (5)0.0361 (5)0.0021 (3)0.0011 (4)0.0090 (4)
O180.0325 (5)0.0216 (5)0.0364 (5)0.0031 (4)0.0085 (4)0.0038 (4)
N10.0203 (5)0.0252 (5)0.0256 (5)0.0034 (4)0.0024 (4)0.0063 (4)
N20.0192 (5)0.0194 (5)0.0281 (5)0.0018 (4)0.0019 (4)0.0027 (4)
N30.0190 (5)0.0224 (5)0.0239 (5)0.0002 (4)0.0022 (4)0.0004 (4)
C10.0200 (6)0.0234 (6)0.0241 (6)0.0006 (5)0.0047 (5)0.0016 (5)
C20.0157 (5)0.0270 (6)0.0266 (6)0.0003 (5)0.0039 (5)0.0074 (5)
C30.0189 (6)0.0330 (7)0.0274 (6)0.0020 (5)0.0045 (5)0.0030 (5)
C40.0196 (6)0.0488 (8)0.0244 (6)0.0017 (6)0.0035 (5)0.0097 (6)
C50.0218 (6)0.0415 (8)0.0379 (7)0.0047 (6)0.0082 (5)0.0211 (6)
C60.0224 (6)0.0273 (7)0.0444 (8)0.0006 (5)0.0099 (6)0.0113 (6)
C70.0194 (6)0.0286 (7)0.0291 (6)0.0025 (5)0.0034 (5)0.0050 (5)
C80.0219 (6)0.0215 (6)0.0207 (6)0.0009 (5)0.0046 (4)0.0003 (4)
C90.0192 (6)0.0236 (6)0.0223 (6)0.0013 (5)0.0034 (4)0.0008 (4)
C100.0185 (6)0.0254 (6)0.0213 (6)0.0010 (5)0.0023 (4)0.0000 (5)
C110.0212 (6)0.0231 (6)0.0200 (6)0.0004 (5)0.0047 (4)0.0001 (4)
C120.0195 (6)0.0256 (6)0.0257 (6)0.0001 (5)0.0044 (5)0.0031 (5)
C130.0236 (6)0.0237 (6)0.0284 (6)0.0044 (5)0.0066 (5)0.0020 (5)
C140.0290 (6)0.0210 (6)0.0214 (6)0.0016 (5)0.0096 (5)0.0022 (4)
C150.0214 (6)0.0278 (6)0.0256 (6)0.0040 (5)0.0041 (5)0.0014 (5)
C160.0211 (6)0.0240 (6)0.0278 (6)0.0024 (5)0.0042 (5)0.0038 (5)
C170.0510 (9)0.0276 (7)0.0311 (7)0.0153 (6)0.0012 (6)0.0011 (6)
C810.0214 (6)0.0155 (5)0.0283 (6)0.0018 (4)0.0036 (5)0.0007 (5)
C820.0294 (7)0.0212 (6)0.0270 (6)0.0012 (5)0.0073 (5)0.0036 (5)
C830.0305 (7)0.0228 (6)0.0400 (7)0.0032 (5)0.0159 (6)0.0043 (5)
C840.0200 (6)0.0262 (6)0.0448 (8)0.0016 (5)0.0028 (6)0.0028 (6)
C850.0278 (7)0.0371 (8)0.0321 (7)0.0023 (6)0.0034 (5)0.0046 (6)
C860.0250 (7)0.0329 (7)0.0294 (7)0.0023 (5)0.0035 (5)0.0056 (5)
Geometric parameters (Å, º) top
O1—C11.2338 (15)C10—H100.9500
O18—C141.3677 (15)C11—C161.4002 (17)
O18—C171.4189 (17)C11—C121.4020 (17)
N1—C11.3566 (16)C12—C131.3787 (18)
N1—C21.4140 (16)C12—H120.9500
N1—H1N0.868 (9)C13—C141.3909 (17)
N2—C11.3691 (16)C13—H130.9500
N2—N31.3754 (14)C14—C151.3937 (18)
N2—H2N0.877 (9)C15—C161.3865 (18)
N3—C81.2964 (16)C15—H150.9500
C2—C71.3914 (18)C16—H160.9500
C2—C31.3945 (18)C17—H17A0.9800
C3—C41.3891 (19)C17—H17B0.9800
C3—H30.9500C17—H17C0.9800
C4—C51.389 (2)C81—C861.3943 (18)
C4—H40.9500C81—C821.3964 (18)
C5—C61.385 (2)C82—C831.3913 (19)
C5—H50.9500C82—H820.9500
C6—C71.3923 (18)C83—C841.387 (2)
C6—H60.9500C83—H830.9500
C7—H70.9500C84—C851.383 (2)
C8—C91.4616 (17)C84—H840.9500
C8—C811.4922 (17)C85—C861.3896 (19)
C9—C101.3422 (17)C85—H850.9500
C9—H90.9500C86—H860.9500
C10—C111.4643 (17)
C14—O18—C17117.36 (10)C12—C11—C10119.68 (11)
C1—N1—C2125.97 (10)C13—C12—C11121.53 (11)
C1—N1—H1N115.3 (11)C13—C12—H12119.2
C2—N1—H1N118.7 (11)C11—C12—H12119.2
C1—N2—N3118.57 (10)C12—C13—C14119.87 (11)
C1—N2—H2N116.4 (10)C12—C13—H13120.1
N3—N2—H2N125.0 (10)C14—C13—H13120.1
C8—N3—N2119.61 (10)O18—C14—C13115.85 (11)
O1—C1—N1124.31 (11)O18—C14—C15124.21 (11)
O1—C1—N2120.62 (11)C13—C14—C15119.94 (11)
N1—C1—N2115.07 (10)C16—C15—C14119.58 (11)
C7—C2—C3120.00 (12)C16—C15—H15120.2
C7—C2—N1118.66 (11)C14—C15—H15120.2
C3—C2—N1121.19 (12)C15—C16—C11121.45 (12)
C4—C3—C2119.51 (13)C15—C16—H16119.3
C4—C3—H3120.2C11—C16—H16119.3
C2—C3—H3120.2O18—C17—H17A109.5
C5—C4—C3120.59 (13)O18—C17—H17B109.5
C5—C4—H4119.7H17A—C17—H17B109.5
C3—C4—H4119.7O18—C17—H17C109.5
C6—C5—C4119.72 (12)H17A—C17—H17C109.5
C6—C5—H5120.1H17B—C17—H17C109.5
C4—C5—H5120.1C86—C81—C82118.53 (11)
C5—C6—C7120.25 (13)C86—C81—C8121.24 (11)
C5—C6—H6119.9C82—C81—C8120.23 (11)
C7—C6—H6119.9C83—C82—C81120.48 (12)
C2—C7—C6119.87 (12)C83—C82—H82119.8
C2—C7—H7120.1C81—C82—H82119.8
C6—C7—H7120.1C84—C83—C82120.22 (12)
N3—C8—C9125.20 (11)C84—C83—H83119.9
N3—C8—C81114.57 (11)C82—C83—H83119.9
C9—C8—C81120.09 (10)C85—C84—C83119.78 (12)
C10—C9—C8123.70 (11)C85—C84—H84120.1
C10—C9—H9118.2C83—C84—H84120.1
C8—C9—H9118.2C84—C85—C86120.07 (13)
C9—C10—C11125.93 (11)C84—C85—H85120.0
C9—C10—H10117.0C86—C85—H85120.0
C11—C10—H10117.0C85—C86—C81120.88 (13)
C16—C11—C12117.59 (11)C85—C86—H86119.6
C16—C11—C10122.64 (11)C81—C86—H86119.6
C1—N2—N3—C8172.44 (11)C10—C11—C12—C13177.65 (11)
C2—N1—C1—O110.4 (2)C11—C12—C13—C142.34 (19)
C2—N1—C1—N2169.88 (12)C17—O18—C14—C13163.67 (12)
N3—N2—C1—O1176.21 (11)C17—O18—C14—C1515.55 (17)
N3—N2—C1—N14.07 (16)C12—C13—C14—O18177.07 (11)
C1—N1—C2—C7144.18 (13)C12—C13—C14—C152.19 (18)
C1—N1—C2—C340.29 (19)O18—C14—C15—C16178.53 (11)
C7—C2—C3—C41.68 (19)C13—C14—C15—C160.66 (18)
N1—C2—C3—C4173.79 (11)C14—C15—C16—C110.76 (19)
C2—C3—C4—C50.48 (19)C12—C11—C16—C150.63 (18)
C3—C4—C5—C61.7 (2)C10—C11—C16—C15175.98 (12)
C4—C5—C6—C70.7 (2)N3—C8—C81—C86127.82 (13)
C3—C2—C7—C62.62 (19)C9—C8—C81—C8656.24 (16)
N1—C2—C7—C6172.96 (11)N3—C8—C81—C8251.92 (16)
C5—C6—C7—C21.42 (19)C9—C8—C81—C82124.02 (12)
N2—N3—C8—C93.18 (18)C86—C81—C82—C830.97 (18)
N2—N3—C8—C81178.88 (10)C8—C81—C82—C83179.28 (11)
N3—C8—C9—C10154.62 (12)C81—C82—C83—C841.90 (19)
C81—C8—C9—C1020.85 (18)C82—C83—C84—C851.1 (2)
C8—C9—C10—C11169.19 (11)C83—C84—C85—C860.6 (2)
C9—C10—C11—C169.05 (19)C84—C85—C86—C811.6 (2)
C9—C10—C11—C12174.41 (12)C82—C81—C86—C850.76 (19)
C16—C11—C12—C130.93 (18)C8—C81—C86—C85178.98 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C81–C86 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.87 (1)2.18 (2)2.6029 (15)110 (1)
N2—H2N···O1i0.88 (1)2.05 (1)2.9184 (14)171 (1)
C9—H9···O1i0.952.393.2913 (15)159
C15—H15···Cg1i0.952.883.5125 (14)125
C6—H6···Cg2ii0.952.923.8296 (14)161
C12—H12···Cg1iii0.952.753.4715 (14)133
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y+1, z+1.
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···H50.2
C···H/H···C31.6
O···H/H···O10.7
N···H/H···N4.2
N···O /O···N0.9
C···O/O···C0.9
C···C0.8
C···N/N···C0.7
Summary of short interatomic contacts (Å) in (I) top
ContactDistanceSymmetry operation
C17···N33.1147 (18)3/2 - x, -1/2 + y, 1/2 - z
C9···H822.721 - x, 1 - y, 1 - z
H86···H862.261 - x, 1 - y, -z
H12···H17C2.26-1/2 + x, 1/2 - y, -1/2 + z
O1···H162.612 - x, 1 - y, 1 - z
O18···H842.671/2 - x, -1/2 + y, 1/2 - z
C8···H822.871 - x, 1 - y, 1 - z
C12···H17C2.79-1/2 + x, 1/2 - y, - 1/2 + z
 

Footnotes

Additional correspondence author, e-mail: thahira@upm.edu.my.

Acknowledgements

We thank the staff of the University of Malaya's X-ray diffraction laboratory for the data collection.

Funding information

The authors are grateful for support from the Universiti Putra Malaysia, under their Research University Grant Scheme (RUGS Nos 9199834 and 9174000) and to the Malaysian Ministry of Science, Technology and Innovation (grants No. 09–02-04–0752-EA001 and 01-01-16-1833FR).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationChai, H., Liu, G., Liu, L., Jia, D., Guo, Z. & Lang, J. (2005). J. Mol. Struct. 752, 124–129.  Web of Science CSD CrossRef CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGaonkar, S. L. & Vignesh, U. N. (2017). Res .Chem. Intermed. https://doi. org/10.1007/s11164-017-2977-5.
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationKumar, A., Gupta, V., Singh, S. & Gupta, Y. (2017). Asia. J. Rese. Chem. 10, 225–239.  CrossRef
First citationLi, J., Li, D., Xu, Y., Guo, Z., Liu, X., Yang, H., Wu, L. & Wang, L. (2017). Bioorg. Med. Chem. Lett. 27, 602–606.  Web of Science CrossRef CAS PubMed
First citationMahapatra, D. K., Bharti, S. K. & Asati, V. (2015). Eur. J. Med. Chem. 98, 69–114.  Web of Science CrossRef CAS PubMed
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef
First citationSharma, C., Verma, T., Singh, H. & Kumar, N. (2014). Med. Chem. Res. 23, 4814–4824.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSingh, H. P., Singhal, M., Chauhan, C., Pandey, S., Paul, A. & Sharma, Y. C. S. (2010). Pharmacologyonline, 1, 448–458.
First citationSinghal, M., Paul, A., Tiwari, A. K. & Songara, R. K. (2011). Res. Rev. BioSciences, 5, 131–133.  CAS
First citationSyahri, J., Rullah, K., Armunanto, R., Yuanita, E., Nurohmah, B. A., Mohd Aluwi, M. F. F., Wai, L. K. & Purwono, B. (2017). Asia. Pac. J. Trop. Dis. 7, 8–13.  CrossRef
First citationTan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001–1008.  Web of Science CSD CrossRef IUCr Journals
First citationTan, M. Y., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o1047–o1048.  Web of Science CSD CrossRef IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationXie, Z., Luo, X., Zou, Z., Zhang, X., Huang, F., Li, R., Liao, S. & Liu, Y. (2017). Bioorg. Med. Chem. Lett. 27, 3602–3606.  Web of Science CrossRef CAS PubMed
First citationZhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810.  Web of Science CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds