research communications
κ3N,C1,N′}(bromido/chlorido)mercury(II)
of {2,6-bis[(dimethylamino)methyl]phenyl-aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
In the molecular structure of the title compound, {2,6-bis[(dimethylamino)methyl]phenyl-κ3N,C1,N′}[bromido/chlorido(0.30/0.70)]mercury(II)–{2,6-bis[(dimethylamino)methyl]phenyl-κ3N,C1,N′}[bromido/chlorido(0.24/0.76)]mercury(II) (1/1), [HgBr0.30Cl0.70(C12H19N2)]·[HgBr0.24Cl0.76(C12H19N2)], there are two molecules in the of formula LHgX {L = 2,6-bis[(dimethylamino)methyl]phenyl and X = Cl/Br}. In each molecule, the halide site is mixed Cl/Br, with occupancies of 0.699 (7):0.301 (7) and 0.763 (7):0.237 (7), respectively. The two molecules are linked into dimers by a combination of Hg⋯Hg [Hg⋯Hg = 3.6153 (3) Å] and C—H⋯Cl and C—H⋯π interactions.
CCDC reference: 1510433
1. Chemical context
Organomercury compounds of type R2Hg and RHgX (R = alkyl or aryl; X = halide) have received considerable attention in the last three decades, mainly related to the search for versatile reagents in controlled transmetallation reactions (Wardell, 1985). Organomercury(II) derivatives have been used successfully to obtain the desired organometallic compounds of transition metals, as well as main group metals otherwise inaccessible by classical Grignard and/or lithiation reactions (Bonnardel et al., 1996; Gul & Nelson, 1999a,b; Berger et al., 2001, 2003; Zhang et al., 2005; Djukic et al., 2006). Although the toxicity of mercury compounds should always be taken into account, there are important advantages, e.g. the possibility of preparing functionalized organomercury derivatives and the high selectivity of the transmetallation reaction (Ding et al., 1993; Pfeffer et al., 1996; Wu et al., 1998; Dreher & Leighton, 2001; Crimmins & Brown, 2004). Some cyclometallated organomercury(II) chlorides containing N-donor functionalized aryl ligands were investigated in the context of their use as transmetallation reagents (Ali et al., 1989; Constable et al., 1989, 1991, Srivastava et al., 2010). Thus, organomercury(II) compounds serve as the precursor for the synthesis of various organometallic derivatives of transition metals, as well as main group metals, thus there is much interest in the structural characterization of these derivatives.
2. Structural commentary
The molecular structure of 2 is shown in Figs. 1 and 2. The compound crystallized with two molecules in the In each molecule, the halide site is mixed Cl/Br with occupancies of 0.699 (7):0.301 (7) in molecule A and 0.763 (7):0.237 (7) in molecule B. In these moieties, there are two coordination spheres around each Hg atom (Table 1). If we consider the first coordination sphere, the spatial arrangement of each Hg atom is distorted square planar with a coordination sphere made up of C—Hg—Cl/Br. Interestingly, both amine side arms are displaced from this plane in the same direction and thus both are on the same side of the phenyl ring. This displacement of the bulky groups with respect to the phenyl ring attached to Hg has been observed previously (Lau & Kochi, 1986).
|
A significant feature of this compound is the presence of a weak interaction between both chemically similar d10–d10 metals. The distance of 3.6153 (3) Å is significantly smaller than the sum of the van der Waals radii for Hg⋯Hg (ΣrvdW = 3.96 Å; Bondi, 1964). These intermolecular interactions are longer than the Hg⋯Hg distances reported for metallic mercury (3 Å) (Donohue, 1974). They are close to the intramolecular Hg⋯Hg distances observed previously (Hg1⋯Hg2 = 3.572 Å; King et al., 2002) and also exceed the mercurophilic distances calculated for the (HgMe2)2 dimer at 3.41 Å (Pyykkö & Straka, 2000). This is in contrast to a related structure, L2Hg2Br2 {L = 4-tert-butyl-2-[(dimethylamino)methyl]-6-[(dimethylamino)methyl]benzene}, which is a dimer linked by Hg2Br2 units, with one dimethylamino arm of each ligand coordinated to an Hg atom, and where there are no Hg⋯Hg interactions present (Das et al., 2015). The N⋯Hg distances [Hg1⋯N1A/Hg1⋯N2A = 2.764 (7)/2.867 (6) Å] are significantly shorter than the sum of the van der Waals radii for Hg and N [ΣrvdW (Hg, N) = 3.53 Å]. However, these values are slightly longer than related organomercury(II) compounds with one pendant arm of 2.65 (1), 2.725 (4) and 2.647 (2) Å (Attar et al., 1995; Bumbu et al., 2004), but are similar to those found in compounds reported previously (Atwood et al., 1983; Oilunkaniemi et al., 2001; Zhou et al., 1994) at 2.787 (6)/2.858 (6) and 2.89 Å.
3. Supramolecular features
A significant feature of this compound is the presence of a weak interaction between both chemically similar d10–d10 metals. The distance is 3.6153 (3) Å, which is significantly smaller than the sum of the van der Waals radii for Hg⋯Hg (ΣrvdW =3.96 Å; Bondi, 1964). This links the molecules into dimers which are further stabilized by both C—H⋯Cl/Br (Table 2) and C—H⋯π interactions, as shown in Figs. 1 and 2. In the packing, there are no significant interactions apart from those discussed above.
4. Database survey
A survey of the Cambridge Structural Database (Version 5.38; Groom et al., 2016) for HgX complexes of NCN pincer ligands with each N as a tertiary amine gave four hits: HIMQEA (Spek et al., 2007), LIGFIS (Liu et al., 2013), OWUHAQ (Beleaga et al., 2011) and TUTLOL (Das et al., 2015).
5. Synthesis and crystallization
The precursor N,C,N-pincer ligand [2,6-(CH2NMe2)2C6H3Br], 1, was prepared according to the procedure given by van Koten and co-workers (van de Kuil et al., 1994) with slight modifications. An excess of HNMe2 (in H2O) was employed instead of 2.2 equivalents to quench with 2-bromo-1,3-bis(bromomethyl)benzene. This afforded a yellow oil which was purified by vacuum distillation to give a colorless oil in 70% yield. n-BuLi (1.15 ml, 1.84 mmol) was added dropwise via syringe to the solution of 1 (0.50 g, 1.84 mmol) in dry Et2O (15 ml) under an inert atmosphere at 273 K. After 30 min, the color of the reaction mixture changed from colorless to pale yellow. To this, a solution of HgCl2 (0.50 g, 1.84 mmol) in dry THF (10 ml) was added. The whole mixture was stirred for 5 h at 273 K and then allowed to warm slowly to room temperature. Then reaction mixture was filtered and the filtrate evaporated to dryness and the resulting precipitate extracted with hexane. The workup afforded a white precipitate of 2 (yield 0.36 g, 75%; m.p. 408–410 K). Colorless crystals of 2 suitable for single-crystal were obtained by slow diffusion of hexane into CHCl3 at room temperature.
1H NMR: δ 7.15 (t, 1H, Ar-H), 7.07 (d, 2H, ArH), 3.45 (s, 4H, CH2), 2.21 (s, 12H, NCH3). 13C NMR: δ 144.90, 128.36, 128.10, 66.01, 44.85. 199Hg NMR: δ −930. Analysis calculated for C12H19ClHgN2: C 33.73, H 4.48, N 6.56%; found: C 32.55, H 5.10, N 5.26%. ESI–MS (positive mode): [M + H]+ m/z = 429.1005 (observed), 429.1015 (calculated).
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms. There are two molecules in the and in each the halide site is occupied by a mix or Cl and Br, with refined occupancies of 0.699 (7):0.301 (7) and 0.763 (7):0.237 (7), respectively.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1510433
https://doi.org/10.1107/S2056989017014682/hg5496sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017014682/hg5496Isup2.hkl
Data collection: CrysAlis PRO (Agilent,(2012); cell
CrysAlis PRO (Agilent,(2012); data reduction: CrysAlis PRO (Agilent,(2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[HgBr0.30Cl0.70(C12H19N2)]·[HgBr0.24Cl0.76(C12H19N2)] | F(000) = 1654.7 |
Mr = 878.78 | Dx = 2.028 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 9.51872 (15) Å | Cell parameters from 6238 reflections |
b = 10.88545 (17) Å | θ = 3.2–75.5° |
c = 27.8353 (5) Å | µ = 21.12 mm−1 |
β = 93.8563 (15)° | T = 123 K |
V = 2877.64 (8) Å3 | Plate, colorless |
Z = 4 | 0.29 × 0.25 × 0.10 mm |
Agilent Xcalibur Ruby Gemini diffractometer | 5120 reflections with I > 2σ(I) |
Detector resolution: 10.5081 pixels mm-1 | Rint = 0.045 |
ω scans | θmax = 75.7°, θmin = 3.2° |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] | h = −11→11 |
Tmin = 0.033, Tmax = 0.248 | k = −12→13 |
11395 measured reflections | l = −34→22 |
5778 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0257P)2] where P = (Fo2 + 2Fc2)/3 |
5778 reflections | (Δ/σ)max = 0.002 |
317 parameters | Δρmax = 1.28 e Å−3 |
12 restraints | Δρmin = −1.66 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Hg1 | 0.67865 (2) | 0.22147 (2) | 0.59002 (2) | 0.02302 (7) | |
Hg2 | 1.04508 (2) | 0.16424 (2) | 0.62562 (2) | 0.02172 (7) | |
Cl1 | 0.696 (2) | 0.217 (2) | 0.5057 (7) | 0.034 (2) | 0.699 (7) |
Cl2 | 1.0246 (15) | −0.0473 (11) | 0.6361 (5) | 0.0261 (15) | 0.763 (7) |
Br1 | 0.693 (2) | 0.195 (2) | 0.5053 (7) | 0.033 (3) | 0.301 (7) |
Br2 | 1.008 (2) | −0.0552 (18) | 0.6292 (7) | 0.028 (3) | 0.237 (7) |
C7B | 1.0827 (6) | 0.3309 (6) | 0.5309 (2) | 0.0293 (12) | |
H7BA | 0.981756 | 0.316055 | 0.521854 | 0.035* | |
H7BB | 1.121654 | 0.379092 | 0.504766 | 0.035* | |
C3B | 1.1228 (6) | 0.5310 (6) | 0.5743 (2) | 0.0308 (12) | |
H3BA | 1.137928 | 0.567980 | 0.544182 | 0.037* | |
C6A | 0.6440 (5) | 0.1362 (5) | 0.69141 (19) | 0.0195 (10) | |
N2A | 0.5517 (5) | 0.0024 (5) | 0.62484 (17) | 0.0254 (9) | |
N1A | 0.6216 (5) | 0.4670 (5) | 0.60575 (18) | 0.0266 (10) | |
C4A | 0.6285 (6) | 0.2670 (6) | 0.7610 (2) | 0.0262 (11) | |
H4AA | 0.616324 | 0.276087 | 0.794375 | 0.031* | |
N1B | 1.1559 (6) | 0.2121 (5) | 0.53496 (18) | 0.0285 (10) | |
N2B | 1.1252 (5) | 0.2467 (5) | 0.71894 (17) | 0.0247 (9) | |
C4B | 1.1289 (7) | 0.6030 (6) | 0.6159 (3) | 0.0333 (13) | |
H4BA | 1.146235 | 0.688797 | 0.614067 | 0.040* | |
C1B | 1.0743 (6) | 0.3525 (5) | 0.6213 (2) | 0.0216 (10) | |
C7A | 0.6960 (6) | 0.4705 (5) | 0.6536 (2) | 0.0275 (11) | |
H7AA | 0.667054 | 0.544923 | 0.670857 | 0.033* | |
H7AB | 0.798562 | 0.476236 | 0.649976 | 0.033* | |
C9A | 0.4755 (7) | 0.5018 (6) | 0.6083 (3) | 0.0364 (14) | |
H9AA | 0.429645 | 0.505095 | 0.575756 | 0.055* | |
H9AB | 0.470317 | 0.582844 | 0.623472 | 0.055* | |
H9AC | 0.427680 | 0.441186 | 0.627483 | 0.055* | |
C5B | 1.1094 (6) | 0.5482 (6) | 0.6599 (2) | 0.0312 (12) | |
H5BA | 1.114782 | 0.596728 | 0.688286 | 0.037* | |
C3A | 0.6472 (5) | 0.3708 (5) | 0.7327 (2) | 0.0252 (11) | |
H3AA | 0.647103 | 0.450383 | 0.746694 | 0.030* | |
C8A | 0.6926 (8) | 0.5444 (7) | 0.5721 (3) | 0.0395 (15) | |
H8AA | 0.657279 | 0.525039 | 0.539078 | 0.059* | |
H8AB | 0.794228 | 0.529126 | 0.575688 | 0.059* | |
H8AC | 0.674005 | 0.630996 | 0.578908 | 0.059* | |
C10B | 1.0566 (6) | 0.3661 (6) | 0.7115 (2) | 0.0258 (11) | |
H10A | 1.092313 | 0.423059 | 0.737239 | 0.031* | |
H10B | 0.954042 | 0.356259 | 0.714164 | 0.031* | |
C5A | 0.6275 (6) | 0.1514 (6) | 0.7408 (2) | 0.0240 (10) | |
H5AA | 0.615475 | 0.081382 | 0.760486 | 0.029* | |
C11B | 1.2757 (7) | 0.2609 (7) | 0.7270 (2) | 0.0347 (13) | |
H11A | 1.321057 | 0.180288 | 0.725650 | 0.052* | |
H11B | 1.297727 | 0.297876 | 0.758692 | 0.052* | |
H11C | 1.310550 | 0.314276 | 0.702021 | 0.052* | |
C2B | 1.0948 (5) | 0.4057 (5) | 0.5765 (2) | 0.0242 (11) | |
C1A | 0.6658 (6) | 0.2400 (5) | 0.66324 (19) | 0.0223 (10) | |
C10A | 0.6421 (6) | 0.0091 (5) | 0.67000 (19) | 0.0233 (10) | |
H10C | 0.739302 | −0.015028 | 0.663499 | 0.028* | |
H10D | 0.607285 | −0.049896 | 0.693533 | 0.028* | |
C8B | 1.1153 (8) | 0.1363 (8) | 0.4926 (3) | 0.0432 (17) | |
H8BA | 1.161637 | 0.056088 | 0.495918 | 0.065* | |
H8BB | 1.144287 | 0.177335 | 0.463548 | 0.065* | |
H8BC | 1.012946 | 0.124999 | 0.490164 | 0.065* | |
C12A | 0.5793 (8) | −0.1127 (7) | 0.5993 (3) | 0.0415 (15) | |
H12A | 0.527374 | −0.112131 | 0.567652 | 0.062* | |
H12B | 0.548508 | −0.182616 | 0.618075 | 0.062* | |
H12C | 0.680372 | −0.119791 | 0.595076 | 0.062* | |
C11A | 0.4023 (6) | 0.0082 (6) | 0.6348 (2) | 0.0308 (12) | |
H11D | 0.343974 | −0.007355 | 0.605063 | 0.046* | |
H11E | 0.380714 | 0.089841 | 0.647181 | 0.046* | |
H11F | 0.382401 | −0.054127 | 0.658852 | 0.046* | |
C2A | 0.6661 (6) | 0.3569 (5) | 0.6837 (2) | 0.0242 (11) | |
C12B | 1.0667 (7) | 0.1789 (7) | 0.7579 (2) | 0.0357 (14) | |
H12D | 1.113371 | 0.098843 | 0.761506 | 0.054* | |
H12E | 0.965493 | 0.166659 | 0.750595 | 0.054* | |
H12F | 1.081726 | 0.225376 | 0.787987 | 0.054* | |
C6B | 1.0819 (6) | 0.4219 (5) | 0.6630 (2) | 0.0231 (10) | |
C9B | 1.3082 (7) | 0.2285 (6) | 0.5396 (2) | 0.0338 (13) | |
H9BA | 1.335127 | 0.269149 | 0.570282 | 0.051* | |
H9BB | 1.337477 | 0.279205 | 0.512984 | 0.051* | |
H9BC | 1.354303 | 0.148111 | 0.538753 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.02045 (11) | 0.02636 (11) | 0.02252 (11) | −0.00026 (8) | 0.00344 (7) | 0.00093 (8) |
Hg2 | 0.02013 (11) | 0.02080 (11) | 0.02437 (11) | −0.00107 (7) | 0.00261 (7) | 0.00092 (8) |
Cl1 | 0.037 (2) | 0.039 (6) | 0.026 (2) | −0.011 (3) | 0.0085 (15) | −0.001 (3) |
Cl2 | 0.027 (3) | 0.0164 (19) | 0.035 (4) | −0.0063 (18) | 0.004 (3) | 0.000 (2) |
Br1 | 0.029 (3) | 0.038 (7) | 0.031 (2) | −0.004 (3) | 0.0054 (16) | −0.006 (3) |
Br2 | 0.026 (4) | 0.024 (3) | 0.035 (5) | −0.010 (2) | −0.002 (3) | −0.010 (2) |
C7B | 0.022 (3) | 0.038 (3) | 0.028 (3) | −0.002 (2) | −0.002 (2) | 0.006 (2) |
C3B | 0.026 (3) | 0.027 (3) | 0.040 (3) | 0.002 (2) | −0.001 (2) | 0.010 (2) |
C6A | 0.016 (2) | 0.019 (2) | 0.023 (2) | 0.0008 (18) | 0.0048 (18) | 0.0009 (19) |
N2A | 0.032 (3) | 0.019 (2) | 0.025 (2) | −0.0021 (18) | 0.0031 (18) | 0.0011 (18) |
N1A | 0.028 (2) | 0.025 (2) | 0.027 (2) | 0.0016 (19) | 0.0034 (19) | 0.0045 (19) |
C4A | 0.022 (3) | 0.033 (3) | 0.024 (2) | 0.004 (2) | 0.003 (2) | −0.004 (2) |
N1B | 0.031 (3) | 0.031 (3) | 0.024 (2) | −0.002 (2) | 0.0052 (19) | 0.001 (2) |
N2B | 0.023 (2) | 0.026 (2) | 0.025 (2) | 0.0036 (18) | 0.0032 (17) | 0.0000 (18) |
C4B | 0.029 (3) | 0.018 (2) | 0.053 (4) | 0.004 (2) | 0.002 (3) | 0.006 (3) |
C1B | 0.019 (2) | 0.016 (2) | 0.030 (3) | 0.0038 (18) | 0.005 (2) | 0.004 (2) |
C7A | 0.020 (3) | 0.022 (3) | 0.040 (3) | −0.004 (2) | 0.003 (2) | 0.003 (2) |
C9A | 0.029 (3) | 0.030 (3) | 0.050 (4) | −0.004 (2) | −0.002 (3) | 0.004 (3) |
C5B | 0.025 (3) | 0.029 (3) | 0.039 (3) | 0.003 (2) | −0.003 (2) | −0.007 (3) |
C3A | 0.016 (2) | 0.025 (3) | 0.034 (3) | −0.0020 (19) | 0.001 (2) | −0.006 (2) |
C8A | 0.049 (4) | 0.033 (3) | 0.038 (3) | 0.000 (3) | 0.012 (3) | 0.013 (3) |
C10B | 0.020 (2) | 0.032 (3) | 0.026 (3) | 0.007 (2) | 0.000 (2) | −0.003 (2) |
C5A | 0.018 (2) | 0.028 (3) | 0.026 (3) | −0.002 (2) | −0.0009 (19) | 0.001 (2) |
C11B | 0.029 (3) | 0.044 (4) | 0.031 (3) | 0.006 (3) | 0.000 (2) | 0.002 (3) |
C2B | 0.016 (2) | 0.027 (3) | 0.029 (3) | 0.0012 (19) | −0.0017 (19) | 0.008 (2) |
C1A | 0.016 (2) | 0.026 (3) | 0.024 (2) | −0.0026 (19) | −0.0049 (18) | −0.003 (2) |
C10A | 0.022 (2) | 0.021 (2) | 0.027 (3) | 0.004 (2) | 0.006 (2) | 0.000 (2) |
C8B | 0.043 (4) | 0.045 (4) | 0.042 (4) | −0.016 (3) | 0.010 (3) | −0.015 (3) |
C12A | 0.053 (4) | 0.027 (3) | 0.045 (4) | −0.007 (3) | 0.007 (3) | −0.014 (3) |
C11A | 0.025 (3) | 0.034 (3) | 0.033 (3) | −0.005 (2) | −0.002 (2) | 0.000 (2) |
C2A | 0.020 (2) | 0.020 (2) | 0.033 (3) | 0.0012 (19) | −0.002 (2) | 0.000 (2) |
C12B | 0.036 (3) | 0.041 (4) | 0.030 (3) | −0.004 (3) | 0.004 (2) | 0.003 (3) |
C6B | 0.019 (2) | 0.023 (3) | 0.027 (3) | 0.0039 (19) | 0.0000 (19) | 0.001 (2) |
C9B | 0.030 (3) | 0.035 (3) | 0.037 (3) | 0.004 (2) | 0.005 (2) | 0.008 (3) |
Hg1—C1A | 2.060 (5) | C7A—H7AB | 0.9900 |
Hg1—Cl1 | 2.365 (19) | C9A—H9AA | 0.9800 |
Hg1—Br1 | 2.39 (2) | C9A—H9AB | 0.9800 |
Hg1—Hg2 | 3.6153 (3) | C9A—H9AC | 0.9800 |
Hg2—C1B | 2.073 (5) | C5B—C6B | 1.403 (8) |
Hg2—Cl2 | 2.331 (11) | C5B—H5BA | 0.9500 |
Hg2—Br2 | 2.417 (19) | C3A—C2A | 1.396 (8) |
C7B—N1B | 1.470 (8) | C3A—H3AA | 0.9500 |
C7B—C2B | 1.504 (9) | C8A—H8AA | 0.9800 |
C7B—H7BA | 0.9900 | C8A—H8AB | 0.9800 |
C7B—H7BB | 0.9900 | C8A—H8AC | 0.9800 |
C3B—C2B | 1.392 (8) | C10B—C6B | 1.515 (8) |
C3B—C4B | 1.396 (10) | C10B—H10A | 0.9900 |
C3B—H3BA | 0.9500 | C10B—H10B | 0.9900 |
C6A—C1A | 1.399 (8) | C5A—H5AA | 0.9500 |
C6A—C5A | 1.404 (8) | C11B—H11A | 0.9800 |
C6A—C10A | 1.506 (7) | C11B—H11B | 0.9800 |
N2A—C11A | 1.469 (8) | C11B—H11C | 0.9800 |
N2A—C12A | 1.473 (8) | C1A—C2A | 1.394 (8) |
N2A—C10A | 1.477 (7) | C10A—H10C | 0.9900 |
N1A—C9A | 1.447 (8) | C10A—H10D | 0.9900 |
N1A—C8A | 1.459 (8) | C8B—H8BA | 0.9800 |
N1A—C7A | 1.467 (7) | C8B—H8BB | 0.9800 |
C4A—C5A | 1.377 (8) | C8B—H8BC | 0.9800 |
C4A—C3A | 1.395 (9) | C12A—H12A | 0.9800 |
C4A—H4AA | 0.9500 | C12A—H12B | 0.9800 |
N1B—C9B | 1.458 (8) | C12A—H12C | 0.9800 |
N1B—C8B | 1.469 (8) | C11A—H11D | 0.9800 |
N2B—C11B | 1.444 (8) | C11A—H11E | 0.9800 |
N2B—C12B | 1.454 (8) | C11A—H11F | 0.9800 |
N2B—C10B | 1.462 (7) | C12B—H12D | 0.9800 |
C4B—C5B | 1.385 (10) | C12B—H12E | 0.9800 |
C4B—H4BA | 0.9500 | C12B—H12F | 0.9800 |
C1B—C6B | 1.383 (8) | C9B—H9BA | 0.9800 |
C1B—C2B | 1.400 (8) | C9B—H9BB | 0.9800 |
C7A—C2A | 1.531 (8) | C9B—H9BC | 0.9800 |
C7A—H7AA | 0.9900 | ||
C1A—Hg1—Cl1 | 175.4 (5) | H8AA—C8A—H8AC | 109.5 |
C1A—Hg1—Br1 | 178.6 (6) | H8AB—C8A—H8AC | 109.5 |
C1A—Hg1—Hg2 | 82.31 (15) | N2B—C10B—C6B | 112.7 (5) |
Cl1—Hg1—Hg2 | 97.8 (5) | N2B—C10B—H10A | 109.1 |
Br1—Hg1—Hg2 | 97.5 (5) | C6B—C10B—H10A | 109.1 |
C1B—Hg2—Cl2 | 175.3 (4) | N2B—C10B—H10B | 109.1 |
C1B—Hg2—Br2 | 178.9 (5) | C6B—C10B—H10B | 109.1 |
C1B—Hg2—Hg1 | 86.82 (15) | H10A—C10B—H10B | 107.8 |
Cl2—Hg2—Hg1 | 96.7 (3) | C4A—C5A—C6A | 120.6 (5) |
Br2—Hg2—Hg1 | 92.3 (5) | C4A—C5A—H5AA | 119.7 |
N1B—C7B—C2B | 113.7 (5) | C6A—C5A—H5AA | 119.7 |
N1B—C7B—H7BA | 108.8 | N2B—C11B—H11A | 109.5 |
C2B—C7B—H7BA | 108.8 | N2B—C11B—H11B | 109.5 |
N1B—C7B—H7BB | 108.8 | H11A—C11B—H11B | 109.5 |
C2B—C7B—H7BB | 108.8 | N2B—C11B—H11C | 109.5 |
H7BA—C7B—H7BB | 107.7 | H11A—C11B—H11C | 109.5 |
C2B—C3B—C4B | 120.8 (6) | H11B—C11B—H11C | 109.5 |
C2B—C3B—H3BA | 119.6 | C3B—C2B—C1B | 118.8 (6) |
C4B—C3B—H3BA | 119.6 | C3B—C2B—C7B | 119.8 (5) |
C1A—C6A—C5A | 119.0 (5) | C1B—C2B—C7B | 121.3 (5) |
C1A—C6A—C10A | 121.2 (5) | C2A—C1A—C6A | 120.3 (5) |
C5A—C6A—C10A | 119.8 (5) | C2A—C1A—Hg1 | 119.7 (4) |
C11A—N2A—C12A | 109.5 (5) | C6A—C1A—Hg1 | 119.8 (4) |
C11A—N2A—C10A | 110.7 (4) | N2A—C10A—C6A | 111.9 (4) |
C12A—N2A—C10A | 109.9 (5) | N2A—C10A—H10C | 109.2 |
C9A—N1A—C8A | 111.6 (5) | C6A—C10A—H10C | 109.2 |
C9A—N1A—C7A | 110.8 (5) | N2A—C10A—H10D | 109.2 |
C8A—N1A—C7A | 110.6 (5) | C6A—C10A—H10D | 109.2 |
C5A—C4A—C3A | 120.5 (5) | H10C—C10A—H10D | 107.9 |
C5A—C4A—H4AA | 119.7 | N1B—C8B—H8BA | 109.5 |
C3A—C4A—H4AA | 119.7 | N1B—C8B—H8BB | 109.5 |
C9B—N1B—C8B | 110.3 (5) | H8BA—C8B—H8BB | 109.5 |
C9B—N1B—C7B | 111.3 (5) | N1B—C8B—H8BC | 109.5 |
C8B—N1B—C7B | 109.6 (5) | H8BA—C8B—H8BC | 109.5 |
C11B—N2B—C12B | 111.4 (5) | H8BB—C8B—H8BC | 109.5 |
C11B—N2B—C10B | 110.8 (5) | N2A—C12A—H12A | 109.5 |
C12B—N2B—C10B | 111.5 (5) | N2A—C12A—H12B | 109.5 |
C5B—C4B—C3B | 119.3 (6) | H12A—C12A—H12B | 109.5 |
C5B—C4B—H4BA | 120.3 | N2A—C12A—H12C | 109.5 |
C3B—C4B—H4BA | 120.3 | H12A—C12A—H12C | 109.5 |
C6B—C1B—C2B | 121.3 (5) | H12B—C12A—H12C | 109.5 |
C6B—C1B—Hg2 | 119.4 (4) | N2A—C11A—H11D | 109.5 |
C2B—C1B—Hg2 | 119.2 (4) | N2A—C11A—H11E | 109.5 |
N1A—C7A—C2A | 112.3 (5) | H11D—C11A—H11E | 109.5 |
N1A—C7A—H7AA | 109.1 | N2A—C11A—H11F | 109.5 |
C2A—C7A—H7AA | 109.1 | H11D—C11A—H11F | 109.5 |
N1A—C7A—H7AB | 109.1 | H11E—C11A—H11F | 109.5 |
C2A—C7A—H7AB | 109.1 | C1A—C2A—C3A | 120.1 (5) |
H7AA—C7A—H7AB | 107.9 | C1A—C2A—C7A | 120.6 (5) |
N1A—C9A—H9AA | 109.5 | C3A—C2A—C7A | 119.2 (5) |
N1A—C9A—H9AB | 109.5 | N2B—C12B—H12D | 109.5 |
H9AA—C9A—H9AB | 109.5 | N2B—C12B—H12E | 109.5 |
N1A—C9A—H9AC | 109.5 | H12D—C12B—H12E | 109.5 |
H9AA—C9A—H9AC | 109.5 | N2B—C12B—H12F | 109.5 |
H9AB—C9A—H9AC | 109.5 | H12D—C12B—H12F | 109.5 |
C4B—C5B—C6B | 120.9 (6) | H12E—C12B—H12F | 109.5 |
C4B—C5B—H5BA | 119.6 | C1B—C6B—C5B | 118.8 (5) |
C6B—C5B—H5BA | 119.6 | C1B—C6B—C10B | 121.8 (5) |
C4A—C3A—C2A | 119.5 (5) | C5B—C6B—C10B | 119.3 (5) |
C4A—C3A—H3AA | 120.2 | N1B—C9B—H9BA | 109.5 |
C2A—C3A—H3AA | 120.2 | N1B—C9B—H9BB | 109.5 |
N1A—C8A—H8AA | 109.5 | H9BA—C9B—H9BB | 109.5 |
N1A—C8A—H8AB | 109.5 | N1B—C9B—H9BC | 109.5 |
H8AA—C8A—H8AB | 109.5 | H9BA—C9B—H9BC | 109.5 |
N1A—C8A—H8AC | 109.5 | H9BB—C9B—H9BC | 109.5 |
C2B—C7B—N1B—C9B | −68.9 (6) | C5A—C6A—C1A—Hg1 | −176.4 (4) |
C2B—C7B—N1B—C8B | 168.9 (5) | C10A—C6A—C1A—Hg1 | 5.4 (7) |
C2B—C3B—C4B—C5B | 1.2 (9) | C11A—N2A—C10A—C6A | −72.6 (6) |
C9A—N1A—C7A—C2A | 79.0 (6) | C12A—N2A—C10A—C6A | 166.3 (5) |
C8A—N1A—C7A—C2A | −156.7 (5) | C1A—C6A—C10A—N2A | −48.0 (7) |
C3B—C4B—C5B—C6B | −0.8 (9) | C5A—C6A—C10A—N2A | 133.8 (5) |
C5A—C4A—C3A—C2A | −0.5 (8) | C6A—C1A—C2A—C3A | 1.2 (8) |
C11B—N2B—C10B—C6B | 72.6 (6) | Hg1—C1A—C2A—C3A | 175.4 (4) |
C12B—N2B—C10B—C6B | −162.7 (5) | C6A—C1A—C2A—C7A | 177.4 (5) |
C3A—C4A—C5A—C6A | −0.6 (8) | Hg1—C1A—C2A—C7A | −8.4 (7) |
C1A—C6A—C5A—C4A | 1.9 (8) | C4A—C3A—C2A—C1A | 0.2 (8) |
C10A—C6A—C5A—C4A | −179.8 (5) | C4A—C3A—C2A—C7A | −176.1 (5) |
C4B—C3B—C2B—C1B | −0.7 (9) | N1A—C7A—C2A—C1A | 43.7 (7) |
C4B—C3B—C2B—C7B | 177.4 (5) | N1A—C7A—C2A—C3A | −140.1 (5) |
C6B—C1B—C2B—C3B | −0.2 (8) | C2B—C1B—C6B—C5B | 0.6 (8) |
Hg2—C1B—C2B—C3B | −176.2 (4) | Hg2—C1B—C6B—C5B | 176.6 (4) |
C6B—C1B—C2B—C7B | −178.3 (5) | C2B—C1B—C6B—C10B | 178.6 (5) |
Hg2—C1B—C2B—C7B | 5.8 (7) | Hg2—C1B—C6B—C10B | −5.5 (7) |
N1B—C7B—C2B—C3B | 136.3 (6) | C4B—C5B—C6B—C1B | −0.1 (9) |
N1B—C7B—C2B—C1B | −45.7 (7) | C4B—C5B—C6B—C10B | −178.1 (5) |
C5A—C6A—C1A—C2A | −2.2 (8) | N2B—C10B—C6B—C1B | 43.1 (7) |
C10A—C6A—C1A—C2A | 179.5 (5) | N2B—C10B—C6B—C5B | −139.0 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7B—H7BA···Cl1_a | 0.99 | 2.93 | 3.90 (2) | 167 |
C7B—H7BA···Br1_b | 0.99 | 3.06 | 4.01 (2) | 163 |
C10A—H10C···Cl2_a | 0.99 | 2.89 | 3.871 (16) | 171 |
C10A—H10C···Br2_b | 0.99 | 2.82 | 3.80 (2) | 169 |
C8B—H8BA···Br1_bi | 0.98 | 3.06 | 4.04 (2) | 174 |
C12A—H12A···Br1_bii | 0.98 | 2.96 | 3.87 (2) | 155 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y, −z+1. |
Funding information
RJB is grateful for the NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research, as well as the Howard University Nanoscience Facility access to liquid nitrogen. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer. HBS is grateful to Department of Science and Technology, New Delhi, for a J. C. Bose Fellowship.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
Ali, M., McWhinnie, W. R. & Hamor, T. A. (1989). J. Organomet. Chem. 371, C37–C39. CSD CrossRef CAS
Attar, S., Nelson, J. H. & Fischer, J. (1995). Organometallics, 14, 4476–4780.
Atwood, J. L., Berry, D. E., Stobart, S. R. & Zaworotko, M. J. (1983). Inorg. Chem. 22, 3480–3482. CSD CrossRef CAS
Beleaga, A., Bojan, V. R., Pöllnitz, A., Raţ, C. I. & Silvestru, C. (2011). Dalton Trans. 40, 8830–8838. CSD CrossRef CAS PubMed
Berger, A., de Cian, A., Djukic, J.-P., Fischer, J. & Pfeffer, M. (2001). Organometallics, 20, 3230–3240. CSD CrossRef CAS
Berger, A., Djukic, J.-P., Pfeffer, M., Lacour, J., Vial, L., de Cian, A. & Kyritsakas-Gruber, N. (2003). Organometallics, 22, 5243–5260. CSD CrossRef CAS
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science
Bonnardel, P. A., Parish, R. V. & Pritchard, R. G. (1996). J. Chem. Soc. Dalton Trans. pp. 3185–3193. CSD CrossRef
Bumbu, O., Silvestru, C., Gimeno, M. C. & Laguna, A. (2004). J. Organomet. Chem. 689, 1172–1179. CSD CrossRef CAS
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals
Constable, E. C., Cargill Thompson, A. M. W., Leese, T. A., Reese, D. G. F. & Tocher, D. A. (1991). Inorg. Chim. Acta, 182, 93–100. CSD CrossRef CAS Web of Science
Constable, E. C., Leese, T. A. & Tocher, D. A. (1989). J. Chem. Soc. Chem. Commun. pp. 570–571. CSD CrossRef Web of Science
Crimmins, M. T. & Brown, B. H. (2004). J. Am. Chem. Soc. 126, 10264–10266. CrossRef PubMed CAS
Das, S., Singh, H. B. & Butcher, R. J. (2015). J. Organomet. Chem. 799–800, 184–194. CSD CrossRef CAS
Ding, K. L., Wu, Y. J., Wang, Y., Zhu, Y. & Yang, L. (1993). J. Organomet. Chem. 463, 77–84. CAS
Djukic, J.-P., Duquenne, M., Berger, A. & Pfeffer, M. (2006). Inorg. Chim. Acta, 359, 1754–1760. CrossRef CAS
Donohue, J. (1974). The Structures of the Elements, p. 233. New York: Wiley.
Dreher, S. D. & Leighton, J. L. (2001). J. Am. Chem. Soc. 123, 341–342. CrossRef PubMed CAS
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Gul, N. & Nelson, J. H. (1999a). Organometallics, 18, 709–725.
Gul, N. & Nelson, J. H. (1999b). Polyhedron, 18, 1835–1843. CAS
King, J. B., Haneline, M. R., Tsunoda, M. & Gabbai, F. B. (2002). J. Am. Chem. Soc. 124, 9350–9351. CSD CrossRef PubMed CAS
Kuil, L. A. van de, Luitjes, H., Grove, D. M., Zwikker, J. W., van der Linden, J. G. M., Roelofsen, A. M., Jenneskens, L. W., Drenth, W. & van Koten, G. (1994). Organometallics, 13, 468–477.
Lau, W. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 6720–6732. CSD CrossRef CAS
Liu, Q.-X., Zhao, L.-X., Zhao, X.-J., Zhao, Z.-X., Wang, Z.-Q., Chen, A.-H. & Wang, X.-G. (2013). J. Organomet. Chem. 731, 35–48. CSD CrossRef CAS
Oilunkaniemi, R., Pietikäinen, J., Laitinen, R. S. & Ahlgrén, M. (2001). J. Organomet. Chem. 640, 50–56. Web of Science CSD CrossRef CAS
Pfeffer, M., Sutter, J.-P. & Urriolabeitia, E. P. (1996). Inorg. Chim. Acta, 249, 63–67. CrossRef CAS
Pyykkö, P. & Straka, M. (2000). Phys. Chem. Chem. Phys. 2, 2489–2493.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Spek, A. L., Kooijman, H., Gruter, G.-J. & Bickelhaupt, F. (2007). Private communication (refcode: HIMQEA). CCDC, Cambridge, England.
Srivastava, K., Sharma, S., Singh, H. B., Singh, U. P. & Butcher, R. J. (2010). Chem. Commun. 46, 1130–1132. CSD CrossRef CAS
Wardell, J. L. (1985). In Organometallic Compounds of Zn, Cd and Hg. New York: Chapman and Hall Ltd.
Wu, Y. J., Ding, L., Zhou, Z. X., Du, C. X. & Wang, W. L. (1998). J. Organomet. Chem. 564, 233–239. CSD CrossRef CAS
Zhang, Q.-F., Cheung, K.-M., Williams, I. D. & Leung, W.-H. (2005). Eur. J. Inorg. Chem. pp. 4780–4787. CSD CrossRef
Zhou, Z.-L., Huang, Y.-Z., Tang, Y., Chen, Z.-H., Shi, L.-P., Jin, X.-L. & Yang, Q.-C. (1994). Organometallics, 13, 1575–1581. CSD CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.