research communications
μ-(E)-2-({[2-(pyridin-2-yl)ethyl]imino}methyl)phenolato-κ4N,N′,O:O]dicopper(II) perchlorate
of aqua(perchlorato)bis[aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title compound, [Cu2(ClO4)(C14H13N2O)2(H2O)]ClO4, crystallizes as an unsymmetrical dinuclear cation bridged by the phenoxy O atoms with one CuII atom coordinated by a water molecule and the other by a perchlorate anion, thus making both CuII atoms five-coordinate, and with a further perchlorate anion present for charge balance. A long interaction [2.9893 (5) Å] between one of the two CuII atoms and an O atom of the perchlorate counter-ion links the cations and anions into linear chains along the a-axis direction. In addition, the water H atoms link with the perchlorate counter-ion. These interactions, along with numerous C—H⋯O interactions between the tetrahedral perchlorate anions, link the ions into a complex three-dimensional array. One of the perchlorate anions is disordered over two conformations with occupancies of 0.586 (4) and 0.414 (4).
Keywords: crystal structure; dinuclear Cu complex; coordinated water; coordinated perchlorate anions; Schiff base ligand complexes.
CCDC reference: 1579206
1. Chemical context
Proteins containing dinuclear copper centers play important roles in biology, including dioxygen transport or activation, ; Torelli et al., 2000; Poater et al., 2008; Utz et al., 2003). The catalytic properties of some dicopper complexes have also been observed in some recent studies (Jagoda et al., 2005). The crystal engineering of self-assembled supramolecular architectures is currently of great interest, owing to their intriguing topologies and their applications in materials chemistry, in particular in optoelectronics, conductivity and superconductivity, charge-transfer and magnetism, nanoporous materials and biomimetic materials (Robson, 1996; Blake et al., 1999; Sauvage, 1999).
reduction of nitrogen oxides and hydrolytic chemistry (Karlin & Tyeklar, 1993Compounds of transition metal complexes comprising the ({[2-(pyridin-2-yl)ethyl]imino}methyl)phenol ligand have been synthesized for various processes (Egekenze et al., 2017; Sanyal et al., 2014; Chakraborty et al., 2013; Tandon et al., 1994, 2000; Latour et al., 1989). Complexes of the tridentate ligand have been used as biomimics in the catalysis of hydrolysis of phosphate and as catalysts for catechol oxidation (Egekenze et al., 2017). Pyrazole and pyridine are nitrogen donors that are commonly used as ligands to mimic metalloenzymes. These heterocyclic groups are widely used to form inorganic complexes because they have pKa values similar to those present in the hystidyl of many enzymes. As part of an ongoing effort to synthesize complexes to use as biomimetics, the title copper(II) complex has been synthesized. In view of the interest in these types of metal complexes, its structure has been determined.
2. Structural commentary
The title compound crystallizes in the monoclinic P21/c as an unsymmetrical dinuclear cation bridged by the phenoxy O atoms with one CuII atom coordinated by a water molecule and the other by a perchlorate anion, thus making both CuII atoms five-coordinate, and with a further perchlorate anion present for charge balance (see Fig. 1). The Cu⋯Cu distance in the dinuclear unit is 3.0225 (5) Å. There are previously reported dinuclear structures involving the ({[2-(pyridin-2-yl)ethyl]imino)}methyl)phenolato ligand as a bridging ligand with other metals (Chakraborty et al., 2013) and one instance involving copper (Yin et al., 1998) where the structure is very similar apart from the fact that the bond between the Cu atom and the ClO4− counter-ion is not indicated. There is very little information available for this structure apart from a line drawing in the Cambridge Structural Database (Groom et al., 2016).
In the title structure (Fig. 1), since both Cu atoms are five-coordinate, the τ parameter (Addison et al., 1984) for Cu1 is 0.21 while that for Cu2 is 0.045, indicating that Cu1 is more distorted from a square-pyramidal geometry than Cu2. The Cu—O bond lengths (Table 1) for Cu1 and Cu2 are 1.9469 (18), 2.0204 (17) Å and 1.9375 (18), 1.9545 (17) Å, respectively, while the Cu—Nimine and Cu—Npy bond lengths are 1.959 (2), 1.940 (2) Å and 1.996 (2), 1.987 (2) Å, respectively, with the bonds involving the imine group being shorter than those to pyridine as is generally found. The Cu1—OH2 and Cu2—OClO3 apical bonds are longer at 2.248 (2) and 2.6101 (18) Å, respectively.
|
The copper atoms are displaced from their basal coordination planes, O1, O2, N1, N2 (r.m.s. deviation = 0.186 Å) for Cu1, and O1, O2, N3, N4 (r.m.s. deviation = 0.252 Å) for Cu2, towards the apical ligands by 0.218 (1) and 0.037 (1) Å, respectively. The dihedral angle between these two planes is 39.31 (5)°. Thus the whole dinuclear complex adopts a saddle shape similar to that observed in metalloporphyrin structures (Kuzuhara et al., 2016) with the two phenyl rings and two pyridine rings on opposite sides of the central Cu2O2 bridging group. The magnitude of this distortion can be seen from the dihedral angles between the two phenyl [41.45 (7)°] and the two pyridine rings [76.75 (7)°].
3. Supramolecular features
In addition to the bonds involving the copper atom mentioned above, there is a longer interaction [2.9893 (5) Å] between Cu2 and O24 of an adjoining unit (at x + 1, y, z), which links the cations into linear chains along the a-axis direction (see Fig. 2). In addition, the water H atoms link with the perchlorate counter-ion. These interactions, along with numerous C—H⋯O interactions (Table 2) between the tetrahedral perchlorate anions link into a complex three-dimensional array.
4. Database survey
A survey of the Cambridge Structural Database (Version 5.38; Groom et al., 2016) for similar dinuclear structures of related Schiff base ligands and involving both coordinated perchlorate and water molecules resulted in seven hits [COSHUO (Anbu et al., 2009), EFUJAS (da Rocha et al., 2014), EFUJEW (da Rocha et al., 2014), JAVTOP (Mandal et al., 1989), JAVTOP01 (Cheng et al., 2012), WOGVAR (Cheng et al., 2014), and WUKPAU (Hazra et al., 2009)]. However, in all cases the ligands involved were tetradentate Schiff base macrocycles rather than tridentate Schiff base ligands. Thus there is no directly related example.
5. Synthesis and crystallization
2-(2-Pyridyl)ethylamine (0.3918 g, 3.207 mmol) was dissolved in methanol. Salicylaldehyde (0.3916 g, 3.207 mmol) was dissolved in methanol and stirred overnight. Cu(ClO4)2·6H2O (4.811 g, 1.783 mmol) was dissolved in the methanol solution. The mixture was stirred at room temperature overnight. The methanol was removed by rotary evaporation. The product was crystallized by dissolving it in acetonitrile and layering the solution with diethyl ether. The green crystals formed were allowed to grow overnight before gravity filtering, air drying, and collection of the crystallized product.
6. Refinement
Crystal data, data collection and structure . The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å and N—H = 1.00 Å and with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms. The hydrogen atoms attached to water were refined isotropically. One of the perchlorate anions is disordered over two conformations with occupancies of 0.586 (4) and 0.414 (4) and were constrained to have similar thermal and metrical parameters.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1579206
https://doi.org/10.1107/S2056989017014694/hg5497sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017014694/hg5497Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
APEX3 (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2(ClO4)(C14H13N2O)2(H2O)]ClO4 | F(000) = 1616 |
Mr = 794.52 | Dx = 1.739 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4829 (4) Å | Cell parameters from 4638 reflections |
b = 16.8867 (8) Å | θ = 2.4–25.9° |
c = 24.2649 (13) Å | µ = 1.65 mm−1 |
β = 98.180 (3)° | T = 100 K |
V = 3035.0 (3) Å3 | Plate, green |
Z = 4 | 0.33 × 0.27 × 0.09 mm |
Bruker APEXII CCD diffractometer | 5328 reflections with I > 2σ(I) |
ω and φ scans | Rint = 0.048 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | θmax = 27.2°, θmin = 1.5° |
Tmin = 0.616, Tmax = 0.746 | h = −9→9 |
21194 measured reflections | k = −21→21 |
6730 independent reflections | l = −26→31 |
Refinement on F2 | 30 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0319P)2 + 1.7524P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
6730 reflections | Δρmax = 0.63 e Å−3 |
470 parameters | Δρmin = −0.52 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.53169 (4) | 0.71966 (2) | 0.40451 (2) | 0.01326 (9) | |
Cu2 | 0.64416 (4) | 0.80469 (2) | 0.51354 (2) | 0.01310 (9) | |
O1 | 0.6427 (2) | 0.69899 (10) | 0.48067 (7) | 0.0151 (4) | |
O2 | 0.6100 (2) | 0.82773 (10) | 0.43452 (7) | 0.0135 (4) | |
O1W | 0.7788 (3) | 0.71972 (15) | 0.36159 (12) | 0.0325 (6) | |
H1W1 | 0.817 (5) | 0.681 (2) | 0.3507 (16) | 0.039 (12)* | |
H1W2 | 0.853 (6) | 0.737 (2) | 0.3817 (18) | 0.052 (15)* | |
N1 | 0.3377 (3) | 0.75810 (14) | 0.34554 (9) | 0.0193 (5) | |
N2 | 0.4813 (3) | 0.60696 (13) | 0.39084 (9) | 0.0171 (5) | |
N3 | 0.5957 (3) | 0.76882 (12) | 0.58799 (9) | 0.0156 (5) | |
N4 | 0.7050 (3) | 0.91277 (12) | 0.53591 (9) | 0.0138 (5) | |
C1 | 0.7146 (3) | 0.63049 (15) | 0.50207 (11) | 0.0134 (5) | |
C2 | 0.8316 (4) | 0.62923 (16) | 0.55200 (11) | 0.0167 (6) | |
H2A | 0.863612 | 0.677602 | 0.570836 | 0.020* | |
C3 | 0.9025 (4) | 0.55874 (16) | 0.57481 (12) | 0.0205 (6) | |
H3A | 0.981089 | 0.559415 | 0.609192 | 0.025* | |
C4 | 0.8600 (4) | 0.48728 (16) | 0.54803 (12) | 0.0200 (6) | |
H4A | 0.907928 | 0.438987 | 0.563871 | 0.024* | |
C5 | 0.7471 (4) | 0.48759 (15) | 0.49813 (12) | 0.0193 (6) | |
H5A | 0.718640 | 0.438848 | 0.479376 | 0.023* | |
C6 | 0.6727 (3) | 0.55813 (15) | 0.47409 (11) | 0.0142 (5) | |
C7 | 0.5537 (4) | 0.55121 (16) | 0.42186 (12) | 0.0176 (6) | |
H7A | 0.526014 | 0.498850 | 0.409090 | 0.021* | |
C8 | 0.3594 (4) | 0.58258 (17) | 0.34059 (12) | 0.0244 (7) | |
H8A | 0.233446 | 0.582239 | 0.348750 | 0.029* | |
H8B | 0.390221 | 0.528104 | 0.330182 | 0.029* | |
C9 | 0.3735 (4) | 0.63824 (19) | 0.29198 (12) | 0.0289 (7) | |
H9A | 0.502428 | 0.647341 | 0.288949 | 0.035* | |
H9B | 0.316666 | 0.612975 | 0.257015 | 0.035* | |
C10 | 0.2835 (4) | 0.71639 (18) | 0.29886 (12) | 0.0249 (7) | |
C11 | 0.1474 (5) | 0.7452 (2) | 0.25888 (14) | 0.0369 (9) | |
H11A | 0.111041 | 0.715564 | 0.225904 | 0.044* | |
C12 | 0.0651 (4) | 0.8162 (2) | 0.26675 (14) | 0.0385 (9) | |
H12A | −0.027315 | 0.836166 | 0.239380 | 0.046* | |
C13 | 0.1191 (4) | 0.8579 (2) | 0.31509 (14) | 0.0330 (8) | |
H13A | 0.063703 | 0.906905 | 0.321819 | 0.040* | |
C14 | 0.2548 (4) | 0.82716 (17) | 0.35349 (12) | 0.0227 (6) | |
H14A | 0.291391 | 0.855812 | 0.386882 | 0.027* | |
C15 | 0.6555 (3) | 0.89443 (15) | 0.40998 (11) | 0.0127 (5) | |
C16 | 0.6481 (3) | 0.89741 (16) | 0.35177 (11) | 0.0169 (6) | |
H16A | 0.613296 | 0.851503 | 0.330261 | 0.020* | |
C17 | 0.6905 (4) | 0.96585 (17) | 0.32535 (12) | 0.0213 (6) | |
H17A | 0.681549 | 0.967031 | 0.285911 | 0.026* | |
C18 | 0.7463 (4) | 1.03317 (17) | 0.35622 (12) | 0.0235 (6) | |
H18A | 0.776552 | 1.080168 | 0.338116 | 0.028* | |
C19 | 0.7570 (4) | 1.03079 (16) | 0.41308 (12) | 0.0205 (6) | |
H19A | 0.796181 | 1.076646 | 0.434061 | 0.025* | |
C20 | 0.7118 (3) | 0.96260 (15) | 0.44124 (11) | 0.0144 (5) | |
C21 | 0.7319 (4) | 0.96765 (15) | 0.50133 (11) | 0.0157 (6) | |
H21A | 0.769487 | 1.017465 | 0.517097 | 0.019* | |
C22 | 0.7358 (4) | 0.93284 (15) | 0.59553 (11) | 0.0175 (6) | |
H22A | 0.619579 | 0.947958 | 0.607637 | 0.021* | |
H22B | 0.817965 | 0.978951 | 0.601421 | 0.021* | |
C23 | 0.8174 (4) | 0.86374 (16) | 0.63077 (11) | 0.0171 (6) | |
H23A | 0.920277 | 0.842113 | 0.614010 | 0.020* | |
H23B | 0.864904 | 0.883347 | 0.668470 | 0.020* | |
C24 | 0.6844 (4) | 0.79844 (15) | 0.63580 (11) | 0.0165 (6) | |
C25 | 0.6525 (4) | 0.76883 (16) | 0.68695 (11) | 0.0215 (6) | |
H25A | 0.716010 | 0.789744 | 0.720479 | 0.026* | |
C26 | 0.5278 (4) | 0.70870 (16) | 0.68878 (12) | 0.0246 (7) | |
H26A | 0.506907 | 0.687092 | 0.723446 | 0.030* | |
C27 | 0.4339 (4) | 0.68053 (17) | 0.63949 (12) | 0.0246 (7) | |
H27A | 0.344882 | 0.640472 | 0.639727 | 0.030* | |
C28 | 0.4720 (4) | 0.71164 (16) | 0.59010 (12) | 0.0199 (6) | |
H28A | 0.408509 | 0.691964 | 0.556180 | 0.024* | |
Cl1 | 0.84605 (9) | 0.52555 (4) | 0.28292 (3) | 0.02048 (15) | |
O11 | 1.0053 (5) | 0.5149 (3) | 0.25905 (18) | 0.0327 (13) | 0.586 (4) |
O12 | 0.8916 (5) | 0.57231 (19) | 0.33492 (12) | 0.0341 (11) | 0.586 (4) |
O13 | 0.7085 (5) | 0.5647 (3) | 0.24778 (15) | 0.0414 (13) | 0.586 (4) |
O14 | 0.7827 (5) | 0.45020 (19) | 0.30101 (17) | 0.0399 (12) | 0.586 (4) |
O11A | 1.0101 (6) | 0.4844 (3) | 0.2771 (2) | 0.0227 (15) | 0.414 (4) |
O12A | 0.8864 (6) | 0.60924 (18) | 0.28866 (18) | 0.0245 (14) | 0.414 (4) |
O13A | 0.7265 (6) | 0.5176 (3) | 0.22912 (15) | 0.0247 (13) | 0.414 (4) |
O14A | 0.7602 (6) | 0.4962 (3) | 0.32548 (17) | 0.0297 (15) | 0.414 (4) |
Cl2 | 0.12635 (9) | 0.78538 (4) | 0.48455 (3) | 0.02373 (16) | |
O21 | 0.2961 (2) | 0.82746 (11) | 0.49259 (8) | 0.0234 (4) | |
O22 | 0.1576 (3) | 0.70495 (11) | 0.47020 (10) | 0.0387 (6) | |
O23 | 0.0085 (3) | 0.82239 (14) | 0.43977 (10) | 0.0504 (7) | |
O24 | 0.0460 (3) | 0.78881 (13) | 0.53443 (10) | 0.0478 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01441 (17) | 0.01313 (16) | 0.01154 (16) | −0.00321 (12) | −0.00060 (12) | −0.00125 (13) |
Cu2 | 0.01958 (18) | 0.00892 (15) | 0.01046 (16) | −0.00099 (13) | 0.00097 (12) | −0.00080 (12) |
O1 | 0.0207 (10) | 0.0102 (9) | 0.0131 (9) | 0.0009 (7) | −0.0016 (8) | −0.0004 (7) |
O2 | 0.0150 (9) | 0.0123 (9) | 0.0130 (9) | −0.0024 (7) | 0.0014 (7) | −0.0006 (7) |
O1W | 0.0282 (14) | 0.0264 (13) | 0.0465 (16) | −0.0081 (11) | 0.0175 (12) | −0.0170 (12) |
N1 | 0.0192 (12) | 0.0215 (12) | 0.0161 (12) | −0.0064 (10) | −0.0012 (9) | 0.0054 (10) |
N2 | 0.0167 (12) | 0.0193 (12) | 0.0151 (12) | −0.0051 (9) | 0.0015 (9) | −0.0066 (10) |
N3 | 0.0208 (12) | 0.0122 (11) | 0.0140 (11) | 0.0003 (9) | 0.0036 (9) | −0.0008 (9) |
N4 | 0.0155 (11) | 0.0125 (11) | 0.0128 (11) | 0.0012 (9) | 0.0004 (9) | −0.0025 (9) |
C1 | 0.0126 (13) | 0.0127 (13) | 0.0150 (13) | −0.0008 (10) | 0.0026 (10) | 0.0014 (10) |
C2 | 0.0183 (14) | 0.0144 (13) | 0.0172 (14) | −0.0016 (11) | 0.0025 (11) | −0.0009 (11) |
C3 | 0.0171 (14) | 0.0192 (14) | 0.0253 (16) | 0.0008 (11) | 0.0036 (12) | 0.0076 (12) |
C4 | 0.0169 (14) | 0.0158 (14) | 0.0289 (16) | 0.0038 (11) | 0.0086 (12) | 0.0090 (12) |
C5 | 0.0209 (15) | 0.0095 (13) | 0.0297 (16) | −0.0001 (11) | 0.0108 (12) | −0.0006 (12) |
C6 | 0.0121 (13) | 0.0127 (13) | 0.0184 (14) | −0.0019 (10) | 0.0046 (10) | 0.0012 (11) |
C7 | 0.0177 (14) | 0.0120 (13) | 0.0240 (15) | −0.0045 (11) | 0.0055 (12) | −0.0053 (11) |
C8 | 0.0286 (17) | 0.0223 (15) | 0.0200 (15) | −0.0095 (13) | −0.0041 (12) | −0.0071 (12) |
C9 | 0.0353 (18) | 0.0369 (18) | 0.0140 (14) | −0.0166 (15) | 0.0017 (13) | −0.0082 (13) |
C10 | 0.0237 (16) | 0.0347 (17) | 0.0146 (14) | −0.0182 (13) | −0.0026 (12) | 0.0063 (13) |
C11 | 0.036 (2) | 0.048 (2) | 0.0235 (17) | −0.0229 (17) | −0.0080 (14) | 0.0092 (16) |
C12 | 0.0251 (18) | 0.053 (2) | 0.0311 (19) | −0.0159 (16) | −0.0167 (14) | 0.0215 (17) |
C13 | 0.0207 (16) | 0.0354 (18) | 0.040 (2) | −0.0048 (14) | −0.0069 (14) | 0.0178 (16) |
C14 | 0.0196 (15) | 0.0235 (15) | 0.0240 (16) | −0.0066 (12) | −0.0010 (12) | 0.0044 (13) |
C15 | 0.0088 (12) | 0.0137 (13) | 0.0148 (13) | −0.0003 (10) | −0.0006 (10) | 0.0031 (10) |
C16 | 0.0153 (14) | 0.0177 (14) | 0.0169 (14) | −0.0034 (11) | −0.0004 (11) | 0.0005 (11) |
C17 | 0.0211 (15) | 0.0279 (16) | 0.0143 (14) | −0.0051 (12) | 0.0003 (11) | 0.0057 (12) |
C18 | 0.0248 (16) | 0.0210 (15) | 0.0232 (16) | −0.0083 (12) | −0.0012 (12) | 0.0104 (13) |
C19 | 0.0232 (15) | 0.0136 (13) | 0.0238 (15) | −0.0038 (11) | 0.0002 (12) | 0.0015 (12) |
C20 | 0.0135 (13) | 0.0133 (13) | 0.0160 (14) | 0.0015 (10) | 0.0005 (10) | 0.0011 (11) |
C21 | 0.0173 (14) | 0.0083 (12) | 0.0206 (14) | −0.0005 (10) | −0.0009 (11) | −0.0032 (11) |
C22 | 0.0230 (15) | 0.0138 (13) | 0.0154 (14) | −0.0024 (11) | 0.0019 (11) | −0.0031 (11) |
C23 | 0.0194 (14) | 0.0191 (14) | 0.0124 (13) | −0.0025 (11) | 0.0009 (11) | −0.0024 (11) |
C24 | 0.0167 (14) | 0.0158 (13) | 0.0175 (14) | 0.0051 (11) | 0.0040 (11) | −0.0011 (11) |
C25 | 0.0299 (16) | 0.0223 (15) | 0.0126 (13) | 0.0070 (12) | 0.0044 (12) | −0.0011 (12) |
C26 | 0.0381 (18) | 0.0204 (15) | 0.0181 (15) | 0.0036 (13) | 0.0136 (13) | 0.0034 (12) |
C27 | 0.0319 (17) | 0.0185 (15) | 0.0259 (16) | −0.0025 (12) | 0.0126 (13) | 0.0004 (13) |
C28 | 0.0255 (16) | 0.0156 (14) | 0.0188 (14) | −0.0007 (11) | 0.0042 (12) | −0.0018 (11) |
Cl1 | 0.0191 (3) | 0.0175 (3) | 0.0249 (4) | 0.0010 (3) | 0.0035 (3) | 0.0016 (3) |
O11 | 0.022 (2) | 0.044 (3) | 0.035 (3) | −0.008 (2) | 0.014 (2) | −0.016 (2) |
O12 | 0.051 (3) | 0.027 (2) | 0.023 (2) | 0.0146 (18) | 0.0019 (18) | −0.0074 (17) |
O13 | 0.041 (3) | 0.048 (3) | 0.033 (3) | 0.021 (2) | 0.001 (2) | 0.019 (2) |
O14 | 0.058 (3) | 0.031 (2) | 0.032 (3) | −0.013 (2) | 0.013 (2) | 0.010 (2) |
O11A | 0.018 (3) | 0.029 (4) | 0.020 (3) | 0.001 (2) | 0.001 (2) | −0.008 (3) |
O12A | 0.036 (3) | 0.012 (2) | 0.026 (3) | −0.002 (2) | 0.003 (2) | −0.003 (2) |
O13A | 0.025 (3) | 0.024 (3) | 0.021 (3) | −0.001 (2) | −0.007 (2) | −0.001 (2) |
O14A | 0.031 (3) | 0.039 (4) | 0.021 (3) | 0.000 (3) | 0.011 (2) | 0.020 (3) |
Cl2 | 0.0191 (4) | 0.0171 (3) | 0.0371 (4) | −0.0021 (3) | 0.0110 (3) | −0.0043 (3) |
O21 | 0.0161 (10) | 0.0262 (11) | 0.0285 (11) | −0.0041 (8) | 0.0052 (8) | 0.0001 (9) |
O22 | 0.0504 (16) | 0.0196 (11) | 0.0480 (15) | −0.0036 (10) | 0.0140 (12) | −0.0149 (11) |
O23 | 0.0166 (12) | 0.0536 (16) | 0.077 (2) | 0.0060 (11) | −0.0057 (12) | 0.0130 (15) |
O24 | 0.0596 (17) | 0.0368 (14) | 0.0570 (17) | −0.0252 (12) | 0.0431 (14) | −0.0218 (12) |
Cu1—O1 | 1.9469 (18) | C12—C13 | 1.379 (5) |
Cu1—N2 | 1.959 (2) | C12—H12A | 0.9500 |
Cu1—N1 | 1.996 (2) | C13—C14 | 1.378 (4) |
Cu1—O2 | 2.0204 (17) | C13—H13A | 0.9500 |
Cu1—O1W | 2.248 (2) | C14—H14A | 0.9500 |
Cu1—Cu2 | 3.0225 (5) | C15—C16 | 1.407 (4) |
Cu2—O2 | 1.9375 (18) | C15—C20 | 1.409 (4) |
Cu2—N4 | 1.940 (2) | C16—C17 | 1.380 (4) |
Cu2—O1 | 1.9545 (17) | C16—H16A | 0.9500 |
Cu2—N3 | 1.987 (2) | C17—C18 | 1.392 (4) |
Cu2—O21 | 2.6101 (18) | C17—H17A | 0.9500 |
O1—C1 | 1.348 (3) | C18—C19 | 1.371 (4) |
O2—C15 | 1.340 (3) | C18—H18A | 0.9500 |
O1W—H1W1 | 0.77 (4) | C19—C20 | 1.405 (4) |
O1W—H1W2 | 0.75 (4) | C19—H19A | 0.9500 |
N1—C10 | 1.347 (4) | C20—C21 | 1.447 (4) |
N1—C14 | 1.348 (4) | C21—H21A | 0.9500 |
N2—C7 | 1.277 (3) | C22—C23 | 1.522 (4) |
N2—C8 | 1.474 (3) | C22—H22A | 0.9900 |
N3—C28 | 1.343 (3) | C22—H22B | 0.9900 |
N3—C24 | 1.348 (3) | C23—C24 | 1.502 (4) |
N4—C21 | 1.285 (3) | C23—H23A | 0.9900 |
N4—C22 | 1.472 (3) | C23—H23B | 0.9900 |
C1—C2 | 1.390 (4) | C24—C25 | 1.390 (4) |
C1—C6 | 1.411 (4) | C25—C26 | 1.384 (4) |
C2—C3 | 1.386 (4) | C25—H25A | 0.9500 |
C2—H2A | 0.9500 | C26—C27 | 1.382 (4) |
C3—C4 | 1.386 (4) | C26—H26A | 0.9500 |
C3—H3A | 0.9500 | C27—C28 | 1.375 (4) |
C4—C5 | 1.374 (4) | C27—H27A | 0.9500 |
C4—H4A | 0.9500 | C28—H28A | 0.9500 |
C5—C6 | 1.406 (4) | Cl1—O14A | 1.383 (3) |
C5—H5A | 0.9500 | Cl1—O13 | 1.405 (3) |
C6—C7 | 1.446 (4) | Cl1—O11 | 1.408 (3) |
C7—H7A | 0.9500 | Cl1—O11A | 1.435 (3) |
C8—C9 | 1.524 (4) | Cl1—O14 | 1.448 (3) |
C8—H8A | 0.9900 | Cl1—O12A | 1.448 (3) |
C8—H8B | 0.9900 | Cl1—O13A | 1.480 (3) |
C9—C10 | 1.502 (4) | Cl1—O12 | 1.486 (3) |
C9—H9A | 0.9900 | Cl2—O24 | 1.4271 (19) |
C9—H9B | 0.9900 | Cl2—O22 | 1.4296 (18) |
C10—C11 | 1.391 (4) | Cl2—O23 | 1.441 (2) |
C11—C12 | 1.373 (5) | Cl2—O21 | 1.4443 (18) |
C11—H11A | 0.9500 | ||
O1—Cu1—N2 | 91.85 (8) | H9A—C9—H9B | 107.9 |
O1—Cu1—N1 | 155.14 (9) | N1—C10—C11 | 120.5 (3) |
N2—Cu1—N1 | 95.26 (10) | N1—C10—C9 | 117.8 (3) |
O1—Cu1—O2 | 75.95 (7) | C11—C10—C9 | 121.7 (3) |
N2—Cu1—O2 | 167.78 (8) | C12—C11—C10 | 120.4 (3) |
N1—Cu1—O2 | 96.23 (8) | C12—C11—H11A | 119.8 |
O1—Cu1—O1W | 99.89 (9) | C10—C11—H11A | 119.8 |
N2—Cu1—O1W | 94.19 (9) | C11—C12—C13 | 118.8 (3) |
N1—Cu1—O1W | 103.30 (10) | C11—C12—H12A | 120.6 |
O2—Cu1—O1W | 87.20 (9) | C13—C12—H12A | 120.6 |
O1—Cu1—Cu2 | 39.31 (5) | C14—C13—C12 | 118.8 (3) |
N2—Cu1—Cu2 | 129.24 (7) | C14—C13—H13A | 120.6 |
N1—Cu1—Cu2 | 123.81 (7) | C12—C13—H13A | 120.6 |
O2—Cu1—Cu2 | 39.21 (5) | N1—C14—C13 | 122.6 (3) |
O1W—Cu1—Cu2 | 105.09 (8) | N1—C14—H14A | 118.7 |
O2—Cu2—N4 | 94.63 (8) | C13—C14—H14A | 118.7 |
O2—Cu2—O1 | 77.71 (7) | O2—C15—C16 | 120.0 (2) |
N4—Cu2—O1 | 163.92 (8) | O2—C15—C20 | 121.5 (2) |
O2—Cu2—N3 | 161.00 (9) | C16—C15—C20 | 118.5 (2) |
N4—Cu2—N3 | 95.65 (9) | C17—C16—C15 | 121.2 (3) |
O1—Cu2—N3 | 95.83 (8) | C17—C16—H16A | 119.4 |
O2—Cu2—O21 | 77.88 (7) | C15—C16—H16A | 119.4 |
N4—Cu2—O21 | 95.97 (8) | C16—C17—C18 | 120.3 (3) |
O1—Cu2—O21 | 96.18 (7) | C16—C17—H17A | 119.8 |
N3—Cu2—O21 | 85.18 (8) | C18—C17—H17A | 119.8 |
O2—Cu2—Cu1 | 41.24 (5) | C19—C18—C17 | 119.2 (3) |
N4—Cu2—Cu1 | 135.80 (7) | C19—C18—H18A | 120.4 |
O1—Cu2—Cu1 | 39.13 (5) | C17—C18—H18A | 120.4 |
N3—Cu2—Cu1 | 125.94 (6) | C18—C19—C20 | 122.0 (3) |
O21—Cu2—Cu1 | 75.74 (4) | C18—C19—H19A | 119.0 |
C1—O1—Cu1 | 127.77 (16) | C20—C19—H19A | 119.0 |
C1—O1—Cu2 | 130.37 (16) | C19—C20—C15 | 118.8 (2) |
Cu1—O1—Cu2 | 101.56 (8) | C19—C20—C21 | 116.4 (2) |
C15—O2—Cu2 | 127.02 (16) | C15—C20—C21 | 124.8 (2) |
C15—O2—Cu1 | 132.68 (16) | N4—C21—C20 | 127.7 (2) |
Cu2—O2—Cu1 | 99.55 (8) | N4—C21—H21A | 116.1 |
Cu1—O1W—H1W1 | 122 (3) | C20—C21—H21A | 116.1 |
Cu1—O1W—H1W2 | 106 (3) | N4—C22—C23 | 111.7 (2) |
H1W1—O1W—H1W2 | 106 (4) | N4—C22—H22A | 109.3 |
C10—N1—C14 | 118.9 (3) | C23—C22—H22A | 109.3 |
C10—N1—Cu1 | 122.3 (2) | N4—C22—H22B | 109.3 |
C14—N1—Cu1 | 118.78 (19) | C23—C22—H22B | 109.3 |
C7—N2—C8 | 116.3 (2) | H22A—C22—H22B | 107.9 |
C7—N2—Cu1 | 124.14 (19) | C24—C23—C22 | 113.0 (2) |
C8—N2—Cu1 | 119.54 (18) | C24—C23—H23A | 109.0 |
C28—N3—C24 | 119.4 (2) | C22—C23—H23A | 109.0 |
C28—N3—Cu2 | 118.00 (18) | C24—C23—H23B | 109.0 |
C24—N3—Cu2 | 122.56 (18) | C22—C23—H23B | 109.0 |
C21—N4—C22 | 117.3 (2) | H23A—C23—H23B | 107.8 |
C21—N4—Cu2 | 123.24 (18) | N3—C24—C25 | 120.6 (3) |
C22—N4—Cu2 | 119.30 (16) | N3—C24—C23 | 117.0 (2) |
O1—C1—C2 | 121.1 (2) | C25—C24—C23 | 122.5 (3) |
O1—C1—C6 | 120.6 (2) | C26—C25—C24 | 119.7 (3) |
C2—C1—C6 | 118.4 (2) | C26—C25—H25A | 120.2 |
C3—C2—C1 | 121.3 (3) | C24—C25—H25A | 120.2 |
C3—C2—H2A | 119.4 | C27—C26—C25 | 119.1 (3) |
C1—C2—H2A | 119.4 | C27—C26—H26A | 120.4 |
C2—C3—C4 | 120.7 (3) | C25—C26—H26A | 120.4 |
C2—C3—H3A | 119.6 | C28—C27—C26 | 118.7 (3) |
C4—C3—H3A | 119.6 | C28—C27—H27A | 120.7 |
C5—C4—C3 | 118.8 (3) | C26—C27—H27A | 120.7 |
C5—C4—H4A | 120.6 | N3—C28—C27 | 122.5 (3) |
C3—C4—H4A | 120.6 | N3—C28—H28A | 118.8 |
C4—C5—C6 | 121.8 (3) | C27—C28—H28A | 118.8 |
C4—C5—H5A | 119.1 | O13—Cl1—O11 | 113.6 (2) |
C6—C5—H5A | 119.1 | O14A—Cl1—O11A | 113.2 (3) |
C5—C6—C1 | 119.1 (2) | O13—Cl1—O14 | 110.8 (2) |
C5—C6—C7 | 117.0 (2) | O11—Cl1—O14 | 110.2 (2) |
C1—C6—C7 | 123.9 (2) | O14A—Cl1—O12A | 113.0 (3) |
N2—C7—C6 | 127.9 (2) | O11A—Cl1—O12A | 108.2 (3) |
N2—C7—H7A | 116.1 | O14A—Cl1—O13A | 109.8 (2) |
C6—C7—H7A | 116.1 | O11A—Cl1—O13A | 106.7 (3) |
N2—C8—C9 | 111.4 (2) | O12A—Cl1—O13A | 105.4 (2) |
N2—C8—H8A | 109.3 | O13—Cl1—O12 | 108.9 (2) |
C9—C8—H8A | 109.3 | O11—Cl1—O12 | 108.2 (2) |
N2—C8—H8B | 109.3 | O14—Cl1—O12 | 104.8 (2) |
C9—C8—H8B | 109.3 | O24—Cl2—O22 | 110.39 (13) |
H8A—C8—H8B | 108.0 | O24—Cl2—O23 | 109.59 (15) |
C10—C9—C8 | 112.0 (2) | O22—Cl2—O23 | 109.41 (14) |
C10—C9—H9A | 109.2 | O24—Cl2—O21 | 109.51 (13) |
C8—C9—H9A | 109.2 | O22—Cl2—O21 | 109.20 (12) |
C10—C9—H9B | 109.2 | O23—Cl2—O21 | 108.70 (13) |
C8—C9—H9B | 109.2 | Cl2—O21—Cu2 | 141.99 (12) |
Cu1—O1—C1—C2 | 162.18 (18) | Cu2—O2—C15—C20 | −10.0 (3) |
Cu2—O1—C1—C2 | −10.3 (3) | Cu1—O2—C15—C20 | −177.95 (17) |
Cu1—O1—C1—C6 | −17.7 (3) | O2—C15—C16—C17 | 178.6 (2) |
Cu2—O1—C1—C6 | 169.79 (17) | C20—C15—C16—C17 | −1.5 (4) |
O1—C1—C2—C3 | 178.5 (2) | C15—C16—C17—C18 | 1.7 (4) |
C6—C1—C2—C3 | −1.7 (4) | C16—C17—C18—C19 | −0.6 (4) |
C1—C2—C3—C4 | 0.7 (4) | C17—C18—C19—C20 | −0.6 (4) |
C2—C3—C4—C5 | 0.5 (4) | C18—C19—C20—C15 | 0.7 (4) |
C3—C4—C5—C6 | −0.7 (4) | C18—C19—C20—C21 | 179.0 (3) |
C4—C5—C6—C1 | −0.2 (4) | O2—C15—C20—C19 | −179.7 (2) |
C4—C5—C6—C7 | −179.1 (2) | C16—C15—C20—C19 | 0.4 (4) |
O1—C1—C6—C5 | −178.7 (2) | O2—C15—C20—C21 | 2.1 (4) |
C2—C1—C6—C5 | 1.4 (4) | C16—C15—C20—C21 | −177.8 (2) |
O1—C1—C6—C7 | 0.1 (4) | C22—N4—C21—C20 | 179.8 (2) |
C2—C1—C6—C7 | −179.8 (2) | Cu2—N4—C21—C20 | 4.4 (4) |
C8—N2—C7—C6 | −177.8 (3) | C19—C20—C21—N4 | −177.5 (3) |
Cu1—N2—C7—C6 | 5.1 (4) | C15—C20—C21—N4 | 0.8 (4) |
C5—C6—C7—N2 | −174.8 (3) | C21—N4—C22—C23 | −143.3 (2) |
C1—C6—C7—N2 | 6.4 (4) | Cu2—N4—C22—C23 | 32.2 (3) |
C7—N2—C8—C9 | −144.5 (3) | N4—C22—C23—C24 | −73.3 (3) |
Cu1—N2—C8—C9 | 32.8 (3) | C28—N3—C24—C25 | 1.8 (4) |
N2—C8—C9—C10 | −73.9 (3) | Cu2—N3—C24—C25 | −176.81 (19) |
C14—N1—C10—C11 | 1.7 (4) | C28—N3—C24—C23 | −178.4 (2) |
Cu1—N1—C10—C11 | 179.8 (2) | Cu2—N3—C24—C23 | 3.0 (3) |
C14—N1—C10—C9 | −177.8 (2) | C22—C23—C24—N3 | 53.7 (3) |
Cu1—N1—C10—C9 | 0.3 (3) | C22—C23—C24—C25 | −126.4 (3) |
C8—C9—C10—N1 | 56.1 (3) | N3—C24—C25—C26 | −0.4 (4) |
C8—C9—C10—C11 | −123.4 (3) | C23—C24—C25—C26 | 179.8 (3) |
N1—C10—C11—C12 | −0.7 (4) | C24—C25—C26—C27 | −1.5 (4) |
C9—C10—C11—C12 | 178.8 (3) | C25—C26—C27—C28 | 2.0 (4) |
C10—C11—C12—C13 | −0.5 (5) | C24—N3—C28—C27 | −1.3 (4) |
C11—C12—C13—C14 | 0.6 (5) | Cu2—N3—C28—C27 | 177.4 (2) |
C10—N1—C14—C13 | −1.5 (4) | C26—C27—C28—N3 | −0.6 (4) |
Cu1—N1—C14—C13 | −179.7 (2) | O24—Cl2—O21—Cu2 | 100.6 (2) |
C12—C13—C14—N1 | 0.4 (5) | O22—Cl2—O21—Cu2 | −20.4 (2) |
Cu2—O2—C15—C16 | 169.93 (18) | O23—Cl2—O21—Cu2 | −139.70 (19) |
Cu1—O2—C15—C16 | 1.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O12 | 0.77 (4) | 1.98 (4) | 2.735 (4) | 168 (4) |
O1W—H1W1···O12A | 0.77 (4) | 2.06 (4) | 2.769 (5) | 153 (4) |
O1W—H1W2···O23i | 0.75 (4) | 2.23 (4) | 2.938 (4) | 160 (4) |
C2—H2A···N3 | 0.95 | 2.61 | 3.142 (3) | 116 |
C2—H2A···O24i | 0.95 | 2.55 | 3.196 (3) | 125 |
C8—H8A···O12ii | 0.99 | 2.54 | 3.488 (5) | 161 |
C9—H9A···O13 | 0.99 | 2.40 | 3.121 (5) | 129 |
C14—H14A···O2 | 0.95 | 2.54 | 3.073 (3) | 116 |
C14—H14A···O21 | 0.95 | 2.60 | 3.345 (4) | 135 |
C16—H16A···O1W | 0.95 | 2.61 | 3.154 (4) | 117 |
C16—H16A···N1 | 0.95 | 2.66 | 3.294 (3) | 124 |
C23—H23A···O24i | 0.99 | 2.44 | 3.336 (3) | 151 |
C23—H23B···O13iii | 0.99 | 2.55 | 3.293 (4) | 132 |
C23—H23B···O13Aiii | 0.99 | 2.54 | 3.261 (5) | 129 |
C25—H25A···O13iii | 0.95 | 2.55 | 3.175 (4) | 124 |
C25—H25A···O12Aiii | 0.95 | 2.58 | 3.488 (5) | 159 |
C27—H27A···O14iv | 0.95 | 2.39 | 3.202 (4) | 143 |
C27—H27A···O14Aiv | 0.95 | 2.62 | 3.477 (5) | 151 |
C28—H28A···Cl2 | 0.95 | 2.99 | 3.594 (3) | 123 |
C28—H28A···O22 | 0.95 | 2.61 | 3.473 (4) | 151 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x, −y+3/2, z+1/2; (iv) −x+1, −y+1, −z+1. |
Funding information
RJB is grateful for the NSF award 1205608, Partnership for Reduced Dimensional Materials for partial funding of this research as well as the Howard University Nanoscience Facility access to liquid nitrogen. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science
Anbu, S., Kandaswamy, M., Suthakaran, P., Murugan, V. & Varghese, B. (2009). J. Inorg. Biochem. 103, 401–410. Web of Science CSD CrossRef PubMed CAS
Blake, A. J., Champness, N. R., Hubberstey, P., Li, W., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138. Web of Science CrossRef CAS
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chakraborty, P., Guha, A., Das, S., Zangrando, E. & Das, D. (2013). Polyhedron, 49, 12–18. CSD CrossRef CAS
Cheng, Q. R., Zhou, H., Pan, Z.-Q. & Chen, J.-Z. (2012). Transition Met. Chem. 37, 407–414. CSD CrossRef CAS
Cheng, Q. R., Zhou, H., Pan, Z.-Q., Liao, G.-Y. & Xu, Z.-G. (2014). J. Mol. Struct. 1074, 255–262. CSD CrossRef CAS
Egekenze, R., Gultneh, Y. & Butcher, R. J. (2017). Acta Cryst. E73, 1113–1116. CSD CrossRef IUCr Journals
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Hazra, S., Majumder, S., Fleck, M., Aliaga-Alcalde, N. & Mohanta, S. (2009). Polyhedron, 28, 3707–3714. CSD CrossRef CAS
Jagoda, M., Warzeska, S., Pritzkow, H., Wadepohl, H., Imhof, P., Smith, J. C. & Krämer, R. (2005). J. Am. Chem. Soc. 127, 15061–15070. CSD CrossRef PubMed CAS
Karlin, K. D. & Z. Tyeklar, Z. (1993). Bioinorganic Chemistry of Copper. New York: Chapman and Hill.
Kuzuhara, D., Furukawa, W., Kitashiro, A., Aratani, N. & Yamada, H. (2016). Chem. Eur. J. 22, 10671–10678. CSD CrossRef CAS PubMed
Latour, J.-M., Tandon, S. S. & Povey, D. C. (1989). Acta Cryst. C45, 7–11. CSD CrossRef CAS IUCr Journals
Mandal, S. K., Thompson, L. K., Newlands, M. J. & Gabe, E. J. (1989). Inorg. Chem. 28, 3707–3713. CSD CrossRef CAS Web of Science
Poater, A., Ribas, X., Llobet, A., Cavallo, L. & Solà, M. (2008). J. Am. Chem. Soc. 130, 17710–17717. CrossRef PubMed CAS
Robson, R. (1996). Comprehensive Supramolecular Chemistry, Vol. 6, edited by J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle and R. B. Toda, p. 733. Oxford: Pergamon.
Rocha, J. C. da, Zambiazi, P. J., Hörner, M., Poneti, G., Ribeiro, R. R. & Nunes, F. S. (2014). J. Mol. Struct. 1072, 69–76.
Sanyal, R., Guha, A., Ghosh, T., Mondal, T. K., Zangrando, E. & Das, D. (2014). Inorg. Chem. 53, 85–96. CSD CrossRef CAS PubMed
Sauvage, J.-P. (1999). Transition Metals in Supramolecular Chemistry. In Perspectives in Supramolecular Chemistry, Vol. 5. London: Wiley.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Tandon, S. S., Chander, S. & Thompson, L. K. (2000). Inorg. Chim. Acta, 300–302, 683–692. Web of Science CSD CrossRef CAS
Tandon, S. S., Chander, S., Thompson, L. K., Bridson, J. N. & McKeec, V. (1994). Inorg. Chim. Acta, 219, 55–65. CSD CrossRef CAS
Torelli, S., Belle, C., Gautier-Luneau, I., Pierre, J. L., Saint-Aman, E., Latour, J. M., Le Pape, L. & Luneau, D. (2000). Inorg. Chem. 39, 3526–3536. Web of Science CSD CrossRef PubMed CAS
Utz, D., Heinemann, F. W., Hampel, F., Richens, D. T. & Schindler, S. (2003). Inorg. Chem. 42, 1430–1436. Web of Science CSD CrossRef PubMed CAS
Yin, Y.-G., Cheung, C.-K. & Wong, W.-T. (1998). Gaodeng Xuexiao Huaxue Xuebao 19, 1546–1550. CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.