research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of {2,6-bis­­[(di­methyl­amino)­meth­yl]phenyl-κ3N,C1,N′}(bromido/chlorido)­mercury(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 27 September 2017; accepted 10 October 2017; online 20 October 2017)

In the mol­ecular structure of the title compound, {2,6-bis­[(di­methyl­amino)­meth­yl]phenyl-κ3N,C1,N′}[bromido/chlorido­(0.30/0.70)]mercury(II)–{2,6-bis­[(di­methyl­amino)­meth­yl]phenyl-κ3N,C1,N′}[bromido/chlorido­(0.24/0.76)]mer­cury(II) (1/1), [HgBr0.30Cl0.70(C12H19N2)]·[HgBr0.24Cl0.76(C12H19N2)], there are two mol­ecules in the asymmetric unit of formula LHgX {L = 2,6-bis­[(di­methyl­amino)­meth­yl]phenyl and X = Cl/Br}. In each mol­ecule, the halide site is mixed Cl/Br, with occupancies of 0.699 (7):0.301 (7) and 0.763 (7):0.237 (7), respectively. The two mol­ecules are linked into dimers by a combination of Hg⋯Hg [Hg⋯Hg = 3.6153 (3) Å] and C—H⋯Cl and C—H⋯π inter­actions.

1. Chemical context

Organomercury compounds of type R2Hg and RHgX (R = alkyl or aryl; X = halide) have received considerable attention in the last three decades, mainly related to the search for versatile reagents in controlled transmetallation reactions (Wardell, 1985[Wardell, J. L. (1985). In Organometallic Compounds of Zn, Cd and Hg. New York: Chapman and Hall Ltd.]). Organomercury(II) derivatives have been used successfully to obtain the desired organometallic compounds of transition metals, as well as main group metals otherwise inaccessible by classical Grignard and/or li­thia­tion reactions (Bonnardel et al., 1996[Bonnardel, P. A., Parish, R. V. & Pritchard, R. G. (1996). J. Chem. Soc. Dalton Trans. pp. 3185-3193.]; Gul & Nelson, 1999a[Gul, N. & Nelson, J. H. (1999a). Organometallics, 18, 709-725.],b[Gul, N. & Nelson, J. H. (1999b). Polyhedron, 18, 1835-1843.]; Berger et al., 2001[Berger, A., de Cian, A., Djukic, J.-P., Fischer, J. & Pfeffer, M. (2001). Organometallics, 20, 3230-3240.], 2003[Berger, A., Djukic, J.-P., Pfeffer, M., Lacour, J., Vial, L., de Cian, A. & Kyritsakas-Gruber, N. (2003). Organometallics, 22, 5243-5260.]; Zhang et al., 2005[Zhang, Q.-F., Cheung, K.-M., Williams, I. D. & Leung, W.-H. (2005). Eur. J. Inorg. Chem. pp. 4780-4787.]; Djukic et al., 2006[Djukic, J.-P., Duquenne, M., Berger, A. & Pfeffer, M. (2006). Inorg. Chim. Acta, 359, 1754-1760.]). Although the toxicity of mercury compounds should always be taken into account, there are important advantages, e.g. the possibility of preparing functionalized organomercury derivatives and the high selectivity of the transmetallation reaction (Ding et al., 1993[Ding, K. L., Wu, Y. J., Wang, Y., Zhu, Y. & Yang, L. (1993). J. Organomet. Chem. 463, 77-84.]; Pfeffer et al., 1996[Pfeffer, M., Sutter, J.-P. & Urriolabeitia, E. P. (1996). Inorg. Chim. Acta, 249, 63-67.]; Wu et al., 1998[Wu, Y. J., Ding, L., Zhou, Z. X., Du, C. X. & Wang, W. L. (1998). J. Organomet. Chem. 564, 233-239.]; Dreher & Leighton, 2001[Dreher, S. D. & Leighton, J. L. (2001). J. Am. Chem. Soc. 123, 341-342.]; Crimmins & Brown, 2004[Crimmins, M. T. & Brown, B. H. (2004). J. Am. Chem. Soc. 126, 10264-10266.]). Some cyclo­metallated organomercury(II) chlorides containing N-donor functionalized aryl ligands were investigated in the context of their use as transmetallation reagents (Ali et al., 1989[Ali, M., McWhinnie, W. R. & Hamor, T. A. (1989). J. Organomet. Chem. 371, C37-C39.]; Constable et al., 1989[Constable, E. C., Leese, T. A. & Tocher, D. A. (1989). J. Chem. Soc. Chem. Commun. pp. 570-571.], 1991[Constable, E. C., Cargill Thompson, A. M. W., Leese, T. A., Reese, D. G. F. & Tocher, D. A. (1991). Inorg. Chim. Acta, 182, 93-100.], Srivastava et al., 2010[Srivastava, K., Sharma, S., Singh, H. B., Singh, U. P. & Butcher, R. J. (2010). Chem. Commun. 46, 1130-1132.]). Thus, organomercury(II) compounds serve as the precursor for the synthesis of various organometallic derivatives of transition metals, as well as main group metals, thus there is much inter­est in the structural characterization of these derivatives.

2. Structural commentary

The mol­ecular structure of 2 is shown in Figs. 1[link] and 2[link]. The compound crystallized with two mol­ecules in the asymmetric unit. In each mol­ecule, the halide site is mixed Cl/Br with occupancies of 0.699 (7):0.301 (7) in mol­ecule A and 0.763 (7):0.237 (7) in mol­ecule B. In these moieties, there are two coordination spheres around each Hg atom (Table 1[link]). If we consider the first coordination sphere, the spatial arrangement of each Hg atom is distorted square planar with a coordination sphere made up of C—Hg—Cl/Br. Inter­estingly, both amine side arms are displaced from this plane in the same direction and thus both are on the same side of the phenyl ring. This displacement of the bulky groups with respect to the phenyl ring attached to Hg has been observed previously (Lau & Kochi, 1986[Lau, W. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 6720-6732.]).

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

Hg1—C1A 2.060 (5) Hg2—C1B 2.073 (5)
Hg1—Cl1 2.365 (19) Hg2—Cl2 2.331 (11)
Hg1—Br1 2.39 (2) Hg2—Br2 2.417 (19)
Hg1—Hg2 3.6153 (3)    
       
C1A—Hg1—Cl1 175.4 (5) C1B—Hg2—Cl2 175.3 (4)
C1A—Hg1—Br1 178.6 (6) C1B—Hg2—Br2 178.9 (5)
C1A—Hg1—Hg2 82.31 (15) C1B—Hg2—Hg1 86.82 (15)
Cl1—Hg1—Hg2 97.8 (5) Cl2—Hg2—Hg1 96.7 (3)
Br1—Hg1—Hg2 97.5 (5) Br2—Hg2—Hg1 92.3 (5)
[Figure 1]
Figure 1
The dimeric unit formed by a combination of Hg⋯Hg, C—H⋯Cl and C—H⋯π inter­actions (all shown with dashed bonds). Only the major chloride moiety is shown. Atomic displacement parameters are at the 30% probability level.
[Figure 2]
Figure 2
Packing diagram for the title compound, viewed along the b axis, showing Hg⋯Hg and C—H⋯Cl inter­actions as dashed lines.

A significant feature of this compound is the presence of a weak inter­action between both chemically similar d10d10 metals. The distance of 3.6153 (3) Å is significantly smaller than the sum of the van der Waals radii for Hg⋯Hg (ΣrvdW = 3.96 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). These inter­molecular inter­actions are longer than the Hg⋯Hg distances reported for metallic mercury (3 Å) (Donohue, 1974[Donohue, J. (1974). The Structures of the Elements, p. 233. New York: Wiley.]). They are close to the intra­molecular Hg⋯Hg distances observed previously (Hg1⋯Hg2 = 3.572 Å; King et al., 2002[King, J. B., Haneline, M. R., Tsunoda, M. & Gabbai, F. B. (2002). J. Am. Chem. Soc. 124, 9350-9351.]) and also exceed the mercurophilic distances calculated for the (HgMe2)2 dimer at 3.41 Å (Pyykkö & Straka, 2000[Pyykkö, P. & Straka, M. (2000). Phys. Chem. Chem. Phys. 2, 2489-2493.]). This is in contrast to a related structure, L2Hg2Br2 {L = 4-tert-butyl-2-[(di­methyl­amino)­meth­yl]-6-[(di­methyl­amino)­meth­yl]benzene}, which is a dimer linked by Hg2Br2 units, with one di­methyl­amino arm of each ligand coordinated to an Hg atom, and where there are no Hg⋯Hg inter­actions present (Das et al., 2015[Das, S., Singh, H. B. & Butcher, R. J. (2015). J. Organomet. Chem. 799-800, 184-194.]). The N⋯Hg distances [Hg1⋯N1A/Hg1⋯N2A = 2.764 (7)/2.867 (6) Å] are significantly shorter than the sum of the van der Waals radii for Hg and N [ΣrvdW (Hg, N) = 3.53 Å]. However, these values are slightly longer than related organo­mercury(II) compounds with one pendant arm of 2.65 (1), 2.725 (4) and 2.647 (2) Å (Attar et al., 1995[Attar, S., Nelson, J. H. & Fischer, J. (1995). Organometallics, 14, 4476-4780.]; Bumbu et al., 2004[Bumbu, O., Silvestru, C., Gimeno, M. C. & Laguna, A. (2004). J. Organomet. Chem. 689, 1172-1179.]), but are similar to those found in compounds reported previously (Atwood et al., 1983[Atwood, J. L., Berry, D. E., Stobart, S. R. & Zaworotko, M. J. (1983). Inorg. Chem. 22, 3480-3482.]; Oilunkaniemi et al., 2001[Oilunkaniemi, R., Pietikäinen, J., Laitinen, R. S. & Ahlgrén, M. (2001). J. Organomet. Chem. 640, 50-56.]; Zhou et al., 1994[Zhou, Z.-L., Huang, Y.-Z., Tang, Y., Chen, Z.-H., Shi, L.-P., Jin, X.-L. & Yang, Q.-C. (1994). Organometallics, 13, 1575-1581.]) at 2.787 (6)/2.858 (6) and 2.89 Å.

3. Supra­molecular features

A significant feature of this compound is the presence of a weak inter­action between both chemically similar d10d10 metals. The distance is 3.6153 (3) Å, which is significantly smaller than the sum of the van der Waals radii for Hg⋯Hg (ΣrvdW =3.96 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). This links the mol­ecules into dimers which are further stabilized by both C—H⋯Cl/Br (Table 2[link]) and C—H⋯π inter­actions, as shown in Figs. 1[link] and 2[link]. In the packing, there are no significant inter­actions apart from those discussed above.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7B—H7BA⋯Cl1_a 0.99 2.93 3.90 (2) 167
C7B—H7BA⋯Br1_b 0.99 3.06 4.01 (2) 163
C10A—H10C⋯Cl2_a 0.99 2.89 3.871 (16) 171
C10A—H10C⋯Br2_b 0.99 2.82 3.80 (2) 169
C8B—H8BA⋯Br1_bi 0.98 3.06 4.04 (2) 174
C12A—H12A⋯Br1_bii 0.98 2.96 3.87 (2) 155
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z+1.

4. Database survey

A survey of the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for HgX complexes of NCN pincer ligands with each N as a tertiary amine gave four hits: HIMQEA (Spek et al., 2007[Spek, A. L., Kooijman, H., Gruter, G.-J. & Bickelhaupt, F. (2007). Private communication (refcode: HIMQEA). CCDC, Cambridge, England.]), LIGFIS (Liu et al., 2013[Liu, Q.-X., Zhao, L.-X., Zhao, X.-J., Zhao, Z.-X., Wang, Z.-Q., Chen, A.-H. & Wang, X.-G. (2013). J. Organomet. Chem. 731, 35-48.]), OWUHAQ (Beleaga et al., 2011[Beleaga, A., Bojan, V. R., Pöllnitz, A., Raţ, C. I. & Silvestru, C. (2011). Dalton Trans. 40, 8830-8838.]) and TUTLOL (Das et al., 2015[Das, S., Singh, H. B. & Butcher, R. J. (2015). J. Organomet. Chem. 799-800, 184-194.]).

5. Synthesis and crystallization

The precursor N,C,N-pincer ligand [2,6-(CH2NMe2)2C6H3Br], 1, was prepared according to the procedure given by van Koten and co-workers (van de Kuil et al., 1994[Kuil, L. A. van de, Luitjes, H., Grove, D. M., Zwikker, J. W., van der Linden, J. G. M., Roelofsen, A. M., Jenneskens, L. W., Drenth, W. & van Koten, G. (1994). Organometallics, 13, 468-477.]) with slight modifications. An excess of HNMe2 (in H2O) was employed instead of 2.2 equivalents to quench with 2-bromo-1,3-bis­(bromo­meth­yl)benzene. This afforded a yellow oil which was purified by vacuum distillation to give a colorless oil in 70% yield. n-BuLi (1.15 ml, 1.84 mmol) was added dropwise via syringe to the solution of 1 (0.50 g, 1.84 mmol) in dry Et2O (15 ml) under an inert atmosphere at 273 K. After 30 min, the color of the reaction mixture changed from colorless to pale yellow. To this, a solution of HgCl2 (0.50 g, 1.84 mmol) in dry THF (10 ml) was added. The whole mixture was stirred for 5 h at 273 K and then allowed to warm slowly to room temperature. Then reaction mixture was filtered and the filtrate evaporated to dryness and the resulting precipitate extracted with hexane. The workup afforded a white precipitate of 2 (yield 0.36 g, 75%; m.p. 408–410 K). Colorless crystals of 2 suitable for single-crystal diffraction analysis were obtained by slow diffusion of hexane into CHCl3 at room temperature.

1H NMR: δ 7.15 (t, 1H, Ar-H), 7.07 (d, 2H, ArH), 3.45 (s, 4H, CH2), 2.21 (s, 12H, NCH3). 13C NMR: δ 144.90, 128.36, 128.10, 66.01, 44.85. 199Hg NMR: δ −930. Analysis calculated for C12H19ClHgN2: C 33.73, H 4.48, N 6.56%; found: C 32.55, H 5.10, N 5.26%. ESI–MS (positive mode): [M + H]+ m/z = 429.1005 (observed), 429.1015 (calculated).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms. There are two mol­ecules in the asymmetric unit and in each the halide site is occupied by a mix or Cl and Br, with refined occupancies of 0.699 (7):0.301 (7) and 0.763 (7):0.237 (7), respectively.

Table 3
Experimental details

Crystal data
Chemical formula [HgBr0.30Cl0.70(C12H19N2)]·[HgBr0.24Cl0.76(C12H19N2)]
Mr 878.78
Crystal system, space group Monoclinic, P21/n
Temperature (K) 123
a, b, c (Å) 9.51872 (15), 10.88545 (17), 27.8353 (5)
β (°) 93.8563 (15)
V3) 2877.64 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 21.12
Crystal size (mm) 0.29 × 0.25 × 0.10
 
Data collection
Diffractometer Agilent Xcalibur Ruby Gemini
Absorption correction Analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.033, 0.248
No. of measured, independent and observed [I > 2σ(I)] reflections 11395, 5778, 5120
Rint 0.045
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.075, 1.06
No. of reflections 5778
No. of parameters 317
No. of restraints 12
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.28, −1.66
Computer programs: CrysAlis PRO (Agilent, (2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent,(2012); cell refinement: CrysAlis PRO (Agilent,(2012); data reduction: CrysAlis PRO (Agilent,(2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

{2,6-Bis[(dimethylamino)methyl]phenyl-κ3N,C1,N'}[bromido/chlorido(0.30/0.70)]mercury(II)–{2,6-bis[(dimethylamino)methyl]phenyl- κ3N,C1,N'}[bromido/chlorido(0.24/0.76)]mercury(II) (1/1) top
Crystal data top
[HgBr0.30Cl0.70(C12H19N2)]·[HgBr0.24Cl0.76(C12H19N2)]F(000) = 1654.7
Mr = 878.78Dx = 2.028 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.51872 (15) ÅCell parameters from 6238 reflections
b = 10.88545 (17) Åθ = 3.2–75.5°
c = 27.8353 (5) ŵ = 21.12 mm1
β = 93.8563 (15)°T = 123 K
V = 2877.64 (8) Å3Plate, colorless
Z = 40.29 × 0.25 × 0.10 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
5120 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1Rint = 0.045
ω scansθmax = 75.7°, θmin = 3.2°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
h = 1111
Tmin = 0.033, Tmax = 0.248k = 1213
11395 measured reflectionsl = 3422
5778 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0257P)2]
where P = (Fo2 + 2Fc2)/3
5778 reflections(Δ/σ)max = 0.002
317 parametersΔρmax = 1.28 e Å3
12 restraintsΔρmin = 1.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hg10.67865 (2)0.22147 (2)0.59002 (2)0.02302 (7)
Hg21.04508 (2)0.16424 (2)0.62562 (2)0.02172 (7)
Cl10.696 (2)0.217 (2)0.5057 (7)0.034 (2)0.699 (7)
Cl21.0246 (15)0.0473 (11)0.6361 (5)0.0261 (15)0.763 (7)
Br10.693 (2)0.195 (2)0.5053 (7)0.033 (3)0.301 (7)
Br21.008 (2)0.0552 (18)0.6292 (7)0.028 (3)0.237 (7)
C7B1.0827 (6)0.3309 (6)0.5309 (2)0.0293 (12)
H7BA0.9817560.3160550.5218540.035*
H7BB1.1216540.3790920.5047660.035*
C3B1.1228 (6)0.5310 (6)0.5743 (2)0.0308 (12)
H3BA1.1379280.5679800.5441820.037*
C6A0.6440 (5)0.1362 (5)0.69141 (19)0.0195 (10)
N2A0.5517 (5)0.0024 (5)0.62484 (17)0.0254 (9)
N1A0.6216 (5)0.4670 (5)0.60575 (18)0.0266 (10)
C4A0.6285 (6)0.2670 (6)0.7610 (2)0.0262 (11)
H4AA0.6163240.2760870.7943750.031*
N1B1.1559 (6)0.2121 (5)0.53496 (18)0.0285 (10)
N2B1.1252 (5)0.2467 (5)0.71894 (17)0.0247 (9)
C4B1.1289 (7)0.6030 (6)0.6159 (3)0.0333 (13)
H4BA1.1462350.6887970.6140670.040*
C1B1.0743 (6)0.3525 (5)0.6213 (2)0.0216 (10)
C7A0.6960 (6)0.4705 (5)0.6536 (2)0.0275 (11)
H7AA0.6670540.5449230.6708570.033*
H7AB0.7985620.4762360.6499760.033*
C9A0.4755 (7)0.5018 (6)0.6083 (3)0.0364 (14)
H9AA0.4296450.5050950.5757560.055*
H9AB0.4703170.5828440.6234720.055*
H9AC0.4276800.4411860.6274830.055*
C5B1.1094 (6)0.5482 (6)0.6599 (2)0.0312 (12)
H5BA1.1147820.5967280.6882860.037*
C3A0.6472 (5)0.3708 (5)0.7327 (2)0.0252 (11)
H3AA0.6471030.4503830.7466940.030*
C8A0.6926 (8)0.5444 (7)0.5721 (3)0.0395 (15)
H8AA0.6572790.5250390.5390780.059*
H8AB0.7942280.5291260.5756880.059*
H8AC0.6740050.6309960.5789080.059*
C10B1.0566 (6)0.3661 (6)0.7115 (2)0.0258 (11)
H10A1.0923130.4230590.7372390.031*
H10B0.9540420.3562590.7141640.031*
C5A0.6275 (6)0.1514 (6)0.7408 (2)0.0240 (10)
H5AA0.6154750.0813820.7604860.029*
C11B1.2757 (7)0.2609 (7)0.7270 (2)0.0347 (13)
H11A1.3210570.1802880.7256500.052*
H11B1.2977270.2978760.7586920.052*
H11C1.3105500.3142760.7020210.052*
C2B1.0948 (5)0.4057 (5)0.5765 (2)0.0242 (11)
C1A0.6658 (6)0.2400 (5)0.66324 (19)0.0223 (10)
C10A0.6421 (6)0.0091 (5)0.67000 (19)0.0233 (10)
H10C0.7393020.0150280.6634990.028*
H10D0.6072850.0498960.6935330.028*
C8B1.1153 (8)0.1363 (8)0.4926 (3)0.0432 (17)
H8BA1.1616370.0560880.4959180.065*
H8BB1.1442870.1773350.4635480.065*
H8BC1.0129460.1249990.4901640.065*
C12A0.5793 (8)0.1127 (7)0.5993 (3)0.0415 (15)
H12A0.5273740.1121310.5676520.062*
H12B0.5485080.1826160.6180750.062*
H12C0.6803720.1197910.5950760.062*
C11A0.4023 (6)0.0082 (6)0.6348 (2)0.0308 (12)
H11D0.3439740.0073550.6050630.046*
H11E0.3807140.0898410.6471810.046*
H11F0.3824010.0541270.6588520.046*
C2A0.6661 (6)0.3569 (5)0.6837 (2)0.0242 (11)
C12B1.0667 (7)0.1789 (7)0.7579 (2)0.0357 (14)
H12D1.1133710.0988430.7615060.054*
H12E0.9654930.1666590.7505950.054*
H12F1.0817260.2253760.7879870.054*
C6B1.0819 (6)0.4219 (5)0.6630 (2)0.0231 (10)
C9B1.3082 (7)0.2285 (6)0.5396 (2)0.0338 (13)
H9BA1.3351270.2691490.5702820.051*
H9BB1.3374770.2792050.5129840.051*
H9BC1.3543030.1481110.5387530.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02045 (11)0.02636 (11)0.02252 (11)0.00026 (8)0.00344 (7)0.00093 (8)
Hg20.02013 (11)0.02080 (11)0.02437 (11)0.00107 (7)0.00261 (7)0.00092 (8)
Cl10.037 (2)0.039 (6)0.026 (2)0.011 (3)0.0085 (15)0.001 (3)
Cl20.027 (3)0.0164 (19)0.035 (4)0.0063 (18)0.004 (3)0.000 (2)
Br10.029 (3)0.038 (7)0.031 (2)0.004 (3)0.0054 (16)0.006 (3)
Br20.026 (4)0.024 (3)0.035 (5)0.010 (2)0.002 (3)0.010 (2)
C7B0.022 (3)0.038 (3)0.028 (3)0.002 (2)0.002 (2)0.006 (2)
C3B0.026 (3)0.027 (3)0.040 (3)0.002 (2)0.001 (2)0.010 (2)
C6A0.016 (2)0.019 (2)0.023 (2)0.0008 (18)0.0048 (18)0.0009 (19)
N2A0.032 (3)0.019 (2)0.025 (2)0.0021 (18)0.0031 (18)0.0011 (18)
N1A0.028 (2)0.025 (2)0.027 (2)0.0016 (19)0.0034 (19)0.0045 (19)
C4A0.022 (3)0.033 (3)0.024 (2)0.004 (2)0.003 (2)0.004 (2)
N1B0.031 (3)0.031 (3)0.024 (2)0.002 (2)0.0052 (19)0.001 (2)
N2B0.023 (2)0.026 (2)0.025 (2)0.0036 (18)0.0032 (17)0.0000 (18)
C4B0.029 (3)0.018 (2)0.053 (4)0.004 (2)0.002 (3)0.006 (3)
C1B0.019 (2)0.016 (2)0.030 (3)0.0038 (18)0.005 (2)0.004 (2)
C7A0.020 (3)0.022 (3)0.040 (3)0.004 (2)0.003 (2)0.003 (2)
C9A0.029 (3)0.030 (3)0.050 (4)0.004 (2)0.002 (3)0.004 (3)
C5B0.025 (3)0.029 (3)0.039 (3)0.003 (2)0.003 (2)0.007 (3)
C3A0.016 (2)0.025 (3)0.034 (3)0.0020 (19)0.001 (2)0.006 (2)
C8A0.049 (4)0.033 (3)0.038 (3)0.000 (3)0.012 (3)0.013 (3)
C10B0.020 (2)0.032 (3)0.026 (3)0.007 (2)0.000 (2)0.003 (2)
C5A0.018 (2)0.028 (3)0.026 (3)0.002 (2)0.0009 (19)0.001 (2)
C11B0.029 (3)0.044 (4)0.031 (3)0.006 (3)0.000 (2)0.002 (3)
C2B0.016 (2)0.027 (3)0.029 (3)0.0012 (19)0.0017 (19)0.008 (2)
C1A0.016 (2)0.026 (3)0.024 (2)0.0026 (19)0.0049 (18)0.003 (2)
C10A0.022 (2)0.021 (2)0.027 (3)0.004 (2)0.006 (2)0.000 (2)
C8B0.043 (4)0.045 (4)0.042 (4)0.016 (3)0.010 (3)0.015 (3)
C12A0.053 (4)0.027 (3)0.045 (4)0.007 (3)0.007 (3)0.014 (3)
C11A0.025 (3)0.034 (3)0.033 (3)0.005 (2)0.002 (2)0.000 (2)
C2A0.020 (2)0.020 (2)0.033 (3)0.0012 (19)0.002 (2)0.000 (2)
C12B0.036 (3)0.041 (4)0.030 (3)0.004 (3)0.004 (2)0.003 (3)
C6B0.019 (2)0.023 (3)0.027 (3)0.0039 (19)0.0000 (19)0.001 (2)
C9B0.030 (3)0.035 (3)0.037 (3)0.004 (2)0.005 (2)0.008 (3)
Geometric parameters (Å, º) top
Hg1—C1A2.060 (5)C7A—H7AB0.9900
Hg1—Cl12.365 (19)C9A—H9AA0.9800
Hg1—Br12.39 (2)C9A—H9AB0.9800
Hg1—Hg23.6153 (3)C9A—H9AC0.9800
Hg2—C1B2.073 (5)C5B—C6B1.403 (8)
Hg2—Cl22.331 (11)C5B—H5BA0.9500
Hg2—Br22.417 (19)C3A—C2A1.396 (8)
C7B—N1B1.470 (8)C3A—H3AA0.9500
C7B—C2B1.504 (9)C8A—H8AA0.9800
C7B—H7BA0.9900C8A—H8AB0.9800
C7B—H7BB0.9900C8A—H8AC0.9800
C3B—C2B1.392 (8)C10B—C6B1.515 (8)
C3B—C4B1.396 (10)C10B—H10A0.9900
C3B—H3BA0.9500C10B—H10B0.9900
C6A—C1A1.399 (8)C5A—H5AA0.9500
C6A—C5A1.404 (8)C11B—H11A0.9800
C6A—C10A1.506 (7)C11B—H11B0.9800
N2A—C11A1.469 (8)C11B—H11C0.9800
N2A—C12A1.473 (8)C1A—C2A1.394 (8)
N2A—C10A1.477 (7)C10A—H10C0.9900
N1A—C9A1.447 (8)C10A—H10D0.9900
N1A—C8A1.459 (8)C8B—H8BA0.9800
N1A—C7A1.467 (7)C8B—H8BB0.9800
C4A—C5A1.377 (8)C8B—H8BC0.9800
C4A—C3A1.395 (9)C12A—H12A0.9800
C4A—H4AA0.9500C12A—H12B0.9800
N1B—C9B1.458 (8)C12A—H12C0.9800
N1B—C8B1.469 (8)C11A—H11D0.9800
N2B—C11B1.444 (8)C11A—H11E0.9800
N2B—C12B1.454 (8)C11A—H11F0.9800
N2B—C10B1.462 (7)C12B—H12D0.9800
C4B—C5B1.385 (10)C12B—H12E0.9800
C4B—H4BA0.9500C12B—H12F0.9800
C1B—C6B1.383 (8)C9B—H9BA0.9800
C1B—C2B1.400 (8)C9B—H9BB0.9800
C7A—C2A1.531 (8)C9B—H9BC0.9800
C7A—H7AA0.9900
C1A—Hg1—Cl1175.4 (5)H8AA—C8A—H8AC109.5
C1A—Hg1—Br1178.6 (6)H8AB—C8A—H8AC109.5
C1A—Hg1—Hg282.31 (15)N2B—C10B—C6B112.7 (5)
Cl1—Hg1—Hg297.8 (5)N2B—C10B—H10A109.1
Br1—Hg1—Hg297.5 (5)C6B—C10B—H10A109.1
C1B—Hg2—Cl2175.3 (4)N2B—C10B—H10B109.1
C1B—Hg2—Br2178.9 (5)C6B—C10B—H10B109.1
C1B—Hg2—Hg186.82 (15)H10A—C10B—H10B107.8
Cl2—Hg2—Hg196.7 (3)C4A—C5A—C6A120.6 (5)
Br2—Hg2—Hg192.3 (5)C4A—C5A—H5AA119.7
N1B—C7B—C2B113.7 (5)C6A—C5A—H5AA119.7
N1B—C7B—H7BA108.8N2B—C11B—H11A109.5
C2B—C7B—H7BA108.8N2B—C11B—H11B109.5
N1B—C7B—H7BB108.8H11A—C11B—H11B109.5
C2B—C7B—H7BB108.8N2B—C11B—H11C109.5
H7BA—C7B—H7BB107.7H11A—C11B—H11C109.5
C2B—C3B—C4B120.8 (6)H11B—C11B—H11C109.5
C2B—C3B—H3BA119.6C3B—C2B—C1B118.8 (6)
C4B—C3B—H3BA119.6C3B—C2B—C7B119.8 (5)
C1A—C6A—C5A119.0 (5)C1B—C2B—C7B121.3 (5)
C1A—C6A—C10A121.2 (5)C2A—C1A—C6A120.3 (5)
C5A—C6A—C10A119.8 (5)C2A—C1A—Hg1119.7 (4)
C11A—N2A—C12A109.5 (5)C6A—C1A—Hg1119.8 (4)
C11A—N2A—C10A110.7 (4)N2A—C10A—C6A111.9 (4)
C12A—N2A—C10A109.9 (5)N2A—C10A—H10C109.2
C9A—N1A—C8A111.6 (5)C6A—C10A—H10C109.2
C9A—N1A—C7A110.8 (5)N2A—C10A—H10D109.2
C8A—N1A—C7A110.6 (5)C6A—C10A—H10D109.2
C5A—C4A—C3A120.5 (5)H10C—C10A—H10D107.9
C5A—C4A—H4AA119.7N1B—C8B—H8BA109.5
C3A—C4A—H4AA119.7N1B—C8B—H8BB109.5
C9B—N1B—C8B110.3 (5)H8BA—C8B—H8BB109.5
C9B—N1B—C7B111.3 (5)N1B—C8B—H8BC109.5
C8B—N1B—C7B109.6 (5)H8BA—C8B—H8BC109.5
C11B—N2B—C12B111.4 (5)H8BB—C8B—H8BC109.5
C11B—N2B—C10B110.8 (5)N2A—C12A—H12A109.5
C12B—N2B—C10B111.5 (5)N2A—C12A—H12B109.5
C5B—C4B—C3B119.3 (6)H12A—C12A—H12B109.5
C5B—C4B—H4BA120.3N2A—C12A—H12C109.5
C3B—C4B—H4BA120.3H12A—C12A—H12C109.5
C6B—C1B—C2B121.3 (5)H12B—C12A—H12C109.5
C6B—C1B—Hg2119.4 (4)N2A—C11A—H11D109.5
C2B—C1B—Hg2119.2 (4)N2A—C11A—H11E109.5
N1A—C7A—C2A112.3 (5)H11D—C11A—H11E109.5
N1A—C7A—H7AA109.1N2A—C11A—H11F109.5
C2A—C7A—H7AA109.1H11D—C11A—H11F109.5
N1A—C7A—H7AB109.1H11E—C11A—H11F109.5
C2A—C7A—H7AB109.1C1A—C2A—C3A120.1 (5)
H7AA—C7A—H7AB107.9C1A—C2A—C7A120.6 (5)
N1A—C9A—H9AA109.5C3A—C2A—C7A119.2 (5)
N1A—C9A—H9AB109.5N2B—C12B—H12D109.5
H9AA—C9A—H9AB109.5N2B—C12B—H12E109.5
N1A—C9A—H9AC109.5H12D—C12B—H12E109.5
H9AA—C9A—H9AC109.5N2B—C12B—H12F109.5
H9AB—C9A—H9AC109.5H12D—C12B—H12F109.5
C4B—C5B—C6B120.9 (6)H12E—C12B—H12F109.5
C4B—C5B—H5BA119.6C1B—C6B—C5B118.8 (5)
C6B—C5B—H5BA119.6C1B—C6B—C10B121.8 (5)
C4A—C3A—C2A119.5 (5)C5B—C6B—C10B119.3 (5)
C4A—C3A—H3AA120.2N1B—C9B—H9BA109.5
C2A—C3A—H3AA120.2N1B—C9B—H9BB109.5
N1A—C8A—H8AA109.5H9BA—C9B—H9BB109.5
N1A—C8A—H8AB109.5N1B—C9B—H9BC109.5
H8AA—C8A—H8AB109.5H9BA—C9B—H9BC109.5
N1A—C8A—H8AC109.5H9BB—C9B—H9BC109.5
C2B—C7B—N1B—C9B68.9 (6)C5A—C6A—C1A—Hg1176.4 (4)
C2B—C7B—N1B—C8B168.9 (5)C10A—C6A—C1A—Hg15.4 (7)
C2B—C3B—C4B—C5B1.2 (9)C11A—N2A—C10A—C6A72.6 (6)
C9A—N1A—C7A—C2A79.0 (6)C12A—N2A—C10A—C6A166.3 (5)
C8A—N1A—C7A—C2A156.7 (5)C1A—C6A—C10A—N2A48.0 (7)
C3B—C4B—C5B—C6B0.8 (9)C5A—C6A—C10A—N2A133.8 (5)
C5A—C4A—C3A—C2A0.5 (8)C6A—C1A—C2A—C3A1.2 (8)
C11B—N2B—C10B—C6B72.6 (6)Hg1—C1A—C2A—C3A175.4 (4)
C12B—N2B—C10B—C6B162.7 (5)C6A—C1A—C2A—C7A177.4 (5)
C3A—C4A—C5A—C6A0.6 (8)Hg1—C1A—C2A—C7A8.4 (7)
C1A—C6A—C5A—C4A1.9 (8)C4A—C3A—C2A—C1A0.2 (8)
C10A—C6A—C5A—C4A179.8 (5)C4A—C3A—C2A—C7A176.1 (5)
C4B—C3B—C2B—C1B0.7 (9)N1A—C7A—C2A—C1A43.7 (7)
C4B—C3B—C2B—C7B177.4 (5)N1A—C7A—C2A—C3A140.1 (5)
C6B—C1B—C2B—C3B0.2 (8)C2B—C1B—C6B—C5B0.6 (8)
Hg2—C1B—C2B—C3B176.2 (4)Hg2—C1B—C6B—C5B176.6 (4)
C6B—C1B—C2B—C7B178.3 (5)C2B—C1B—C6B—C10B178.6 (5)
Hg2—C1B—C2B—C7B5.8 (7)Hg2—C1B—C6B—C10B5.5 (7)
N1B—C7B—C2B—C3B136.3 (6)C4B—C5B—C6B—C1B0.1 (9)
N1B—C7B—C2B—C1B45.7 (7)C4B—C5B—C6B—C10B178.1 (5)
C5A—C6A—C1A—C2A2.2 (8)N2B—C10B—C6B—C1B43.1 (7)
C10A—C6A—C1A—C2A179.5 (5)N2B—C10B—C6B—C5B139.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7B—H7BA···Cl1_a0.992.933.90 (2)167
C7B—H7BA···Br1_b0.993.064.01 (2)163
C10A—H10C···Cl2_a0.992.893.871 (16)171
C10A—H10C···Br2_b0.992.823.80 (2)169
C8B—H8BA···Br1_bi0.983.064.04 (2)174
C12A—H12A···Br1_bii0.982.963.87 (2)155
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1.
 

Funding information

RJB is grateful for the NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research, as well as the Howard University Nanoscience Facility access to liquid nitro­gen. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer. HBS is grateful to Department of Science and Technology, New Delhi, for a J. C. Bose Fellowship.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
First citationAli, M., McWhinnie, W. R. & Hamor, T. A. (1989). J. Organomet. Chem. 371, C37–C39.  CSD CrossRef CAS
First citationAttar, S., Nelson, J. H. & Fischer, J. (1995). Organometallics, 14, 4476–4780.
First citationAtwood, J. L., Berry, D. E., Stobart, S. R. & Zaworotko, M. J. (1983). Inorg. Chem. 22, 3480–3482.  CSD CrossRef CAS
First citationBeleaga, A., Bojan, V. R., Pöllnitz, A., Raţ, C. I. & Silvestru, C. (2011). Dalton Trans. 40, 8830–8838.  CSD CrossRef CAS PubMed
First citationBerger, A., de Cian, A., Djukic, J.-P., Fischer, J. & Pfeffer, M. (2001). Organometallics, 20, 3230–3240.  CSD CrossRef CAS
First citationBerger, A., Djukic, J.-P., Pfeffer, M., Lacour, J., Vial, L., de Cian, A. & Kyritsakas-Gruber, N. (2003). Organometallics, 22, 5243–5260.  CSD CrossRef CAS
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science
First citationBonnardel, P. A., Parish, R. V. & Pritchard, R. G. (1996). J. Chem. Soc. Dalton Trans. pp. 3185–3193.  CSD CrossRef
First citationBumbu, O., Silvestru, C., Gimeno, M. C. & Laguna, A. (2004). J. Organomet. Chem. 689, 1172–1179.  CSD CrossRef CAS
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals
First citationConstable, E. C., Cargill Thompson, A. M. W., Leese, T. A., Reese, D. G. F. & Tocher, D. A. (1991). Inorg. Chim. Acta, 182, 93–100.  CSD CrossRef CAS Web of Science
First citationConstable, E. C., Leese, T. A. & Tocher, D. A. (1989). J. Chem. Soc. Chem. Commun. pp. 570–571.  CSD CrossRef Web of Science
First citationCrimmins, M. T. & Brown, B. H. (2004). J. Am. Chem. Soc. 126, 10264–10266.  CrossRef PubMed CAS
First citationDas, S., Singh, H. B. & Butcher, R. J. (2015). J. Organomet. Chem. 799–800, 184–194.  CSD CrossRef CAS
First citationDing, K. L., Wu, Y. J., Wang, Y., Zhu, Y. & Yang, L. (1993). J. Organomet. Chem. 463, 77–84.  CAS
First citationDjukic, J.-P., Duquenne, M., Berger, A. & Pfeffer, M. (2006). Inorg. Chim. Acta, 359, 1754–1760.  CrossRef CAS
First citationDonohue, J. (1974). The Structures of the Elements, p. 233. New York: Wiley.
First citationDreher, S. D. & Leighton, J. L. (2001). J. Am. Chem. Soc. 123, 341–342.  CrossRef PubMed CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationGul, N. & Nelson, J. H. (1999a). Organometallics, 18, 709–725.
First citationGul, N. & Nelson, J. H. (1999b). Polyhedron, 18, 1835–1843.  CAS
First citationKing, J. B., Haneline, M. R., Tsunoda, M. & Gabbai, F. B. (2002). J. Am. Chem. Soc. 124, 9350–9351.  CSD CrossRef PubMed CAS
First citationKuil, L. A. van de, Luitjes, H., Grove, D. M., Zwikker, J. W., van der Linden, J. G. M., Roelofsen, A. M., Jenneskens, L. W., Drenth, W. & van Koten, G. (1994). Organometallics, 13, 468–477.
First citationLau, W. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 6720–6732.  CSD CrossRef CAS
First citationLiu, Q.-X., Zhao, L.-X., Zhao, X.-J., Zhao, Z.-X., Wang, Z.-Q., Chen, A.-H. & Wang, X.-G. (2013). J. Organomet. Chem. 731, 35–48.  CSD CrossRef CAS
First citationOilunkaniemi, R., Pietikäinen, J., Laitinen, R. S. & Ahlgrén, M. (2001). J. Organomet. Chem. 640, 50–56.  Web of Science CSD CrossRef CAS
First citationPfeffer, M., Sutter, J.-P. & Urriolabeitia, E. P. (1996). Inorg. Chim. Acta, 249, 63–67.  CrossRef CAS
First citationPyykkö, P. & Straka, M. (2000). Phys. Chem. Chem. Phys. 2, 2489–2493.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L., Kooijman, H., Gruter, G.-J. & Bickelhaupt, F. (2007). Private communication (refcode: HIMQEA). CCDC, Cambridge, England.
First citationSrivastava, K., Sharma, S., Singh, H. B., Singh, U. P. & Butcher, R. J. (2010). Chem. Commun. 46, 1130–1132.  CSD CrossRef CAS
First citationWardell, J. L. (1985). In Organometallic Compounds of Zn, Cd and Hg. New York: Chapman and Hall Ltd.
First citationWu, Y. J., Ding, L., Zhou, Z. X., Du, C. X. & Wang, W. L. (1998). J. Organomet. Chem. 564, 233–239.  CSD CrossRef CAS
First citationZhang, Q.-F., Cheung, K.-M., Williams, I. D. & Leung, W.-H. (2005). Eur. J. Inorg. Chem. pp. 4780–4787.  CSD CrossRef
First citationZhou, Z.-L., Huang, Y.-Z., Tang, Y., Chen, Z.-H., Shi, L.-P., Jin, X.-L. & Yang, Q.-C. (1994). Organometallics, 13, 1575–1581.  CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds