research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of a polymeric bis­­muthate(III) halide complex, (C6H6N3)2[BiCl5]·2H2O

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bDepartment of Chemical and Pharmaceutical Sciences, Centre for Structural, Diffractometry, University of Ferrara, Via L. Borsari 46, I-44121 Ferrara, Italy
*Correspondence e-mail: ch.boukoum@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 October 2017; accepted 17 October 2017; online 24 October 2017)

The synthesis and the crystal structure of a new halide-bridged polymer, namely catena-poly[bis­(1,2,3-benzotriazolium) [[tetra­chlorido­bis­muth(III)]-μ-chlorido] dihydrate], {(C6H6N3)2[BiCl5]·2H2O}n are reported. The structure comprises polyanionic zigzag chains of formula [(BiCl5)2−]n running along the c-axis direction. The 1,2,3-benzotriazolium cations are linked between these polymer chains, via the water mol­ecules, giving rise to left- and right-handed helical chains. Hirshfeld surface analysis and fingerprint plots were used to decode the inter­molecular inter­actions in the crystal network and determine the contribution of the component units for the construction of the three-dimensional architecture.

1. Chemical context

Bismuth–halide complexes are of contemporary inter­est because of their structural diversity and numerous promising physical properties such as dielectric, ferroelectric, ferro­elastic, non-linear optical and thermochromism (Bator et al., 1997[Bator, G., Provoost, R., Silverans, R. E. & Zeegers-Huyskens, Th. (1997). J. Mol. Struct. 435, 1-10.]; Bednarska-Bolek et al., 2000[Bednarska-Bolek, B., Zaleski, J., Bator, G. & Jakubas, R. (2000). J. Phys. Chem. Solids, 61, 1249-1261.]; Sobczyk et al., 1997[Sobczyk, L., Jakubas, R. & Zaleski, J. (1997). Pol. J. Chem. 71, 265-300.]; Bator et al., 1998[Bator, G., Baran, J., Jakubas, R. & Sobczyk, L. (1998). J. Mol. Struct. 450, 89-100.]). Generally, in these compounds, the BiX6 octa­hedra may join to form discrete (i.e. mononuclear) or extended (i.e. polynuclear) inorganic networks of corner-, edge-, or face-sharing octa­hedra, leading to an extensive family of bis­muth halogenoanions (Jakubas, 1986[Jakubas, R. (1986). Solid State Commun. 60, 389-391.]; Jakubas et al., 1988[Jakubas, R., Krzewska, U., Bator, G. & Sobczyk, L. (1988). Ferroelectrics, 77, 129-135.], 1995[Jakubas, R., Bator, G. & Mróz, J. (1995). Acta Phys. Pol. A, 87, 663-669.]). A variety of organic cations, ring shaped or linear, have a strong impact on the arrangements of BiX6 octa­hedra and the formation of hydrogen bonds (Dammak et al., 2015[Dammak, H., Feki, H., Boughzala, H. & Abid, Y. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 1235-1243.]; Elfaleh & Kamoun, 2014[Elfaleh, N. & Kamoun, S. (2014). J. Mol. Struct. 1075, 479-485.]). This class of compounds has also attracted much attention in the field of crystal engin­eering over the last decade on account of their capability for the creation of extended architectures via inter­molecular non-covalent binding inter­actions. (i.e. hydrogen bonding, ionic and ππ stacking inter­actions; Belter & Fronczek, 2013[Belter, R. K. & Fronczek, F. R. (2013). Acta Cryst. E69, o606-o607.]; Thirunavukkarasu et al., 2013[Thirunavukkarasu, A., Silambarasan, A., Chakkaravarthi, G., Mohankumar, R. & Umarani, P. R. (2013). Acta Cryst. E69, o1605.]; Aloui et al., 2015[Aloui, Z., Ferretti, V., Abid, S., Lefebvre, F., Rzaigui, M. & Nasr, C. B. (2015). J. Mol. Struct. 1097, 166-170.]).

[Scheme 1]

As part of our studies in this area, we chose benzotriazole, which is an aromatic heterocyclic base with three protonatable nitro­gen atoms, as the organic cation.

2. Structural commentary

The single-crystal X-ray diffraction analysis shows that the title compound [C6H6N3]2[BiCl5]·2H2O, (I)[link], crystallizes in the non-centrosymmetric space group Cmc21 and the asymmetric unit comprises one Bi3+ cation, four chlorine atoms, one water mol­ecule and one benzotriazolium cation (Fig. 1[link]). The bis­muth atom is six-coordinated by four distinct chlorine atoms (Cl1, Cl2, Cl3, Cl4). The Bi—Cl bond lengths (Table 1[link]) vary from 2.545 (3) to 2.674 (4) Å (ΔBi—Cl = 0.129 Å) and 2.757 (4) to 2.856 (4) Å (ΔBi—Cl = 0.099 Å) for non-bridging and bridging Cl atoms, respectively, which are comparable with values found in {(C2H7N4O)2[BiCl5]n (Ferjani et al., 2012[Ferjani, H., Boughzala, H. & Driss, A. (2012). Acta Cryst. E68, m615.]) and [NH3(CH2)6NH3]BiCl5 (Ouasri et al., 2013[Ouasri, A., Jeghnou, H., Rhandour, A. & Roussel, P. (2013). J. Solid State Chem. 200, 22-29.]). The Cl—Bi—Cl bond angles in (I)[link] range from 85.93 (17) to 91.88 (13)° (ΔCl—Bi—Cl =5.95°) and are less distorted than those observed in [NH3(CH2)6NH3]BiCl5 and [H2mdap][BiCl5] (Ouasri et al., 2013[Ouasri, A., Jeghnou, H., Rhandour, A. & Roussel, P. (2013). J. Solid State Chem. 200, 22-29.]; Wang et al., 2017[Wang, Y., Shi, C. & Han, X. (2017). Polyhedron, 133, 132-136.]).

Table 1
Selected bond lengths (Å)

Bi1—Cl1 2.669 (3) Bi1—Cl4i 2.757 (4)
Bi1—Cl2 2.545 (3) Bi1—Cl4 2.856 (4)
Bi1—Cl3 2.674 (4)    
Symmetry code: (i) [-x+1, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of (I)[link] showing 50% displacement ellipsoids.

In the extended structure of (I)[link], adjacent BiCl6 octa­hedra are connected through Cl4 and Cl4iii so as to form [(BiCl5)2−]n polyanionic zigzag chains propagating along the c-axis direction, with the shortest intra­chain Bi⋯Bi distance of 5.508 (1) Å and a Cl4—Bi—Cl4ii angle of 89.61 (3)° (Fig. 2[link]) The overall negative charges of the resulting polymers are counter-balanced by the protonated 1,2,3-benzotriazolium cations (Fig. 2[link]b). As usual, this aromatic amine is protonated at the N3 atom and the C—C, N—N and C—N bond lengths vary from 1.358 (18) to 1.402 (15), 1.293 (15) to 1.308 (15) Å and 1.364 (16) to 1.370 (15) Å, respectively, which agree well with those observed in bis­(1,2,3-benzotriazolium) sulfate dihydrate (Randolph et al., 2013[Belter, R. K. & Fronczek, F. R. (2013). Acta Cryst. E69, o606-o607.]) and benzotriazolium picrate (Zeng et al., 2011[Zeng, B., Li, J. & Wang, G. (2011). Acta Cryst. E67, o1464.]).

[Figure 2]
Figure 2
(a) View of the [(BiCl5)2−]n polyanionic zigzag chains in (I)[link] along the c-axis direction. (b) Projection along the c axis of the structure of (I)[link].

3. Supra­molecular features

The heterocyclic cations alternately bridge the water mol­ecules (O1W) via N—H⋯O hydrogen bonds, forming (benzo-OW)n helical chains in a right- and left–handed sequence extending along the c-axis direction (Table 2[link], Fig. 2[link]). The phenyl rings of adjacent chains are alternately stacked in a parallel-displaced face-to-face arrangement (Fig. 3[link]), with centroid–centroid distances of 3.8675 (1) Å and an inter-planar spacing of 1.13 Å. The anionic and cationic chains are further assembled into a three-dimensional supra­molecular framework through N—H⋯O, O—H⋯Cl and C—H⋯Cl hydrogen bonds (Table 2[link], Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1W 0.86 2.08 2.891 (17) 157
N3—H3A⋯O1Wii 0.86 2.00 (2) 2.767 (18) 148
O1W—H11⋯Cl4iii 0.89 (11) 2.47 (11) 3.306 (13) 157 (9)
O1W—H22⋯Cl3 0.90 (12) 2.38 (12) 3.268 (14) 169 (11)
C5—H5⋯Cl1iv 0.93 2.73 3.603 (14) 157
Symmetry codes: (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+1].
[Figure 3]
Figure 3
View of the infinite helical hydrogen-bonded chain in (I)[link].

4. Hirshfeld surface analysis

The Hirshfeld surface (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]) mapped with a dnorm function for the asymmetric unit for the title compounds clearly shows the red spots derived from H⋯O and H⋯Cl/Cl⋯H contacts (Fig. 4[link]). The two-dimensional fingerprint plot shows that the H⋯Cl/Cl⋯H contacts associated with O—H⋯Cl hydrogen bonding appear to be the major contributor in the crystal packing (55.8%): these contacts are represented as regions in the top left (de > di, Cl⋯H) and bottom right (de < di, H⋯Cl) of the related plots in Fig. 5[link]. Inter­actions of the type H⋯H appear in the middle of the scattered points in the fingerprint maps; they comprise 10.9% of the entire surface. The decomposition of the fingerprint plot shows that N⋯H/H⋯N, C⋯H/H⋯C, O⋯H/H⋯O and N⋯Cl/Cl⋯N contacts have percentage contributions of 7.8%, 6.5%, 4.5% and 4.3% respectively, of the total Hirshfeld surface. The C⋯C contacts associated with ππ inter­actions amount to 3.4% of the surface: their presence is indicated by the appearance of red and blue triangles on the shape-indexed surfaces in Fig. 6[link]. The Cl⋯Bi/Bi⋯Cl (3%) inter­actions are represented as points in the top area. The Cl⋯Cl, C⋯Cl/Cl⋯C, C⋯N, and N⋯N inter­actions are in the middle of the fingerprint plots, and comprise a very small contribution of 1.3%, 1.2%, 0.9% and 0.4%, respectively.

[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm of (I)[link].
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for (I)[link] showing contributions from different contacts.
[Figure 6]
Figure 6
Hirshfeld surface mapped over the shape index for (I)[link] highlighting the regions involved in π-π stacking inter­actions.

The inter­molecular inter­actions were further evaluated by using the enrichment ratio (ER; Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]). The largest contribution to the Hirshfeld surface is from H⋯Cl/Cl⋯H contacts associated with O—H⋯Cl hydrogen bonds and their ER value is 1.73. The H⋯H contacts are the second largest contributor, but they display an enrichment ratio significantly below unity (ERHH = 0.47). The formation of extensive ππ inter­actions is reflected in the relatively high ERCC of 3.94.

5. Synthesis and crystallization

The title compound was prepared by dropwise addition of an ethano­lic solution of 1H-benzotriazole (0.061 g, 0.5 mmol) to 1 mmol of a bis­muth nitrate solution [Bi(NO3)3·5H2O], dissolved in 0.05 mL of a concentrated HCl aqueous solution. The resulting aqueous solution was stirred for 30 min. and kept at room temperature for crystallization. After two week of slow evaporation, colourless single crystals of (I)[link] (yield = 75%) were formed in the solution. Analysis observed (calculated) for [C6H6N3]2[BiCl5]·2H2O (%): C 21.6 (21.0), H 2.66 (2.41), N 34.6 (33.8).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N-bound and C-bound hydrogen atoms were positioned geometrically and treated as riding: N—H = 0.86 Å and C—H = 0.93 Å with Uiso(H) = 1.2Ueq(N,C). The O—H and H⋯H separations in the water mol­ecule were restrained using a DFIX model to be 0.90 and 1.46 Å, respectively, and refined with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula (C6H6N3)2[BiCl5]·2H2O
Mr 662.54
Crystal system, space group Orthorhombic, Cmc21
Temperature (K) 293
a, b, c (Å) 19.4627 (4), 13.8181 (4), 7.7343 (2)
V3) 2080.04 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.14
Crystal size (mm) 0.55 × 0.34 × 0.23
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.011, 0.053
No. of measured, independent and observed [I > 2σ(I)] reflections 6050, 1670, 1643
Rint 0.067
(sin θ/λ)max−1) 0.581
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.11
No. of reflections 1670
No. of parameters 131
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.68, −0.76
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 731 Friedel pairs
Absolute structure parameter −0.036 (14)
Computer programs: Kappa CCD server software (Nonius, 1997[Nonius (1997). KappaCCD Server Software for Windows. Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: Kappa CCD server software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and WinGX (Farrugia, 2012).

catena-Poly[bis(1,2,3-benzotriazolium) [[tetrachloridobismuth(III)]-µ-chlorido] dihydrate] top
Crystal data top
(C6H6N3)2[BiCl5]·2H2OF(000) = 1256
Mr = 662.54Dx = 2.116 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 8027 reflections
a = 19.4627 (4) Åθ = 4.4–7.3°
b = 13.8181 (4) ŵ = 9.14 mm1
c = 7.7343 (2) ÅT = 293 K
V = 2080.04 (9) Å3Rod, colourless
Z = 40.55 × 0.34 × 0.23 mm
Data collection top
Nonius KappaCCD
diffractometer
1670 independent reflections
Radiation source: fine-focus sealed tube1643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
f scans and w scansθmax = 24.4°, θmin = 4.4°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 2222
Tmin = 0.011, Tmax = 0.053k = 1616
6050 measured reflectionsl = 88
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0704P)2 + 2.8002P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max = 0.038
S = 1.11Δρmax = 1.68 e Å3
1670 reflectionsΔρmin = 0.76 e Å3
131 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.0028 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 731 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.036 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.50000.35812 (2)0.08277 (6)0.0310 (2)
Cl10.36329 (14)0.3716 (2)0.0695 (12)0.0685 (10)
Cl20.50000.2105 (2)0.1139 (6)0.0458 (7)
Cl30.50000.2501 (3)0.3697 (5)0.0500 (8)
Cl40.50000.5302 (3)0.2874 (5)0.0652 (10)
O1W0.6246 (4)0.3531 (5)0.585 (3)0.0570 (18)
C10.6621 (5)0.0963 (7)0.7492 (14)0.042 (2)
C20.6058 (5)0.0522 (8)0.6684 (15)0.049 (2)
H2C0.57040.08730.61750.058*
C30.6071 (6)0.0470 (8)0.6707 (16)0.054 (3)
H30.57050.08040.62150.065*
C40.6607 (6)0.1001 (8)0.7433 (16)0.056 (2)
H40.65900.16730.73900.067*
C50.7154 (7)0.0568 (8)0.8201 (15)0.047 (3)
H50.75110.09260.86840.057*
C60.7153 (6)0.0439 (9)0.8229 (14)0.040 (2)
N30.7585 (5)0.1125 (8)0.8909 (15)0.050 (2)
H3A0.79540.09920.94690.060*
N10.6790 (5)0.1908 (7)0.7770 (15)0.058 (2)
H10.65450.23900.74340.070*
N20.7371 (5)0.1995 (8)0.8609 (16)0.061 (3)
H110.600 (5)0.400 (8)0.638 (18)0.091*
H220.595 (5)0.320 (10)0.520 (18)0.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0321 (3)0.0286 (3)0.0323 (3)0.0000.0000.0007 (2)
Cl10.0362 (11)0.0924 (19)0.077 (3)0.0003 (11)0.008 (2)0.013 (2)
Cl20.0575 (19)0.0308 (16)0.0490 (17)0.0000.0000.0089 (14)
Cl30.0605 (19)0.0469 (19)0.0427 (16)0.0000.0000.0107 (16)
Cl40.088 (3)0.053 (2)0.054 (2)0.0000.0000.0215 (16)
O1W0.042 (3)0.060 (5)0.069 (5)0.002 (2)0.002 (10)0.010 (5)
C10.041 (5)0.033 (5)0.051 (5)0.001 (4)0.009 (4)0.002 (4)
C20.047 (5)0.050 (6)0.049 (5)0.008 (4)0.001 (4)0.002 (4)
C30.048 (5)0.056 (7)0.059 (6)0.008 (5)0.001 (5)0.011 (5)
C40.064 (6)0.042 (6)0.062 (6)0.004 (5)0.016 (5)0.005 (5)
C50.053 (7)0.042 (6)0.047 (6)0.011 (5)0.002 (5)0.001 (5)
C60.032 (5)0.046 (5)0.040 (5)0.004 (4)0.002 (4)0.007 (5)
N30.044 (5)0.053 (6)0.053 (6)0.002 (5)0.005 (4)0.006 (4)
N10.052 (5)0.037 (5)0.085 (7)0.001 (4)0.011 (5)0.005 (5)
N20.053 (6)0.050 (6)0.080 (7)0.016 (5)0.010 (5)0.018 (5)
Geometric parameters (Å, º) top
Bi1—Cl12.669 (3)C2—H2C0.9300
Bi1—Cl1i2.669 (3)C3—C41.394 (17)
Bi1—Cl22.545 (3)C3—H30.9300
Bi1—Cl32.674 (4)C4—C51.358 (18)
Bi1—Cl4ii2.757 (4)C4—H40.9300
Bi1—Cl42.856 (4)C5—C61.392 (13)
Cl4—Bi1iii2.757 (4)C5—H50.9300
O1W—H110.90 (2)C6—N31.370 (15)
O1W—H220.90 (2)N3—N21.293 (15)
C1—N11.364 (16)N3—H3A0.8600
C1—C61.387 (16)N1—N21.308 (15)
C1—C21.402 (15)N1—H10.8600
C2—C31.371 (16)
Cl2—Bi1—Cl191.88 (13)C3—C2—H2C122.8
Cl2—Bi1—Cl1i91.88 (13)C1—C2—H2C122.8
Cl1—Bi1—Cl1i170.9 (2)C2—C3—C4123.0 (10)
Cl2—Bi1—Cl392.80 (16)C2—C3—H3118.5
Cl1—Bi1—Cl394.06 (17)C4—C3—H3118.5
Cl1i—Bi1—Cl394.06 (17)C5—C4—C3122.1 (10)
Cl2—Bi1—Cl4ii87.32 (14)C5—C4—H4118.9
Cl1—Bi1—Cl4ii85.93 (17)C3—C4—H4118.9
Cl1i—Bi1—Cl4ii85.93 (17)C4—C5—C6116.5 (12)
Cl3—Bi1—Cl4ii179.88 (13)C4—C5—H5121.8
Cl2—Bi1—Cl4176.93 (13)C6—C5—H5121.8
Cl1—Bi1—Cl487.90 (13)N3—C6—C1104.7 (10)
Cl1i—Bi1—Cl487.90 (13)N3—C6—C5134.1 (13)
Cl3—Bi1—Cl490.27 (13)C1—C6—C5121.1 (13)
Cl4ii—Bi1—Cl489.61 (3)N2—N3—C6112.1 (10)
Bi1iii—Cl4—Bi1157.68 (19)N2—N3—H3A123.9
H11—O1W—H22106 (3)C6—N3—H3A123.9
N1—C1—C6104.8 (10)N2—N1—C1112.0 (10)
N1—C1—C2132.5 (10)N2—N1—H1124.0
C6—C1—C2122.7 (10)C1—N1—H1124.0
C3—C2—C1114.5 (10)N3—N2—N1106.4 (9)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z1/2; (iii) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.862.082.891 (17)157
N3—H3A···O1Wiv0.862.00 (2)2.767 (18)148
O1W—H11···Cl4iii0.89 (11)2.47 (11)3.306 (13)157 (9)
O1W—H22···Cl30.90 (12)2.38 (12)3.268 (14)169 (11)
C5—H5···Cl1v0.932.733.603 (14)157
Symmetry codes: (iii) x+1, y+1, z+1/2; (iv) x+3/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z+1.
 

Acknowledgements

This work was supported by the Tunisian Ministry of High Education Scientific Research.

References

First citationAloui, Z., Ferretti, V., Abid, S., Lefebvre, F., Rzaigui, M. & Nasr, C. B. (2015). J. Mol. Struct. 1097, 166–170.  CSD CrossRef CAS
First citationBator, G., Baran, J., Jakubas, R. & Sobczyk, L. (1998). J. Mol. Struct. 450, 89–100.  Web of Science CrossRef CAS
First citationBator, G., Provoost, R., Silverans, R. E. & Zeegers-Huyskens, Th. (1997). J. Mol. Struct. 435, 1–10.  CrossRef CAS
First citationBednarska-Bolek, B., Zaleski, J., Bator, G. & Jakubas, R. (2000). J. Phys. Chem. Solids, 61, 1249–1261.  CAS
First citationBelter, R. K. & Fronczek, F. R. (2013). Acta Cryst. E69, o606–o607.  CSD CrossRef IUCr Journals
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
First citationDammak, H., Feki, H., Boughzala, H. & Abid, Y. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 1235–1243.  CSD CrossRef CAS PubMed
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationElfaleh, N. & Kamoun, S. (2014). J. Mol. Struct. 1075, 479–485.  CSD CrossRef CAS
First citationFerjani, H., Boughzala, H. & Driss, A. (2012). Acta Cryst. E68, m615.  CSD CrossRef IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationJakubas, R. (1986). Solid State Commun. 60, 389–391.  CSD CrossRef CAS Web of Science
First citationJakubas, R., Bator, G. & Mróz, J. (1995). Acta Phys. Pol. A, 87, 663–669.  CrossRef CAS
First citationJakubas, R., Krzewska, U., Bator, G. & Sobczyk, L. (1988). Ferroelectrics, 77, 129–135.  CrossRef CAS
First citationJelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128.  Web of Science CrossRef CAS PubMed IUCr Journals
First citationNonius (1997). KappaCCD Server Software for Windows. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationOuasri, A., Jeghnou, H., Rhandour, A. & Roussel, P. (2013). J. Solid State Chem. 200, 22–29.  CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSobczyk, L., Jakubas, R. & Zaleski, J. (1997). Pol. J. Chem. 71, 265–300.  CAS
First citationThirunavukkarasu, A., Silambarasan, A., Chakkaravarthi, G., Mohankumar, R. & Umarani, P. R. (2013). Acta Cryst. E69, o1605.  CSD CrossRef IUCr Journals
First citationWang, Y., Shi, C. & Han, X. (2017). Polyhedron, 133, 132–136.  CSD CrossRef CAS
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.
First citationZeng, B., Li, J. & Wang, G. (2011). Acta Cryst. E67, o1464.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds