research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ2-Bis(di­phenyl­phosphan­yl)hexa­ne]bis­­[undeca­carbonyl-triangulo-triruthenium(3 RuRu)] hexane monosolvate: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 October 2017; accepted 9 October 2017; online 20 October 2017)

In the title cluster complex hexane solvate, [Ru6(C30H32P2)(CO)22]·C6H14, two Ru3(CO)11 fragments are linked by a Ph2P(CH2)6PPh2 bridge with the P atoms equatorially disposed with respect to the Ru3 triangle in each case; the hexane solvent mol­ecule is statistically disordered. The Ru⋯Ru distances span a relatively narrow range, i.e. 2.8378 (4) to 2.8644 (4) Å. The hexyl chain within the bridge has an all-trans conformation. In the mol­ecular packing, C—H⋯O inter­actions between cluster mol­ecules, and between cluster and hexane solvent mol­ecules lead to a three-dimensional architecture. In addition, there are a large number of C≡O⋯π(arene) inter­actions in the crystal. The importance of the carbonyl groups in establishing the packing is emphasized by the contribution of 53.4% to the Hirshfeld surface by O⋯H/H⋯O contacts.

1. Chemical context

In the realm of cluster chemistry, diphosphane ligands are known to maintain the integrity of the metal core during chemical reactions (Kabir & Hogarth, 2009[Kabir, S. E. & Hogarth, G. (2009). Coord. Chem. Rev. 253, 1285-1315.]). In the solid state, diphosphane ligands are known to adopt a variety of bonding modes towards triruthenium clusters, including monodentate, chelating, edge-bridging and linking two clusters (Bruce et al., 1982[Bruce, M. I., Hambley, T. W., Nicholson, B. K. & Snow, M. R. (1982). J. Organomet. Chem. 235, 83-91.]; Lozano Diz et al., 2001[Lozano Diz, E., Neels, A., Stoeckli-Evans, H. & Süss-Fink, G. (2001). Polyhedron, 20, 2771-2780.]; Shawkataly et al., 2012[Shawkataly, O. bin, Sirat, S. S., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, m629-m630.]). The motivation for studying triruthenium cluster complexes containing diphosphane ligands arises primarily due to these complexes making attractive starting materials for further reactivity studies (Kabir & Hogarth, 2009[Kabir, S. E. & Hogarth, G. (2009). Coord. Chem. Rev. 253, 1285-1315.]; Rajbangshi et al., 2015[Rajbangshi, S., Ghosh, S., Hogarth, G. & Kabir, S. E. (2015). J. Clust. Sci. 26, 169-185.], Shawkataly et al., 2016[Shawkataly, O. bin, Sirat, S. S., Rosli, M. M. & Razak, I. A. (2016). Polyhedron, 117, 193-201.]). Despite this, only relatively few compounds with diphosphane ligands connecting two tri­ruthenium clusters have been structurally characterized (Bruce et al., 1982[Bruce, M. I., Hambley, T. W., Nicholson, B. K. & Snow, M. R. (1982). J. Organomet. Chem. 235, 83-91.]; Van Calcar et al., 1998[Van Calcar, P. M., Olmstead, M. M. & Balch, A. L. (1998). Inorg. Chim. Acta, 270, 28-33.]; O'Connor et al., 2003[O'Connor, A. R., Nataro, C. & Rheingold, A. L. (2003). J. Organomet. Chem. 679, 72-78.]; Kakizawa et al., 2015[Kakizawa, T., Hashimoto, H. & Tobita, H. (2015). Inorg. Chim. Acta, 425, 7-10.]). Our inter­est in synthesizing the title [Ru3(CO)11]2[Ph2P(CH2)6PPh2] cluster is to enable a com­parison of the structural variations that arise from lengthening of the organic backbone in the diphosphane ligand. Furthermore, the joining of smaller cluster units with such spacer ligands is a useful method for the construction of larger aggregates (Bruce et al., 1985[Bruce, M. I., Williams, M. L., Patrick, J. M. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 1229-1234.]; Kakizawa et al., 2015[Kakizawa, T., Hashimoto, H. & Tobita, H. (2015). Inorg. Chim. Acta, 425, 7-10.]). In the present study, two triruthenium cluster units were successfully connected through a bidentate bridging Ph2P(CH2)6PPh2 ligand in the compound [Ru3(CO)11]2[Ph2P(CH2)6PPh2], which was isolated as a 1:1 n-hexane solvate, (I)[link]. Herein, the crystal and mol­ecular structures of (I)[link] are described, as well as an analysis of the calculated Hirshfeld surface.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the cluster mol­ecule in (I)[link] is shown in Fig. 1[link]. The asymmetric unit comprises two Ru3(CO)11 cluster mol­ecules linked by a Ph2P(CH2)6PPh2 bridge and a hexane mol­ecule which is statistically disordered over two sets of sites. The phosphane P atom occupies a position effectively coplanar with the Ru3 core in each case, i.e. an equatorial site. The two Ru3 cluster residues are each constructed about a triangular Ru3 core, and the Ru–Ru edges span a relatively narrow range of distances, i.e. 2.8378 (4) Å for Ru2⋯Ru3 to 2.8644 (4) Å, for Ru1⋯Ru3. Each of the carbonyl ligands occupies a terminal position, with the Ru—C≡O angles ranging from 169.7 (4)° for Ru—C10≡O10 to 179.4 (4)° for Ru5—C18≡O18. The hexyl chain in the diphosphane ligand has an all-trans conformation, with the P1/P2—C—C—C torsion angles being −177.8 (3) and 175.5 (2)°, respectively, and the C—C—C—C torsion angles ranging from 173.7 (3)° for C33—C34—C35—C36 to −177.4 (3)° for C32—C33—C34—C35. The consequence of this is that the pairs of P-bound phenyl rings lie to either side of the chain.

[Figure 1]
Figure 1
The mol­ecular structure of the Ru6 cluster mol­ecule in (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

The mol­ecular packing of (I)[link] comprises a complex network of C—H⋯O and C≡O⋯π inter­actions. The C—H donors for the C—H⋯O inter­actions are either methyl­ene- or phenyl-H, Table 1[link], and by themselves define a three-dimensional architecture, Fig. 2[link]. Additional stability to the crystal is provided by a number of C≡O⋯π(arene) inter­actions, either with end-on or side-on approaches. Further discussion and details of the identified C≡O⋯π(arene) inter­actions are found below in Analysis of the Hirshfeld surface (§4[link]). The closest inter­actions between the cluster mol­ecule and the solvent hexane mol­ecule are of the type solvent-methyl­ene-C—H⋯O(carbon­yl), Table 1[link]. The solvent mol­ecules reside in cavities defined by the cluster mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 the ring centroids of the C41–C46 and C51–C56 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C35—H35B⋯O20i 0.99 2.60 3.297 (5) 128
C36—H36B⋯O4ii 0.99 2.54 3.393 (4) 144
C42—H42⋯O7iii 0.95 2.56 3.401 (5) 148
C52—H52⋯O19iv 0.95 2.52 3.448 (4) 167
C55—H55⋯O14i 0.95 2.54 3.278 (5) 134
C62—H62⋯O18v 0.95 2.59 3.501 (5) 161
C82X—H82D⋯O8vi 0.99 2.55 3.391 (16) 143
C81X—H81F⋯O17vii 0.98 2.59 3.48 (2) 150
C82X—H82C⋯O11viii 0.99 2.59 3.528 (14) 157
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+1, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x+1, -y+1, -z+1; (vii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (viii) x-1, y, z+1.
[Figure 2]
Figure 2
A view of the unit-cell contents shown in projection down the b axis. The C—H⋯O inter­actions are shown as blue dashed lines.

4. Analysis of the Hirshfeld surface

The Hirshfeld surface calculations of (I)[link] were performed in accord with a recent publication on a related heavy-atom complex and its dioxane solvate (Jotani et al., 2017[Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2017). Z. Kristallogr. 232, 287-298.]). The presence of the carbonyl groups in (I)[link] lead to their participation in C—H⋯O, C≡O⋯π and C⋯O/O⋯C inter­actions, and the Hirshfeld surfaces mapped over dnorm, Fig. 3[link], indicate the influence of these in the crystal. Of the C—H⋯O inter­actions summarized in Table 1[link], the donors and acceptors of more influential contacts are viewed as bright-red spots near the phenyl-H52 and C55, diphosphane-hexyl-H32B and C82X, and carbonyl-O4, O8, O14 and O19 atoms, whereas the comparatively weak C—H⋯O contacts are viewed as faint-red spots near the phenyl-C42, hexane-C81X and C82X, and carbonyl-O7, O11 and O17 atoms in Fig. 3[link]. In addition, the presence of bright-red spots near the O2, O13, O21 and C21 atoms and the diminutive-red spots near the O1, O4, O19 and C15 atoms in Fig. 3[link], are also indicative of short inter-atomic O⋯O and C⋯O/O⋯C contacts effective in the crystal. The donors and acceptors of inter­molecular inter­actions can also be viewed as blue and red regions, respectively, on the Hirshfeld surface mapped over electrostatic potential for the cluster mol­ecule in Fig. 4[link]a, and for the hexane mol­ecule in Fig. 4[link]b. Two intra­molecular C—O⋯π contacts, i.e. one between carbonyl-O9 and the phenyl C51–C56 ring, and the other between carbonyl-O21 and the phenyl C71–C76 ring are also illustrated through black, dotted lines in Fig. 4[link]a. The cavity occupied by the hexane mol­ecule, showing the relevant C—H⋯O contacts, Table 1[link], is highlighted in Fig. 5[link].

[Figure 3]
Figure 3
Views of the Hirshfeld surface mapped over dnorm: (a) and (b) showing different orientations of the Ru6 cluster mol­ecule in (I)[link] over the range −0.062 to 1.417 au, and (c) for the solvent hexane mol­ecule in the range −0.033 to 1.345 au.
[Figure 4]
Figure 4
Views of the Hirshfeld surface mapped over the electrostatic potential for (a) the Ru6 cluster mol­ecule in (I)[link], in the range ±0.046 au, and (b) the solvent hexane mol­ecule in the range ±0.147 au. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 5]
Figure 5
A view of Hirshfeld surface mapped over dnorm about a hexane mol­ecule within a cavity defined by Ru6-cluster mol­ecules and showing inter­molecular C—H⋯O contacts as black dashed lines.

The overall two-dimensional fingerprint plots for the cluster mol­ecule alone and for (I)[link] are shown in Fig. 6[link]a and clearly indicate the significance of the solvent mol­ecule on the packing. This is also evident from the percentage contribution from the different surface contacts summarized in Table 2[link] and from the fingerprint plots delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, C⋯O/O⋯C and O⋯O contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) in Figs. 6[link]bf, respectively. The inclusion of the hexane mol­ecule in the Hirshfeld surface calculations increases the relative contributions from O⋯H/H⋯O, H⋯H and C⋯H/H⋯C contacts but decreases those contributed by O⋯O and C⋯O/O⋯C contacts. This observations arises as a result of the participation of the solvent mol­ecule in inter­atomic H⋯H and C⋯H/H⋯C contacts, Table 3[link], and in the inter­molecular C—H⋯O inter­actions listed in Table 1[link].

Table 2
Percentage contributions of interatomic contacts to the Hirshfeld surfaces for (I)[link] without hexane and for (I)

Contact (I) without hexa­ne (I)
O⋯H/H⋯O 52.8 53.4
H⋯H 18.3 19.9
O⋯O 11.8 10.3
C⋯O/O⋯C 8.9 7.8
C⋯H/H⋯C 6.9 7.4
C⋯C 1.3 1.2

Table 3
Summary of short inter-atomic (Å) in (I)[link]

Contact Distance Symmetry operation
O1⋯C15 3.196 (5) 1 + x, [{3\over 2}] − y, − [{1\over 2}] + z
O1⋯O19 3.009 (4) 1 + x, [{3\over 2}] − y, − [{1\over 2}] + z
O2⋯O2 2.900 (4) 2 − x, 1 − y, 1 − z
O4⋯O18 3.024 (4) 1 + x, [{3\over 2}] − y, − [{1\over 2}] + z
O7⋯H42 2.62 2 − x, − [{1\over 2}] + y, [{1\over 2}] − z
O8⋯H43 2.62 2 − x, − [{1\over 2}] + y, [{1\over 2}] − z
O13⋯O21 2.970 (5) x, [{3\over 2}] − y, − [{1\over 2}] + z
O13⋯C21 3.156 (5) x, [{3\over 2}] − y, − [{1\over 2}] + z
C8⋯H83B 2.86 1 + x, y, −1 + z
C10⋯H83A 2.87 1 − x, 1 − y, 1 − z
H35B⋯H63 2.38 1 − x, 1 − y, 1 − z
H55⋯H86D 2.39 1 − x, 1 − y, 1 − z
H73⋯H84C 2.30 1 − x, 1 − y, 2 − z
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plots for (I)[link] less hexane (left-hand column) and for (I)[link], and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) C⋯O/O⋯C and (f) O⋯O contacts.

The two pairs of short peaks at de + di ∼ 2.3 and 2.4 Å in the fingerprint plot for (I)[link] delineated into H⋯H contacts, Fig. 6[link]b (right-column) indicate the presence of short inter­atomic contacts involving phenyl- and hexane-hydrogen atoms. The greatest contribution of 53.4% to the Hirshfeld surface of (I)[link] is from O⋯H/H⋯O contacts and these are characterized as two specific types of inter­actions leading to two distinct distributions of points in the delineated fingerprint plot of Fig. 6[link]c. The pair of sharp spikes having green aligned points within the plot and with tips at de + di ∼ 2.5 Å are the result of C—H⋯O inter­actions involving cluster-bound atoms as donors and acceptors; the points corresponding to short inter­atomic weak C—H⋯O contacts (Table 1[link]) and O⋯H/H⋯O contacts (Table 3[link]) are merged within the plot. On the other hand, the exterior portion with broad tips at de + di ∼ 2.6 Å are due to C—H⋯O inter­actions involving hexane-bound atoms as donors and carbonyl- oxygen atoms as acceptors. The comparison of O⋯H/H⋯O delineated fingerprint plots for in Fig. 6[link]c confirm this observation.

The involvement of hexane-H83A and H83B atoms in the short inter­atomic C⋯H/H⋯C contacts (Table 3[link]) results in forceps-like peaks at de + di ∼ 2.9 Å in the delineated fingerprint, Fig. 6[link]d. The 7.8% contribution from C⋯O/O⋯C contacts to the Hirshfeld surface of (I)[link] is due to the involvement of all carbonyl-O atoms (except O5) either in short inter­atomic C⋯O/O⋯C contacts, Table 3[link], or in end-on or side-on C≡O⋯π inter­actions, summarized in Table 4[link]. The impact of end-on metal-C≡O⋯π(arene) inter­actions upon supra­molecular aggregation patterns has been addressed in the recent literature (Zukerman-Schpector et al., 2011[Zukerman-Schpector, J., Haiduc, I. & Tiekink, E. R. T. (2011). Chem. Commun. 47, 12682-12684.], 2012[Zukerman-Schpector, J., Haiduc, I. & Tiekink, E. R. T. (2012). Adv. Organomet. Chem., 60, 49-92.]). The pair of sharp, forceps-like tips at de + di ∼ 3.0 Å in the fingerprint plots delineated into C⋯O/O⋯C contacts, Fig. 6[link]e, represent short C⋯O/O⋯C contacts involving carbonyl-O1, O13, C15 and C21 atoms while the points distributed in adjoining parabolic form around (de, di) = (1.8, 2.0 Å) and (2.0, 1.8 Å) represent C≡O⋯π inter­actions, Table 4[link]. The fingerprint plot delineated into O⋯O contacts, Fig. 6[link]f, has a distribution of points within the rocket-shape with the tip at de + di ∼ 2.9 Å, extending up to 3.0 Å, and is the result of significant short O⋯O contacts summarized in Table 3[link]. The small contribution from C⋯C contacts on the Hirshfeld surfaces of (I)[link] has a negligible effect on the packing.

Table 4
Summary of short interatomic C≡O⋯π contacts (Å, °) in (I)[link]

Cg1–Cg4 the ring centroids of the C41–C46, C51–C56, C61–C66 and C71–C76 rings, respectively.

C O Cg O⋯Cg C—O⋯Cg C⋯Cg Symmetry operation
C3 O3 Cg3 3.756 (4) 161.0 (3) 4.839 (5) 1 − x, 1 − y, 1 − z
C7 O7 Cg2 3.564 (4) 100.1 (3) 3.928 (4) 2 − x, − [{1\over 2}] + y, [{1\over 2}] − z
C9 O9 Cg2 3.228 (3) 94.2 (2) 3.499 (4) x, y, z
C18 O18 Cg4 3.707 (3) 97.6 (3) 4.015 (5) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z
C19 O19 Cg1 3.554 (3) 146.0 (3) 4.546 (5) −1 + x, [{3\over 2}] − y, [{1\over 2}] + z
C20 O20 Cg3 3.671 (4) 146.6 (4) 4.664 (4) x, [{3\over 2}] − y, [{1\over 2}] + z
C21 O21 Cg4 3.074 (4) 98.3 (3) 3.424 (4) x, y, z

5. Database survey

The most closely related structure in the literature is that of the dppe (Ph2PCH2CH2PPh2) analogue, i.e. Ru3(CO)11(dppe)Ru3(CO)11 (Van Calcar et al., 1998[Van Calcar, P. M., Olmstead, M. M. & Balch, A. L. (1998). Inorg. Chim. Acta, 270, 28-33.]). The centrosymmetric mol­ecule presents the same key features as described above for the cluster mol­ecule in (I)[link]. There are only a handful of structures whereby two triangular clusters are bridged by a Ph2P(CH2)6PPh2 ligand as in (I)[link]. The most closely related of these to the present report is formulated as Fe3(CO)11(Ph2P(CH2)6PPh2)Fe3(CO)11 (Ferguson et al., 1991[Ferguson, G., Hourihane, R. & Spalding, T. R. (1991). Acta Cryst. C47, 544-547.]). The difference in this centrosymmetric mol­ecule, cf. (I)[link], is that there are two μ2-bridging carbonyls connecting the Fe atom bonded to P to one of the other Fe atoms of the triangle; the remaining Fe atom is bound to four terminal carbonyl ligands as in (I)[link].

6. Synthesis and crystallization

The reagents Ru3(CO)12 (200.0 mg, 0.0003 mol) and Ph2P(CH2)6PPh2 (70.0 mg, 0.0002 mol) were mixed in distilled tetra­hydro­furan (25 ml). The reaction mixture was treated dropwise with sodium di­phenyl­ketyl solution until the colour of the mixture turned from orange to dark-red followed by stirring for 30 min. The reaction was monitored by thin-layer chromatography (TLC). The solvent was removed under reduced pressure and the product was separated by preparative TLC (2:3 di­chloro­methane:n-hexa­ne) to afford three bands. The second band was characterized as [Ru3(CO)11]2(Ph2P(CH2)6PPh2). Orange laths were grown by solvent/solvent diffusion of CH2Cl2/n-hexane at 283 K. Analysis calculated for C52H32O22P2Ru6·C6H14: C 39.51, H 2.63%; found: C 38.45, H 1.53%. ATR–IR [cm−1]: ν(CO) 2093 (s), 2038 (m), 1957 (br). 1H NMR (CDCl3): δ 7.52–7.41 (m, 20H, Ph), 2.37–2.33 (m, 4H, CH2), 1.26–1.13 (m, 8H, CH2). 31P{1H} (CDCl3): δ 26.83 (s).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The hexane mol­ecule was statistically disordered over two sites and the atomic positions of each were refined independently but, the C—C bond lengths for each component were refined with the distance restraint C—C = 1.50±0.005 Å. The anisotropic displacement parameters were restrained to be almost isotropic and those for matching atoms to be similar. Owing to poor agreement, one reflection, i.e. [\overline{2}]54, was omitted from the final cycles of refinement. The maximum and minimum residual electron density peaks of 2.43 and 1.32 e Å−3, respectively, were located 1.34 and 0.50 Å from the C22 and Ru6 atoms, respectively.

Table 5
Experimental details

Crystal data
Chemical formula [Ru6(C30H32P2)(CO)22]·C6H14
Mr 1763.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 14.5323 (4), 23.3731 (6), 19.1883 (4)
β (°) 93.653 (1)
V3) 6504.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.48
Crystal size (mm) 0.61 × 0.48 × 0.09
 
Data collection
Diffractometer Bruker SMART APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.466, 0.880
No. of measured, independent and observed [I > 2σ(I)] reflections 78116, 19875, 14916
Rint 0.047
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.097, 1.01
No. of reflections 19875
No. of parameters 851
No. of restraints 232
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.43, −1.32
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Bis(diphenylphosphanyl)hexane]bis[undecacarbonyl-triangulo-triruthenium(3 RuRu)] hexane monosolvate top
Crystal data top
[Ru6(C30H32P2)(CO)22]·C6H14F(000) = 3456
Mr = 1763.31Dx = 1.801 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.5323 (4) ÅCell parameters from 9961 reflections
b = 23.3731 (6) Åθ = 2.3–30.5°
c = 19.1883 (4) ŵ = 1.48 mm1
β = 93.653 (1)°T = 100 K
V = 6504.3 (3) Å3Lath, orange
Z = 40.61 × 0.48 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
19875 independent reflections
Radiation source: fine-focus sealed tube14916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 30.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2020
Tmin = 0.466, Tmax = 0.880k = 3324
78116 measured reflectionsl = 2727
Refinement top
Refinement on F2232 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0336P)2 + 15.8643P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.003
19875 reflectionsΔρmax = 2.43 e Å3
851 parametersΔρmin = 1.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru11.00620 (2)0.55309 (2)0.32612 (2)0.01502 (6)
Ru21.03733 (2)0.43753 (2)0.28780 (2)0.01907 (6)
Ru31.02396 (2)0.52319 (2)0.18283 (2)0.01861 (6)
Ru40.44772 (2)0.73619 (2)0.66392 (2)0.01666 (6)
Ru50.43523 (2)0.85302 (2)0.70390 (2)0.02018 (7)
Ru60.45413 (2)0.76646 (2)0.80837 (2)0.02177 (7)
P10.95575 (6)0.64831 (4)0.33370 (4)0.01513 (17)
P20.49391 (6)0.64017 (4)0.66137 (4)0.01546 (17)
O11.19315 (19)0.60410 (11)0.29484 (15)0.0285 (6)
O21.0800 (2)0.52828 (12)0.47441 (13)0.0290 (6)
O30.8119 (2)0.50828 (13)0.35164 (16)0.0366 (7)
O41.22972 (19)0.47647 (12)0.34408 (15)0.0292 (6)
O50.9991 (2)0.38167 (12)0.42725 (15)0.0364 (7)
O60.8389 (2)0.41183 (14)0.22927 (17)0.0411 (8)
O71.1266 (3)0.33838 (13)0.21263 (18)0.0459 (9)
O80.9924 (3)0.43736 (14)0.06391 (17)0.0514 (9)
O91.0394 (2)0.62774 (12)0.08849 (14)0.0345 (7)
O100.8182 (2)0.54838 (13)0.19471 (16)0.0360 (7)
O111.2344 (2)0.50741 (15)0.18357 (16)0.0408 (8)
O120.2536 (2)0.69344 (13)0.69138 (17)0.0369 (7)
O130.3899 (3)0.75663 (14)0.51156 (15)0.0439 (8)
O140.6441 (2)0.77508 (14)0.63612 (18)0.0406 (8)
O150.23144 (19)0.82740 (12)0.66258 (15)0.0322 (7)
O160.6403 (2)0.87491 (14)0.74621 (18)0.0433 (8)
O170.4574 (3)0.90584 (15)0.56021 (16)0.0492 (9)
O180.3902 (2)0.95585 (13)0.79409 (16)0.0361 (7)
O190.2442 (2)0.77232 (14)0.81832 (17)0.0412 (8)
O200.4848 (3)0.85964 (15)0.91846 (16)0.0458 (8)
O210.4486 (3)0.66222 (14)0.90389 (17)0.0498 (9)
O220.6593 (2)0.74167 (15)0.79230 (17)0.0432 (8)
C11.1235 (3)0.58298 (15)0.30176 (18)0.0203 (7)
C21.0482 (3)0.53920 (15)0.41972 (19)0.0207 (7)
C30.8833 (3)0.52326 (16)0.34013 (19)0.0244 (8)
C41.1568 (3)0.46479 (15)0.32219 (18)0.0221 (8)
C51.0143 (3)0.40244 (16)0.3759 (2)0.0264 (8)
C60.9118 (3)0.42326 (17)0.2501 (2)0.0286 (9)
C71.0891 (3)0.37462 (17)0.2386 (2)0.0304 (9)
C81.0043 (3)0.46885 (17)0.1088 (2)0.0319 (9)
C91.0320 (3)0.59062 (16)0.12569 (19)0.0241 (8)
C100.8953 (3)0.53866 (17)0.1970 (2)0.0282 (8)
C111.1571 (3)0.51251 (17)0.18660 (19)0.0265 (8)
C120.3258 (3)0.71177 (16)0.6847 (2)0.0238 (8)
C130.4142 (3)0.74812 (16)0.5685 (2)0.0254 (8)
C140.5708 (3)0.76263 (17)0.6500 (2)0.0278 (8)
C150.3077 (3)0.83411 (16)0.6796 (2)0.0253 (8)
C160.5653 (3)0.86347 (17)0.7305 (2)0.0292 (9)
C170.4476 (3)0.88626 (17)0.6131 (2)0.0298 (9)
C180.4064 (3)0.91780 (17)0.7609 (2)0.0270 (8)
C190.3214 (3)0.77160 (17)0.8105 (2)0.0280 (8)
C200.4736 (3)0.82438 (19)0.8778 (2)0.0317 (9)
C210.4514 (3)0.69921 (18)0.8662 (2)0.0322 (9)
C220.5825 (3)0.75258 (19)0.7934 (2)0.0323 (9)
C310.8391 (2)0.65704 (16)0.36328 (17)0.0198 (7)
H31A0.81870.69700.35440.024*
H31B0.79650.63160.33540.024*
C320.8319 (2)0.64348 (16)0.44098 (17)0.0200 (7)
H32A0.85400.60400.45050.024*
H32B0.87210.67000.46930.024*
C330.7331 (2)0.64916 (16)0.46227 (18)0.0205 (7)
H33A0.69430.62020.43680.025*
H33B0.70930.68740.44820.025*
C340.7245 (2)0.64145 (15)0.54074 (17)0.0187 (7)
H34A0.76090.67160.56620.022*
H34B0.75080.60390.55530.022*
C350.6248 (2)0.64463 (16)0.56047 (18)0.0206 (7)
H35A0.60090.68370.55050.025*
H35B0.58730.61760.53090.025*
C360.6130 (2)0.63060 (15)0.63721 (18)0.0192 (7)
H36A0.65410.65560.66690.023*
H36B0.63200.59050.64640.023*
C411.0235 (2)0.69543 (15)0.39386 (17)0.0178 (7)
C420.9948 (3)0.75128 (16)0.4016 (2)0.0293 (9)
H420.94200.76490.37500.035*
C431.0428 (3)0.78771 (18)0.4483 (2)0.0368 (11)
H431.02330.82630.45250.044*
C441.1183 (3)0.76827 (17)0.4884 (2)0.0305 (9)
H441.15000.79300.52110.037*
C451.1476 (3)0.71272 (17)0.4806 (2)0.0315 (9)
H451.20040.69920.50740.038*
C461.1000 (3)0.67627 (15)0.4335 (2)0.0228 (8)
H461.12040.63790.42860.027*
C510.9510 (2)0.68938 (14)0.25241 (17)0.0173 (7)
C521.0284 (2)0.71912 (15)0.23321 (18)0.0188 (7)
H521.08300.71910.26310.023*
C531.0260 (3)0.74909 (16)0.17011 (19)0.0230 (8)
H531.07910.76910.15710.028*
C540.9466 (3)0.74960 (16)0.12667 (19)0.0224 (8)
H540.94500.76990.08370.027*
C550.8700 (3)0.72062 (17)0.1459 (2)0.0264 (8)
H550.81530.72140.11600.032*
C560.8712 (3)0.69031 (16)0.20788 (19)0.0227 (7)
H560.81770.67020.22010.027*
C610.4299 (3)0.59277 (15)0.59983 (18)0.0195 (7)
C620.4556 (3)0.53561 (17)0.5971 (2)0.0305 (9)
H620.50570.52210.62680.037*
C630.4089 (4)0.49828 (18)0.5516 (2)0.0394 (11)
H630.42760.45940.55000.047*
C640.3367 (4)0.51669 (19)0.5091 (2)0.0433 (12)
H640.30440.49070.47840.052*
C650.3106 (4)0.5728 (2)0.5107 (3)0.0520 (15)
H650.26060.58590.48060.062*
C660.3571 (3)0.61109 (18)0.5565 (2)0.0351 (10)
H660.33820.65000.55750.042*
C710.4879 (3)0.59843 (15)0.74115 (18)0.0205 (7)
C720.5653 (3)0.58703 (18)0.78570 (19)0.0272 (8)
H720.62370.60230.77580.033*
C730.5570 (3)0.55321 (19)0.8449 (2)0.0353 (10)
H730.60990.54540.87500.042*
C740.4733 (3)0.53110 (18)0.8601 (2)0.0370 (11)
H740.46810.50830.90060.044*
C750.3964 (3)0.54226 (19)0.8160 (2)0.0366 (10)
H750.33840.52680.82630.044*
C760.4031 (3)0.57533 (18)0.7575 (2)0.0290 (9)
H760.34960.58270.72780.035*
C810.239 (2)0.5739 (10)0.972 (2)0.118 (7)0.5
H81A0.28920.60130.96530.176*0.5
H81B0.19920.58851.00660.176*0.5
H81C0.20340.56870.92700.176*0.5
C820.2797 (11)0.5176 (7)0.9954 (10)0.090 (4)0.5
H82A0.32930.50650.96500.108*0.5
H82B0.30700.52141.04380.108*0.5
C830.2068 (10)0.4723 (5)0.9928 (8)0.080 (3)0.5
H83A0.17520.47160.94550.096*0.5
H83B0.16040.48191.02650.096*0.5
C840.2456 (14)0.4140 (6)1.0095 (12)0.070 (4)0.5
H84A0.24670.41481.06110.084*0.5
H84B0.19160.38990.99540.084*0.5
C850.3221 (10)0.3725 (6)0.9994 (11)0.084 (4)0.5
H85A0.38050.38781.02120.101*0.5
H85B0.32970.36750.94880.101*0.5
C860.3012 (11)0.3156 (5)1.0314 (7)0.071 (3)0.5
H86A0.33700.28561.00990.106*0.5
H86B0.23530.30731.02360.106*0.5
H86C0.31780.31691.08170.106*0.5
C81X0.2458 (16)0.5839 (7)0.9660 (14)0.070 (5)0.5
H81D0.20840.61480.98390.105*0.5
H81E0.23250.58020.91550.105*0.5
H81F0.31130.59260.97560.105*0.5
C82X0.2231 (11)0.5287 (5)1.0012 (7)0.079 (4)0.5
H82C0.23270.53421.05230.094*0.5
H82D0.15680.52060.99080.094*0.5
C83X0.2770 (6)0.4768 (4)0.9814 (4)0.0384 (19)0.5
H83C0.34300.48140.99630.046*0.5
H83D0.27120.47090.93020.046*0.5
C84X0.2368 (13)0.4269 (4)1.0182 (8)0.066 (4)0.5
H84C0.25070.43071.06920.079*0.5
H84D0.16890.42681.00930.079*0.5
C85X0.2750 (12)0.3718 (5)0.9938 (7)0.076 (4)0.5
H85C0.34290.37181.00250.091*0.5
H85D0.26080.36770.94290.091*0.5
C86X0.2345 (13)0.3222 (7)1.0313 (9)0.091 (5)0.5
H86D0.23990.28731.00350.137*0.5
H86E0.16930.32981.03800.137*0.5
H86F0.26790.31711.07690.137*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01666 (13)0.01424 (12)0.01453 (12)0.00087 (10)0.00393 (10)0.00007 (10)
Ru20.02584 (15)0.01404 (13)0.01748 (13)0.00170 (11)0.00262 (11)0.00060 (10)
Ru30.02418 (15)0.01772 (14)0.01422 (12)0.00099 (11)0.00340 (11)0.00010 (10)
Ru40.01601 (13)0.01746 (13)0.01674 (12)0.00162 (10)0.00289 (10)0.00148 (10)
Ru50.01922 (14)0.01841 (14)0.02283 (14)0.00088 (11)0.00067 (11)0.00223 (11)
Ru60.02241 (15)0.02536 (15)0.01751 (13)0.00297 (12)0.00093 (11)0.00131 (11)
P10.0144 (4)0.0167 (4)0.0145 (4)0.0015 (3)0.0025 (3)0.0008 (3)
P20.0139 (4)0.0185 (4)0.0141 (4)0.0029 (3)0.0019 (3)0.0010 (3)
O10.0216 (14)0.0248 (14)0.0404 (16)0.0032 (11)0.0120 (12)0.0031 (12)
O20.0314 (16)0.0342 (16)0.0212 (13)0.0039 (12)0.0010 (12)0.0042 (11)
O30.0275 (16)0.0411 (18)0.0425 (17)0.0113 (13)0.0120 (14)0.0024 (14)
O40.0256 (15)0.0254 (14)0.0358 (15)0.0038 (11)0.0036 (12)0.0049 (12)
O50.054 (2)0.0303 (16)0.0262 (15)0.0020 (14)0.0114 (14)0.0054 (12)
O60.0350 (18)0.0390 (18)0.0484 (19)0.0153 (14)0.0042 (15)0.0028 (15)
O70.060 (2)0.0301 (17)0.049 (2)0.0015 (16)0.0112 (17)0.0189 (15)
O80.074 (3)0.0392 (19)0.0406 (18)0.0099 (18)0.0030 (18)0.0195 (15)
O90.049 (2)0.0286 (15)0.0264 (14)0.0004 (14)0.0090 (14)0.0064 (12)
O100.0250 (16)0.0443 (18)0.0386 (17)0.0007 (13)0.0007 (13)0.0064 (14)
O110.0322 (18)0.060 (2)0.0309 (16)0.0070 (16)0.0089 (14)0.0048 (15)
O120.0198 (15)0.0328 (16)0.059 (2)0.0018 (12)0.0098 (14)0.0007 (14)
O130.066 (2)0.0432 (19)0.0221 (15)0.0032 (17)0.0021 (15)0.0055 (13)
O140.0258 (16)0.0427 (18)0.055 (2)0.0092 (14)0.0167 (15)0.0095 (15)
O150.0211 (14)0.0338 (16)0.0414 (17)0.0017 (12)0.0020 (13)0.0043 (13)
O160.0240 (16)0.0417 (18)0.063 (2)0.0034 (14)0.0036 (15)0.0047 (16)
O170.071 (3)0.046 (2)0.0303 (17)0.0151 (18)0.0022 (17)0.0059 (15)
O180.0316 (17)0.0302 (16)0.0464 (18)0.0020 (13)0.0010 (14)0.0147 (14)
O190.0272 (17)0.052 (2)0.0455 (19)0.0074 (15)0.0094 (14)0.0025 (15)
O200.059 (2)0.047 (2)0.0305 (16)0.0028 (17)0.0030 (16)0.0131 (15)
O210.082 (3)0.0366 (18)0.0331 (17)0.0175 (18)0.0206 (18)0.0088 (14)
O220.0216 (16)0.060 (2)0.0481 (19)0.0081 (15)0.0000 (14)0.0062 (16)
C10.0236 (19)0.0161 (16)0.0219 (17)0.0051 (14)0.0086 (14)0.0005 (13)
C20.0226 (18)0.0166 (16)0.0233 (17)0.0038 (14)0.0043 (15)0.0003 (13)
C30.025 (2)0.0247 (19)0.0236 (18)0.0047 (16)0.0045 (15)0.0038 (15)
C40.033 (2)0.0137 (16)0.0198 (17)0.0041 (15)0.0036 (15)0.0025 (13)
C50.036 (2)0.0178 (18)0.0256 (19)0.0004 (16)0.0028 (17)0.0005 (15)
C60.034 (2)0.026 (2)0.0257 (19)0.0055 (17)0.0029 (17)0.0018 (16)
C70.040 (2)0.022 (2)0.029 (2)0.0044 (17)0.0042 (18)0.0033 (16)
C80.045 (3)0.024 (2)0.027 (2)0.0050 (18)0.0054 (19)0.0004 (16)
C90.028 (2)0.0231 (19)0.0209 (17)0.0001 (15)0.0024 (15)0.0022 (15)
C100.029 (2)0.030 (2)0.0259 (19)0.0018 (17)0.0042 (17)0.0068 (16)
C110.033 (2)0.031 (2)0.0168 (17)0.0048 (17)0.0058 (16)0.0040 (15)
C120.0221 (19)0.0218 (18)0.0279 (19)0.0035 (15)0.0040 (16)0.0027 (15)
C130.028 (2)0.0223 (18)0.0261 (19)0.0011 (15)0.0039 (16)0.0007 (15)
C140.023 (2)0.030 (2)0.031 (2)0.0002 (16)0.0042 (16)0.0046 (16)
C150.026 (2)0.0242 (19)0.0261 (19)0.0027 (15)0.0028 (16)0.0002 (15)
C160.026 (2)0.027 (2)0.035 (2)0.0002 (16)0.0009 (17)0.0044 (17)
C170.034 (2)0.024 (2)0.031 (2)0.0045 (17)0.0021 (18)0.0025 (16)
C180.0218 (19)0.027 (2)0.032 (2)0.0015 (16)0.0003 (16)0.0021 (17)
C190.029 (2)0.030 (2)0.0258 (19)0.0023 (17)0.0006 (17)0.0018 (16)
C200.033 (2)0.037 (2)0.0249 (19)0.0011 (18)0.0023 (17)0.0025 (17)
C210.042 (3)0.032 (2)0.0234 (19)0.0124 (19)0.0073 (18)0.0016 (17)
C220.030 (2)0.036 (2)0.031 (2)0.0017 (18)0.0011 (18)0.0030 (17)
C310.0165 (17)0.0271 (19)0.0161 (16)0.0026 (14)0.0035 (13)0.0013 (13)
C320.0168 (17)0.0274 (19)0.0163 (15)0.0020 (14)0.0053 (13)0.0005 (14)
C330.0193 (17)0.0253 (18)0.0175 (16)0.0034 (14)0.0058 (14)0.0026 (14)
C340.0175 (17)0.0211 (17)0.0181 (16)0.0013 (13)0.0059 (13)0.0008 (13)
C350.0186 (17)0.0252 (18)0.0186 (16)0.0027 (14)0.0055 (14)0.0007 (14)
C360.0168 (17)0.0226 (18)0.0187 (16)0.0024 (13)0.0042 (13)0.0012 (13)
C410.0194 (17)0.0185 (16)0.0158 (15)0.0005 (13)0.0031 (13)0.0011 (13)
C420.040 (2)0.0215 (19)0.0254 (19)0.0076 (17)0.0045 (18)0.0027 (15)
C430.054 (3)0.020 (2)0.035 (2)0.0061 (19)0.006 (2)0.0058 (17)
C440.038 (2)0.023 (2)0.030 (2)0.0081 (17)0.0004 (18)0.0085 (16)
C450.024 (2)0.029 (2)0.040 (2)0.0003 (16)0.0081 (18)0.0049 (17)
C460.0200 (18)0.0179 (17)0.0302 (19)0.0019 (14)0.0001 (15)0.0024 (14)
C510.0190 (17)0.0146 (15)0.0186 (15)0.0039 (13)0.0047 (13)0.0007 (13)
C520.0175 (17)0.0207 (17)0.0184 (16)0.0010 (13)0.0016 (13)0.0015 (13)
C530.0207 (18)0.0220 (18)0.0270 (18)0.0010 (14)0.0056 (15)0.0029 (15)
C540.0242 (19)0.0231 (18)0.0205 (17)0.0049 (15)0.0051 (15)0.0073 (14)
C550.0211 (19)0.033 (2)0.0246 (18)0.0023 (16)0.0009 (15)0.0076 (16)
C560.0167 (17)0.0284 (19)0.0231 (17)0.0008 (15)0.0019 (14)0.0046 (15)
C610.0219 (18)0.0198 (17)0.0172 (16)0.0006 (14)0.0040 (14)0.0013 (13)
C620.037 (2)0.0216 (19)0.032 (2)0.0038 (17)0.0040 (18)0.0050 (16)
C630.051 (3)0.022 (2)0.044 (3)0.0002 (19)0.002 (2)0.0108 (18)
C640.054 (3)0.032 (2)0.043 (3)0.013 (2)0.012 (2)0.011 (2)
C650.054 (3)0.037 (3)0.060 (3)0.006 (2)0.034 (3)0.003 (2)
C660.035 (2)0.022 (2)0.046 (2)0.0008 (17)0.015 (2)0.0016 (18)
C710.0217 (18)0.0206 (17)0.0194 (16)0.0045 (14)0.0044 (14)0.0022 (13)
C720.0234 (19)0.036 (2)0.0227 (18)0.0101 (17)0.0040 (15)0.0029 (16)
C730.039 (2)0.045 (3)0.0228 (19)0.020 (2)0.0064 (18)0.0086 (18)
C740.054 (3)0.030 (2)0.029 (2)0.015 (2)0.018 (2)0.0111 (17)
C750.041 (3)0.037 (2)0.033 (2)0.004 (2)0.015 (2)0.0049 (19)
C760.027 (2)0.034 (2)0.0267 (19)0.0002 (17)0.0054 (16)0.0040 (16)
C810.120 (11)0.107 (8)0.125 (11)0.002 (8)0.005 (9)0.011 (8)
C820.087 (6)0.094 (5)0.089 (6)0.004 (4)0.008 (4)0.008 (4)
C830.086 (5)0.083 (4)0.071 (5)0.001 (4)0.003 (4)0.002 (4)
C840.077 (6)0.069 (5)0.063 (6)0.003 (4)0.000 (4)0.000 (4)
C850.089 (6)0.082 (5)0.082 (6)0.007 (4)0.008 (5)0.007 (4)
C860.094 (8)0.059 (5)0.056 (6)0.009 (6)0.012 (6)0.003 (5)
C81X0.074 (8)0.073 (6)0.065 (7)0.023 (6)0.024 (6)0.014 (6)
C82X0.083 (9)0.091 (7)0.066 (7)0.045 (7)0.036 (7)0.047 (7)
C83X0.038 (5)0.053 (5)0.023 (4)0.016 (4)0.008 (4)0.005 (4)
C84X0.101 (10)0.059 (6)0.035 (6)0.001 (6)0.016 (6)0.015 (5)
C85X0.123 (13)0.063 (6)0.044 (6)0.007 (8)0.017 (8)0.018 (5)
C86X0.112 (9)0.083 (7)0.079 (8)0.023 (7)0.013 (7)0.004 (6)
Geometric parameters (Å, º) top
Ru1—C21.888 (4)C43—C441.377 (6)
Ru1—C11.927 (4)C43—H430.9500
Ru1—C31.951 (4)C44—C451.377 (6)
Ru1—P12.3506 (9)C44—H440.9500
Ru1—Ru22.8431 (4)C45—C461.393 (5)
Ru1—Ru32.8644 (4)C45—H450.9500
Ru2—C41.926 (4)C46—H460.9500
Ru2—C71.926 (4)C51—C521.392 (5)
Ru2—C51.927 (4)C51—C561.396 (5)
Ru2—C61.948 (4)C52—C531.397 (5)
Ru2—Ru32.8378 (4)C52—H520.9500
Ru3—C81.913 (4)C53—C541.379 (5)
Ru3—C91.928 (4)C53—H530.9500
Ru3—C101.941 (4)C54—C551.374 (5)
Ru3—C111.948 (4)C54—H540.9500
Ru4—C131.885 (4)C55—C561.384 (5)
Ru4—C141.927 (4)C55—H550.9500
Ru4—C121.928 (4)C56—H560.9500
Ru4—P22.3439 (9)C61—C661.372 (5)
Ru4—Ru52.8454 (4)C61—C621.389 (5)
Ru4—Ru62.8564 (4)C62—C631.381 (6)
Ru5—C171.926 (4)C62—H620.9500
Ru5—C181.929 (4)C63—C641.356 (7)
Ru5—C151.933 (4)C63—H630.9500
Ru5—C161.942 (4)C64—C651.367 (7)
Ru5—Ru62.8490 (4)C64—H640.9500
Ru6—C201.908 (4)C65—C661.396 (6)
Ru6—C221.933 (5)C65—H650.9500
Ru6—C211.926 (4)C66—H660.9500
Ru6—C191.936 (4)C71—C721.395 (5)
P1—C511.829 (3)C71—C761.399 (5)
P1—C311.834 (4)C72—C731.396 (5)
P1—C411.836 (3)C72—H720.9500
P2—C711.822 (4)C73—C741.370 (7)
P2—C611.830 (4)C73—H730.9500
P2—C361.834 (4)C74—C751.383 (7)
O1—C11.141 (4)C74—H740.9500
O2—C21.148 (4)C75—C761.370 (6)
O3—C31.131 (5)C75—H750.9500
O4—C41.148 (5)C76—H760.9500
O5—C51.133 (5)C81—C821.499 (5)
O6—C61.140 (5)C81—H81A0.9800
O7—C71.139 (5)C81—H81B0.9800
O8—C81.138 (5)C81—H81C0.9800
O9—C91.133 (5)C82—C831.496 (5)
O10—C101.142 (5)C82—H82A0.9900
O11—C111.135 (5)C82—H82B0.9900
O12—C121.148 (5)C83—C841.502 (5)
O13—C131.144 (5)C83—H83A0.9900
O14—C141.151 (5)C83—H83B0.9900
O15—C151.147 (5)C84—C851.497 (5)
O16—C161.143 (5)C84—H84A0.9900
O17—C171.131 (5)C84—H84B0.9900
O18—C181.128 (5)C85—C861.504 (5)
O19—C191.141 (5)C85—H85A0.9900
O20—C201.139 (5)C85—H85B0.9900
O21—C211.130 (5)C86—H86A0.9800
O22—C221.146 (5)C86—H86B0.9800
C31—C321.534 (5)C86—H86C0.9800
C31—H31A0.9900C81X—C82X1.503 (5)
C31—H31B0.9900C81X—H81D0.9800
C32—C331.524 (5)C81X—H81E0.9800
C32—H32A0.9900C81X—H81F0.9800
C32—H32B0.9900C82X—C83X1.506 (5)
C33—C341.529 (5)C82X—H82C0.9900
C33—H33A0.9900C82X—H82D0.9900
C33—H33B0.9900C83X—C84X1.501 (5)
C34—C351.523 (5)C83X—H83C0.9900
C34—H34A0.9900C83X—H83D0.9900
C34—H34B0.9900C84X—C85X1.489 (5)
C35—C361.529 (5)C84X—H84C0.9900
C35—H35A0.9900C84X—H84D0.9900
C35—H35B0.9900C85X—C86X1.505 (5)
C36—H36A0.9900C85X—H85C0.9900
C36—H36B0.9900C85X—H85D0.9900
C41—C421.381 (5)C86X—H86D0.9800
C41—C461.381 (5)C86X—H86E0.9800
C42—C431.390 (6)C86X—H86F0.9800
C42—H420.9500
C2—Ru1—C193.19 (15)C34—C35—H35B108.9
C2—Ru1—C392.90 (16)H35A—C35—H35B107.7
C1—Ru1—C3173.85 (15)C35—C36—P2112.5 (2)
C2—Ru1—P1100.79 (11)C35—C36—H36A109.1
C1—Ru1—P187.47 (10)P2—C36—H36A109.1
C3—Ru1—P192.18 (12)C35—C36—H36B109.1
C2—Ru1—Ru292.04 (11)P2—C36—H36B109.1
C1—Ru1—Ru297.12 (10)H36A—C36—H36B107.8
C3—Ru1—Ru281.85 (11)C42—C41—C46119.0 (3)
P1—Ru1—Ru2166.14 (2)C42—C41—P1118.8 (3)
C2—Ru1—Ru3145.87 (11)C46—C41—P1122.2 (3)
C1—Ru1—Ru373.77 (11)C41—C42—C43120.4 (4)
C3—Ru1—Ru3100.62 (11)C41—C42—H42119.8
P1—Ru1—Ru3109.75 (2)C43—C42—H42119.8
Ru2—Ru1—Ru359.630 (9)C44—C43—C42120.4 (4)
C4—Ru2—C792.79 (17)C44—C43—H43119.8
C4—Ru2—C592.47 (16)C42—C43—H43119.8
C7—Ru2—C5101.53 (17)C45—C44—C43119.4 (4)
C4—Ru2—C6170.51 (16)C45—C44—H44120.3
C7—Ru2—C694.20 (18)C43—C44—H44120.3
C5—Ru2—C692.43 (17)C44—C45—C46120.2 (4)
C4—Ru2—Ru391.68 (10)C44—C45—H45119.9
C7—Ru2—Ru3101.66 (12)C46—C45—H45119.9
C5—Ru2—Ru3156.20 (12)C41—C46—C45120.5 (3)
C6—Ru2—Ru380.62 (12)C41—C46—H46119.7
C4—Ru2—Ru175.64 (11)C45—C46—H46119.7
C7—Ru2—Ru1157.76 (13)C52—C51—C56119.0 (3)
C5—Ru2—Ru197.94 (11)C52—C51—P1120.0 (3)
C6—Ru2—Ru195.63 (12)C56—C51—P1121.0 (3)
Ru3—Ru2—Ru160.559 (10)C51—C52—C53120.3 (3)
C8—Ru3—C997.59 (16)C51—C52—H52119.9
C8—Ru3—C1097.34 (19)C53—C52—H52119.9
C9—Ru3—C1091.23 (17)C54—C53—C52120.1 (3)
C8—Ru3—C1192.51 (18)C54—C53—H53119.9
C9—Ru3—C1191.69 (17)C52—C53—H53119.9
C10—Ru3—C11169.27 (16)C55—C54—C53119.7 (3)
C8—Ru3—Ru293.38 (12)C55—C54—H54120.2
C9—Ru3—Ru2167.57 (11)C53—C54—H54120.2
C10—Ru3—Ru293.16 (11)C54—C55—C56121.1 (4)
C11—Ru3—Ru281.97 (12)C54—C55—H55119.4
C8—Ru3—Ru1148.89 (13)C56—C55—H55119.4
C9—Ru3—Ru1111.03 (11)C55—C56—C51119.9 (3)
C10—Ru3—Ru170.94 (12)C55—C56—H56120.1
C11—Ru3—Ru198.38 (11)C51—C56—H56120.1
Ru2—Ru3—Ru159.811 (9)C66—C61—C62118.4 (3)
C13—Ru4—C1490.16 (18)C66—C61—P2122.9 (3)
C13—Ru4—C1293.49 (17)C62—C61—P2118.7 (3)
C14—Ru4—C12175.82 (16)C63—C62—C61120.6 (4)
C13—Ru4—P2100.25 (12)C63—C62—H62119.7
C14—Ru4—P291.98 (12)C61—C62—H62119.7
C12—Ru4—P289.38 (11)C64—C63—C62120.6 (4)
C13—Ru4—Ru595.90 (12)C64—C63—H63119.7
C14—Ru4—Ru578.78 (12)C62—C63—H63119.7
C12—Ru4—Ru598.80 (11)C63—C64—C65119.8 (4)
P2—Ru4—Ru5161.41 (2)C63—C64—H64120.1
C13—Ru4—Ru6153.66 (12)C65—C64—H64120.1
C14—Ru4—Ru694.70 (12)C64—C65—C66120.4 (4)
C12—Ru4—Ru681.13 (11)C64—C65—H65119.8
P2—Ru4—Ru6105.42 (2)C66—C65—H65119.8
Ru5—Ru4—Ru659.956 (10)C61—C66—C65120.3 (4)
C17—Ru5—C18103.41 (17)C61—C66—H66119.9
C17—Ru5—C1591.02 (17)C65—C66—H66119.9
C18—Ru5—C1594.36 (17)C72—C71—C76118.4 (4)
C17—Ru5—C1692.36 (18)C72—C71—P2122.5 (3)
C18—Ru5—C1689.77 (17)C76—C71—P2119.1 (3)
C15—Ru5—C16173.92 (17)C73—C72—C71119.9 (4)
C17—Ru5—Ru497.59 (12)C73—C72—H72120.0
C18—Ru5—Ru4157.80 (12)C71—C72—H72120.0
C15—Ru5—Ru478.01 (12)C74—C73—C72120.7 (4)
C16—Ru5—Ru496.53 (12)C74—C73—H73119.6
C17—Ru5—Ru6155.84 (13)C72—C73—H73119.6
C18—Ru5—Ru699.99 (12)C73—C74—C75119.5 (4)
C15—Ru5—Ru693.16 (11)C73—C74—H74120.3
C16—Ru5—Ru681.72 (13)C75—C74—H74120.3
Ru4—Ru5—Ru660.213 (10)C76—C75—C74120.7 (4)
C20—Ru6—C2296.98 (19)C76—C75—H75119.6
C20—Ru6—C21100.63 (18)C74—C75—H75119.6
C22—Ru6—C2190.24 (19)C75—C76—C71120.7 (4)
C20—Ru6—C1992.56 (18)C75—C76—H76119.6
C22—Ru6—C19170.42 (18)C71—C76—H76119.6
C21—Ru6—C1988.92 (18)C82—C81—H81A109.5
C20—Ru6—Ru589.47 (13)C82—C81—H81B109.5
C22—Ru6—Ru593.73 (13)H81A—C81—H81B109.5
C21—Ru6—Ru5168.62 (13)C82—C81—H81C109.5
C19—Ru6—Ru585.39 (12)H81A—C81—H81C109.5
C20—Ru6—Ru4147.96 (13)H81B—C81—H81C109.5
C22—Ru6—Ru477.65 (12)C83—C82—C81110.4 (17)
C21—Ru6—Ru4110.86 (12)C83—C82—H82A109.6
C19—Ru6—Ru493.74 (12)C81—C82—H82A109.6
Ru5—Ru6—Ru459.831 (10)C83—C82—H82B109.6
C51—P1—C31102.71 (16)C81—C82—H82B109.6
C51—P1—C41102.18 (16)H82A—C82—H82B108.1
C31—P1—C41102.02 (16)C82—C83—C84112.4 (15)
C51—P1—Ru1116.05 (11)C82—C83—H83A109.1
C31—P1—Ru1115.00 (12)C84—C83—H83A109.1
C41—P1—Ru1116.74 (11)C82—C83—H83B109.1
C71—P2—C6199.68 (16)C84—C83—H83B109.1
C71—P2—C36104.11 (16)H83A—C83—H83B107.9
C61—P2—C36102.27 (16)C85—C84—C83146.3 (16)
C71—P2—Ru4117.77 (12)C85—C84—H84A100.3
C61—P2—Ru4117.29 (12)C83—C84—H84A100.3
C36—P2—Ru4113.47 (12)C85—C84—H84B100.3
O1—C1—Ru1171.7 (3)C83—C84—H84B100.3
O2—C2—Ru1174.1 (3)H84A—C84—H84B104.2
O3—C3—Ru1175.7 (3)C84—C85—C86110.4 (11)
O4—C4—Ru2174.4 (3)C84—C85—H85A109.6
O5—C5—Ru2178.7 (4)C86—C85—H85A109.6
O6—C6—Ru2176.2 (4)C84—C85—H85B109.6
O7—C7—Ru2174.2 (4)C86—C85—H85B109.6
O8—C8—Ru3178.7 (4)H85A—C85—H85B108.1
O9—C9—Ru3174.9 (3)C85—C86—H86A109.5
O10—C10—Ru3169.7 (4)C85—C86—H86B109.5
O11—C11—Ru3174.8 (3)H86A—C86—H86B109.5
O12—C12—Ru4172.9 (3)C85—C86—H86C109.5
O13—C13—Ru4176.6 (4)H86A—C86—H86C109.5
O14—C14—Ru4173.4 (4)H86B—C86—H86C109.5
O15—C15—Ru5174.1 (3)C82X—C81X—H81D109.5
O16—C16—Ru5173.7 (4)C82X—C81X—H81E109.5
O17—C17—Ru5178.1 (4)H81D—C81X—H81E109.5
O18—C18—Ru5179.4 (4)C82X—C81X—H81F109.5
O19—C19—Ru6173.2 (4)H81D—C81X—H81F109.5
O20—C20—Ru6178.9 (4)H81E—C81X—H81F109.5
O21—C21—Ru6175.2 (4)C83X—C82X—C81X116.5 (12)
O22—C22—Ru6171.9 (4)C83X—C82X—H82C108.2
C32—C31—P1113.5 (2)C81X—C82X—H82C108.2
C32—C31—H31A108.9C83X—C82X—H82D108.2
P1—C31—H31A108.9C81X—C82X—H82D108.2
C32—C31—H31B108.9H82C—C82X—H82D107.3
P1—C31—H31B108.9C82X—C83X—C84X106.5 (9)
H31A—C31—H31B107.7C82X—C83X—H83C110.4
C33—C32—C31111.5 (3)C84X—C83X—H83C110.4
C33—C32—H32A109.3C82X—C83X—H83D110.4
C31—C32—H32A109.3C84X—C83X—H83D110.4
C33—C32—H32B109.3H83C—C83X—H83D108.6
C31—C32—H32B109.3C85X—C84X—C83X111.0 (10)
H32A—C32—H32B108.0C85X—C84X—H84C109.4
C32—C33—C34113.0 (3)C83X—C84X—H84C109.4
C32—C33—H33A109.0C85X—C84X—H84D109.4
C34—C33—H33A109.0C83X—C84X—H84D109.4
C32—C33—H33B109.0H84C—C84X—H84D108.0
C34—C33—H33B109.0C84X—C85X—C86X110.5 (12)
H33A—C33—H33B107.8C84X—C85X—H85C109.6
C33—C34—C35112.2 (3)C86X—C85X—H85C109.6
C33—C34—H34A109.2C84X—C85X—H85D109.6
C35—C34—H34A109.2C86X—C85X—H85D109.6
C33—C34—H34B109.2H85C—C85X—H85D108.1
C35—C34—H34B109.2C85X—C86X—H86D109.5
H34A—C34—H34B107.9C85X—C86X—H86E109.5
C36—C35—C34113.3 (3)H86D—C86X—H86E109.5
C36—C35—H35A108.9C85X—C86X—H86F109.5
C34—C35—H35A108.9H86D—C86X—H86F109.5
C36—C35—H35B108.9H86E—C86X—H86F109.5
C51—P1—C31—C32161.5 (3)C52—C51—C56—C550.1 (5)
C41—P1—C31—C3255.9 (3)P1—C51—C56—C55178.5 (3)
Ru1—P1—C31—C3271.5 (3)C71—P2—C61—C66127.9 (4)
P1—C31—C32—C33177.8 (3)C36—P2—C61—C66125.2 (4)
C31—C32—C33—C34174.6 (3)Ru4—P2—C61—C660.4 (4)
C32—C33—C34—C35177.4 (3)C71—P2—C61—C6251.7 (3)
C33—C34—C35—C36173.7 (3)C36—P2—C61—C6255.2 (3)
C34—C35—C36—P2175.5 (2)Ru4—P2—C61—C62180.0 (3)
C71—P2—C36—C35160.6 (3)C66—C61—C62—C630.2 (6)
C61—P2—C36—C3557.2 (3)P2—C61—C62—C63179.8 (4)
Ru4—P2—C36—C3570.1 (3)C61—C62—C63—C640.5 (7)
C51—P1—C41—C4254.3 (3)C62—C63—C64—C650.9 (8)
C31—P1—C41—C4251.8 (3)C63—C64—C65—C660.9 (9)
Ru1—P1—C41—C42178.0 (3)C62—C61—C66—C650.2 (7)
C51—P1—C41—C46128.3 (3)P2—C61—C66—C65179.8 (4)
C31—P1—C41—C46125.7 (3)C64—C65—C66—C610.5 (8)
Ru1—P1—C41—C460.6 (4)C61—P2—C71—C72131.1 (3)
C46—C41—C42—C430.5 (6)C36—P2—C71—C7225.7 (4)
P1—C41—C42—C43178.0 (3)Ru4—P2—C71—C72100.9 (3)
C41—C42—C43—C441.4 (7)C61—P2—C71—C7646.9 (3)
C42—C43—C44—C451.7 (7)C36—P2—C71—C76152.2 (3)
C43—C44—C45—C461.2 (7)Ru4—P2—C71—C7681.1 (3)
C42—C41—C46—C450.0 (6)C76—C71—C72—C730.1 (6)
P1—C41—C46—C45177.5 (3)P2—C71—C72—C73177.9 (3)
C44—C45—C46—C410.4 (6)C71—C72—C73—C740.2 (6)
C31—P1—C51—C52145.4 (3)C72—C73—C74—C750.3 (7)
C41—P1—C51—C5239.9 (3)C73—C74—C75—C760.3 (7)
Ru1—P1—C51—C5288.3 (3)C74—C75—C76—C710.2 (7)
C31—P1—C51—C5636.3 (3)C72—C71—C76—C750.1 (6)
C41—P1—C51—C56141.8 (3)P2—C71—C76—C75178.0 (3)
Ru1—P1—C51—C5690.1 (3)C81—C82—C83—C84174 (2)
C56—C51—C52—C530.4 (5)C82—C83—C84—C8542 (4)
P1—C51—C52—C53178.0 (3)C83—C84—C85—C86174 (3)
C51—C52—C53—C540.4 (5)C81X—C82X—C83X—C84X175.3 (17)
C52—C53—C54—C550.1 (6)C82X—C83X—C84X—C85X171.2 (13)
C53—C54—C55—C560.7 (6)C83X—C84X—C85X—C86X179.7 (14)
C54—C55—C56—C510.7 (6)
Hydrogen-bond geometry (Å, º) top
Hydrogen-bond geometry (Å, °) for (I). Cg1 and Cg2 the ring centroids of the C41–C46 and C51–C56 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C35—H35B···O20i0.992.603.297 (5)128
C36—H36B···O4ii0.992.543.393 (4)144
C42—H42···O7iii0.952.563.401 (5)148
C52—H52···O19iv0.952.523.448 (4)167
C55—H55···O14i0.952.543.278 (5)134
C62—H62···O18v0.952.593.501 (5)161
C82X—H82D···O8vi0.992.553.391 (16)143
C81X—H81F···O17vii0.982.593.48 (2)150
C82X—H82C···O11viii0.992.593.528 (14)157
Symmetry codes: (i) x, y+1/2, z3/2; (ii) x+2, y+1, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y+1/2, z3/2; (v) x+1, y1/2, z+3/2; (vi) x+1, y+1, z+1; (vii) x, y+1/2, z1/2; (viii) x1, y, z+1.
Summary of short inter-atomic (Å) in (I). top
ContactDistanceSymmetry operation
O1···C153.196 (5)1 + x, 1 1/2 - y, - 1/2 + z
O1···O193.009 (4)1 + x, 1 1/2 - y, - 1/2 + z
O2···O22.900 (4)2 - x, 1 - y, 1 - z
O4···O183.024 (4)1 + x, 1 1/2 - y, - 1/2 + z
O7···H422.622 - x, - 1/2 + y, 1/2 - z
O8···H432.622 - x, - 1/2 + y, 1/2 - z
O13···O212.970 (5)x, 1 1/2 - y, - 1/2 + z
O13···C213.156 (5)x, 1 1/2 - y, - 1/2 + z
C8···H83B2.861 + x, y, -1 + z
C10···H83A2.871 - x, 1 - y, 1 - z
H35B···H632.381 - x, 1 - y, 1 - z
H55···H86D2.391 - x, 1 - y, 1 - z
H73···H84C2.301 - x, 1 - y, 2 - z
Percentage contributions of inter-atomic contacts to the Hirshfeld surfaces for (I) without hexane and for (I) top
Percentage contribution
Contact(I) without hexane(I)
O···H/H···O52.853.4
H···H18.319.9
O···O11.810.3
C···O/O···C8.97.8
C···H/H···C6.97.4
C···C1.31.2
Summary of short inter-atomic CO···π contacts (Å, °) in (I). Cg1–Cg4 the ring centroids of the C41–C46, C51–C56, C61–C66 and C71–C76 rings, respectively. top
COCgO···CgC—O···CgC···CgSymmetry operation
C3O3Cg33.756 (4)161.0 (3)4.839 (5)1 - x, 1 - y, 1 - z
C7O7Cg23.564 (4)100.1 (3)3.928 (4)2 - x, - 1/2 + y, 1/2 - z
C9O9Cg23.228 (3)94.2 (2)3.499 (4)x, y, z
C18O18Cg43.707 (3)97.6 (3)4.015 (5)1 - x, 1/2 + y, 1 1/2 - z
C19O19Cg13.554 (3)146.0 (3)4.546 (5)-1 + x, 1 1/2 - y, 1/2 + z
C20O20Cg33.671 (4)146.6 (4)4.664 (4)x, 1 1/2 - y, 1/2 + z
C21O21Cg43.074 (4)98.3 (3)3.424 (4)x, y, z
Summary of short inter-atomic CO···π contacts (Å, °) in (I). Cg1–Cg4 the ring centroids of the C41–C46, C51–C56, C61–C66 and C71–C76 rings, respectively.
 

Footnotes

Additional correspondence author: omarsa@usm.my

Acknowledgements

OBS wishes to thank Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PJJAUH/8011002. SSS also thanks Universiti Teknologi Mara (UiTM) for a PhD sponsorship. The X-ray Crystallography Unit, School of Physics (USM), is thanked for the data collection.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruce, M. I., Hambley, T. W., Nicholson, B. K. & Snow, M. R. (1982). J. Organomet. Chem. 235, 83–91.  CSD CrossRef CAS Web of Science
First citationBruce, M. I., Williams, M. L., Patrick, J. M. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 1229–1234.  CSD CrossRef
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFerguson, G., Hourihane, R. & Spalding, T. R. (1991). Acta Cryst. C47, 544–547.  CSD CrossRef CAS IUCr Journals
First citationJotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2017). Z. Kristallogr. 232, 287–298.  CAS
First citationKabir, S. E. & Hogarth, G. (2009). Coord. Chem. Rev. 253, 1285–1315.  CrossRef CAS
First citationKakizawa, T., Hashimoto, H. & Tobita, H. (2015). Inorg. Chim. Acta, 425, 7–10.  Web of Science CSD CrossRef CAS
First citationLozano Diz, E., Neels, A., Stoeckli-Evans, H. & Süss-Fink, G. (2001). Polyhedron, 20, 2771–2780.
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef
First citationO'Connor, A. R., Nataro, C. & Rheingold, A. L. (2003). J. Organomet. Chem. 679, 72–78.  CAS
First citationRajbangshi, S., Ghosh, S., Hogarth, G. & Kabir, S. E. (2015). J. Clust. Sci. 26, 169–185.  CSD CrossRef CAS
First citationShawkataly, O. bin, Sirat, S. S., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, m629–m630.  CSD CrossRef IUCr Journals
First citationShawkataly, O. bin, Sirat, S. S., Rosli, M. M. & Razak, I. A. (2016). Polyhedron, 117, 193–201.  CSD CrossRef CAS
First citation[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.] Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationVan Calcar, P. M., Olmstead, M. M. & Balch, A. L. (1998). Inorg. Chim. Acta, 270, 28–33.  CSD CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationZukerman-Schpector, J., Haiduc, I. & Tiekink, E. R. T. (2011). Chem. Commun. 47, 12682–12684.  CAS
First citationZukerman-Schpector, J., Haiduc, I. & Tiekink, E. R. T. (2012). Adv. Organomet. Chem., 60, 49–92.  CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds