research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of aqua­(perchlorato)bis­­[μ-(E)-2-({[2-(pyridin-2-yl)eth­yl]imino}­meth­yl)phenolato-κ4N,N′,O:O]dicopper(II) perchlorate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 3 October 2017; accepted 10 October 2017; online 20 October 2017)

The title compound, [Cu2(ClO4)(C14H13N2O)2(H2O)]ClO4, crystallizes as an unsymmetrical dinuclear cation bridged by the phen­oxy O atoms with one CuII atom coordinated by a water mol­ecule and the other by a perchlorate anion, thus making both CuII atoms five-coordinate, and with a further perchlorate anion present for charge balance. A long inter­action [2.9893 (5) Å] between one of the two CuII atoms and an O atom of the perchlorate counter-ion links the cations and anions into linear chains along the a-axis direction. In addition, the water H atoms link with the perchlorate counter-ion. These inter­actions, along with numerous C—H⋯O inter­actions between the tetra­hedral perchlorate anions, link the ions into a complex three-dimensional array. One of the perchlorate anions is disordered over two conformations with occupancies of 0.586 (4) and 0.414 (4).

1. Chemical context

Proteins containing dinuclear copper centers play important roles in biology, including di­oxy­gen transport or activation, electron transfer, reduction of nitro­gen oxides and hydrolytic chemistry (Karlin & Tyeklar, 1993[Karlin, K. D. & Z. Tyeklar, Z. (1993). Bioinorganic Chemistry of Copper. New York: Chapman and Hill.]; Torelli et al., 2000[Torelli, S., Belle, C., Gautier-Luneau, I., Pierre, J. L., Saint-Aman, E., Latour, J. M., Le Pape, L. & Luneau, D. (2000). Inorg. Chem. 39, 3526-3536.]; Poater et al., 2008[Poater, A., Ribas, X., Llobet, A., Cavallo, L. & Solà, M. (2008). J. Am. Chem. Soc. 130, 17710-17717.]; Utz et al., 2003[Utz, D., Heinemann, F. W., Hampel, F., Richens, D. T. & Schindler, S. (2003). Inorg. Chem. 42, 1430-1436.]). The catalytic properties of some dicopper complexes have also been observed in some recent studies (Jagoda et al., 2005[Jagoda, M., Warzeska, S., Pritzkow, H., Wadepohl, H., Imhof, P., Smith, J. C. & Krämer, R. (2005). J. Am. Chem. Soc. 127, 15061-15070.]). The crystal engineering of self-assembled supra­molecular architectures is currently of great inter­est, owing to their intriguing topologies and their applications in materials chemistry, in particular in optoelectronics, conductivity and superconductivity, charge-transfer and magnetism, nanoporous materials and biomimetic materials (Robson, 1996[Robson, R. (1996). Comprehensive Supramolecular Chemistry, Vol. 6, edited by J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle and R. B. Toda, p. 733. Oxford: Pergamon.]; Blake et al., 1999[Blake, A. J., Champness, N. R., Hubberstey, P., Li, W., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.]; Sauvage, 1999[Sauvage, J.-P. (1999). Transition Metals in Supramolecular Chemistry. In Perspectives in Supramolecular Chemistry, Vol. 5. London: Wiley.]).

Compounds of transition metal complexes comprising the ({[2-(pyridin-2-yl)eth­yl]imino}­meth­yl)phenol ligand have been synthesized for various processes (Egekenze et al., 2017[Egekenze, R., Gultneh, Y. & Butcher, R. J. (2017). Acta Cryst. E73, 1113-1116.]; Sanyal et al., 2014[Sanyal, R., Guha, A., Ghosh, T., Mondal, T. K., Zangrando, E. & Das, D. (2014). Inorg. Chem. 53, 85-96.]; Chakraborty et al., 2013[Chakraborty, P., Guha, A., Das, S., Zangrando, E. & Das, D. (2013). Polyhedron, 49, 12-18.]; Tandon et al., 1994[Tandon, S. S., Chander, S., Thompson, L. K., Bridson, J. N. & McKeec, V. (1994). Inorg. Chim. Acta, 219, 55-65.], 2000[Tandon, S. S., Chander, S. & Thompson, L. K. (2000). Inorg. Chim. Acta, 300-302, 683-692.]; Latour et al., 1989[Latour, J.-M., Tandon, S. S. & Povey, D. C. (1989). Acta Cryst. C45, 7-11.]). Complexes of the tridentate ligand have been used as biomimics in the catalysis of hydrolysis of phosphate esters and as catalysts for catechol oxidation (Egekenze et al., 2017[Egekenze, R., Gultneh, Y. & Butcher, R. J. (2017). Acta Cryst. E73, 1113-1116.]). Pyrazole and pyridine are nitro­gen donors that are commonly used as ligands to mimic metalloenzymes. These heterocyclic groups are widely used to form inorganic complexes because they have pKa values similar to those present in the hystidyl functional group of many enzymes. As part of an ongoing effort to synthesize complexes to use as biomimetics, the title copper(II) complex has been synthesized. In view of the inter­est in these types of metal complexes, its structure has been determined.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic space group P21/c as an unsymmetrical dinuclear cation bridged by the phen­oxy O atoms with one CuII atom coordinated by a water mol­ecule and the other by a perchlorate anion, thus making both CuII atoms five-coordinate, and with a further perchlor­ate anion present for charge balance (see Fig. 1[link]). The Cu⋯Cu distance in the dinuclear unit is 3.0225 (5) Å. There are previously reported dinuclear structures involving the ({[2-(pyridin-2-yl)eth­yl]imino)}meth­yl)phenolato ligand as a bridging ligand with other metals (Chakraborty et al., 2013[Chakraborty, P., Guha, A., Das, S., Zangrando, E. & Das, D. (2013). Polyhedron, 49, 12-18.]) and one instance involving copper (Yin et al., 1998[Yin, Y.-G., Cheung, C.-K. & Wong, W.-T. (1998). Gaodeng Xuexiao Huaxue Xuebao 19, 1546-1550.]) where the structure is very similar apart from the fact that the bond between the Cu atom and the ClO4 counter-ion is not indicated. There is very little information available for this structure apart from a line drawing in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

[Figure 1]
Figure 1
Diagram of the Cu-containing dinuclear cation showing the atom labeling. The non-coordinated anion is omitted for clarity. Displacement parameters are at drawn the 30% probability level.

In the title structure (Fig. 1[link]), since both Cu atoms are five-coordin­ate, the τ parameter (Addison et al., 1984[Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) for Cu1 is 0.21 while that for Cu2 is 0.045, indicating that Cu1 is more distorted from a square-pyramidal geometry than Cu2. The Cu—O bond lengths (Table 1[link]) for Cu1 and Cu2 are 1.9469 (18), 2.0204 (17) Å and 1.9375 (18), 1.9545 (17) Å, respectively, while the Cu—Nimine and Cu—Npy bond lengths are 1.959 (2), 1.940 (2) Å and 1.996 (2), 1.987 (2) Å, respectively, with the bonds involving the imine group being shorter than those to pyridine as is generally found. The Cu1—OH2 and Cu2—OClO3 apical bonds are longer at 2.248 (2) and 2.6101 (18) Å, respectively.

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9469 (18) Cu2—O2 1.9375 (18)
Cu1—N2 1.959 (2) Cu2—N4 1.940 (2)
Cu1—N1 1.996 (2) Cu2—O1 1.9545 (17)
Cu1—O2 2.0204 (17) Cu2—N3 1.987 (2)
Cu1—O1W 2.248 (2) Cu2—O21 2.6101 (18)
Cu1—Cu2 3.0225 (5)    

The copper atoms are displaced from their basal coordination planes, O1, O2, N1, N2 (r.m.s. deviation = 0.186 Å) for Cu1, and O1, O2, N3, N4 (r.m.s. deviation = 0.252 Å) for Cu2, towards the apical ligands by 0.218 (1) and 0.037 (1) Å, respectively. The dihedral angle between these two planes is 39.31 (5)°. Thus the whole dinuclear complex adopts a saddle shape similar to that observed in metalloporphyrin structures (Kuzuhara et al., 2016[Kuzuhara, D., Furukawa, W., Kitashiro, A., Aratani, N. & Yamada, H. (2016). Chem. Eur. J. 22, 10671-10678.]) with the two phenyl rings and two pyridine rings on opposite sides of the central Cu2O2 bridging group. The magnitude of this distortion can be seen from the dihedral angles between the two phenyl [41.45 (7)°] and the two pyridine rings [76.75 (7)°].

3. Supra­molecular features

In addition to the bonds involving the copper atom mentioned above, there is a longer inter­action [2.9893 (5) Å] between Cu2 and O24 of an adjoining unit (at x + 1, y, z), which links the cations into linear chains along the a-axis direction (see Fig. 2[link]). In addition, the water H atoms link with the perchlorate counter-ion. These inter­actions, along with numerous C—H⋯O inter­actions (Table 2[link]) between the tetra­hedral perchlorate anions link into a complex three-dimensional array.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O12 0.77 (4) 1.98 (4) 2.735 (4) 168 (4)
O1W—H1W1⋯O12A 0.77 (4) 2.06 (4) 2.769 (5) 153 (4)
O1W—H1W2⋯O23i 0.75 (4) 2.23 (4) 2.938 (4) 160 (4)
C2—H2A⋯N3 0.95 2.61 3.142 (3) 116
C2—H2A⋯O24i 0.95 2.55 3.196 (3) 125
C8—H8A⋯O12ii 0.99 2.54 3.488 (5) 161
C9—H9A⋯O13 0.99 2.40 3.121 (5) 129
C14—H14A⋯O2 0.95 2.54 3.073 (3) 116
C14—H14A⋯O21 0.95 2.60 3.345 (4) 135
C16—H16A⋯O1W 0.95 2.61 3.154 (4) 117
C16—H16A⋯N1 0.95 2.66 3.294 (3) 124
C23—H23A⋯O24i 0.99 2.44 3.336 (3) 151
C23—H23B⋯O13iii 0.99 2.55 3.293 (4) 132
C23—H23B⋯O13Aiii 0.99 2.54 3.261 (5) 129
C25—H25A⋯O13iii 0.95 2.55 3.175 (4) 124
C25—H25A⋯O12Aiii 0.95 2.58 3.488 (5) 159
C27—H27A⋯O14iv 0.95 2.39 3.202 (4) 143
C27—H27A⋯O14Aiv 0.95 2.62 3.477 (5) 151
C28—H28A⋯Cl2 0.95 2.99 3.594 (3) 123
C28—H28A⋯O22 0.95 2.61 3.473 (4) 151
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Packing diagram viewed along the c axis showing the extensive C—H⋯O and Cu⋯O inter­actions (dashed lines) linking the cations and anions into a complex three-dimensional array. Only the major occupancy conformations of the disordered anions are shown.

4. Database survey

A survey of the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar dinuclear structures of related Schiff base ligands and involving both coordinated perchlorate and water mol­ecules resulted in seven hits [COSHUO (Anbu et al., 2009[Anbu, S., Kandaswamy, M., Suthakaran, P., Murugan, V. & Varghese, B. (2009). J. Inorg. Biochem. 103, 401-410.]), EFUJAS (da Rocha et al., 2014[Rocha, J. C. da, Zambiazi, P. J., Hörner, M., Poneti, G., Ribeiro, R. R. & Nunes, F. S. (2014). J. Mol. Struct. 1072, 69-76.]), EFUJEW (da Rocha et al., 2014[Rocha, J. C. da, Zambiazi, P. J., Hörner, M., Poneti, G., Ribeiro, R. R. & Nunes, F. S. (2014). J. Mol. Struct. 1072, 69-76.]), JAVTOP (Mandal et al., 1989[Mandal, S. K., Thompson, L. K., Newlands, M. J. & Gabe, E. J. (1989). Inorg. Chem. 28, 3707-3713.]), JAVTOP01 (Cheng et al., 2012[Cheng, Q. R., Zhou, H., Pan, Z.-Q. & Chen, J.-Z. (2012). Transition Met. Chem. 37, 407-414.]), WOGVAR (Cheng et al., 2014[Cheng, Q. R., Zhou, H., Pan, Z.-Q., Liao, G.-Y. & Xu, Z.-G. (2014). J. Mol. Struct. 1074, 255-262.]), and WUKPAU (Hazra et al., 2009[Hazra, S., Majumder, S., Fleck, M., Aliaga-Alcalde, N. & Mohanta, S. (2009). Polyhedron, 28, 3707-3714.])]. However, in all cases the ligands involved were tetra­dentate Schiff base macrocycles rather than tridentate Schiff base ligands. Thus there is no directly related example.

5. Synthesis and crystallization

2-(2-Pyrid­yl)ethyl­amine (0.3918 g, 3.207 mmol) was dissolved in methanol. Salicyl­aldehyde (0.3916 g, 3.207 mmol) was dissolved in methanol and stirred overnight. Cu(ClO4)2·6H2O (4.811 g, 1.783 mmol) was dissolved in the methanol solution. The mixture was stirred at room temperature overnight. The methanol was removed by rotary evaporation. The product was crystallized by dissolving it in aceto­nitrile and layering the solution with diethyl ether. The green crystals formed were allowed to grow overnight before gravity filtering, air drying, and collection of the crystallized product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å and N—H = 1.00 Å and with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms. The hydrogen atoms attached to water were refined isotropically. One of the perchlorate anions is disordered over two conformations with occupancies of 0.586 (4) and 0.414 (4) and were constrained to have similar thermal and metrical parameters.

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(ClO4)(C14H13N2O)2(H2O)]ClO4
Mr 794.52
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.4829 (4), 16.8867 (8), 24.2649 (13)
β (°) 98.180 (3)
V3) 3035.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.65
Crystal size (mm) 0.33 × 0.27 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.616, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 21194, 6730, 5328
Rint 0.048
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.084, 1.02
No. of reflections 6730
No. of parameters 470
No. of restraints 30
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.63, −0.52
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: APEX3 (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Aqua(perchlorato)bis[µ-(E)-2-({[2-(pyridin-2-yl)ethyl]imino}methyl)phenolato-κ4N,N',O:O]dicopper(II) perchlorate top
Crystal data top
[Cu2(ClO4)(C14H13N2O)2(H2O)]ClO4F(000) = 1616
Mr = 794.52Dx = 1.739 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4829 (4) ÅCell parameters from 4638 reflections
b = 16.8867 (8) Åθ = 2.4–25.9°
c = 24.2649 (13) ŵ = 1.65 mm1
β = 98.180 (3)°T = 100 K
V = 3035.0 (3) Å3Plate, green
Z = 40.33 × 0.27 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
5328 reflections with I > 2σ(I)
ω and φ scansRint = 0.048
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 27.2°, θmin = 1.5°
Tmin = 0.616, Tmax = 0.746h = 99
21194 measured reflectionsk = 2121
6730 independent reflectionsl = 2631
Refinement top
Refinement on F230 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0319P)2 + 1.7524P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6730 reflectionsΔρmax = 0.63 e Å3
470 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.53169 (4)0.71966 (2)0.40451 (2)0.01326 (9)
Cu20.64416 (4)0.80469 (2)0.51354 (2)0.01310 (9)
O10.6427 (2)0.69899 (10)0.48067 (7)0.0151 (4)
O20.6100 (2)0.82773 (10)0.43452 (7)0.0135 (4)
O1W0.7788 (3)0.71972 (15)0.36159 (12)0.0325 (6)
H1W10.817 (5)0.681 (2)0.3507 (16)0.039 (12)*
H1W20.853 (6)0.737 (2)0.3817 (18)0.052 (15)*
N10.3377 (3)0.75810 (14)0.34554 (9)0.0193 (5)
N20.4813 (3)0.60696 (13)0.39084 (9)0.0171 (5)
N30.5957 (3)0.76882 (12)0.58799 (9)0.0156 (5)
N40.7050 (3)0.91277 (12)0.53591 (9)0.0138 (5)
C10.7146 (3)0.63049 (15)0.50207 (11)0.0134 (5)
C20.8316 (4)0.62923 (16)0.55200 (11)0.0167 (6)
H2A0.8636120.6776020.5708360.020*
C30.9025 (4)0.55874 (16)0.57481 (12)0.0205 (6)
H3A0.9810890.5594150.6091920.025*
C40.8600 (4)0.48728 (16)0.54803 (12)0.0200 (6)
H4A0.9079280.4389870.5638710.024*
C50.7471 (4)0.48759 (15)0.49813 (12)0.0193 (6)
H5A0.7186400.4388480.4793760.023*
C60.6727 (3)0.55813 (15)0.47409 (11)0.0142 (5)
C70.5537 (4)0.55121 (16)0.42186 (12)0.0176 (6)
H7A0.5260140.4988500.4090900.021*
C80.3594 (4)0.58258 (17)0.34059 (12)0.0244 (7)
H8A0.2334460.5822390.3487500.029*
H8B0.3902210.5281040.3301820.029*
C90.3735 (4)0.63824 (19)0.29198 (12)0.0289 (7)
H9A0.5024280.6473410.2889490.035*
H9B0.3166660.6129750.2570150.035*
C100.2835 (4)0.71639 (18)0.29886 (12)0.0249 (7)
C110.1474 (5)0.7452 (2)0.25888 (14)0.0369 (9)
H11A0.1110410.7155640.2259040.044*
C120.0651 (4)0.8162 (2)0.26675 (14)0.0385 (9)
H12A0.0273150.8361660.2393800.046*
C130.1191 (4)0.8579 (2)0.31509 (14)0.0330 (8)
H13A0.0637030.9069050.3218190.040*
C140.2548 (4)0.82716 (17)0.35349 (12)0.0227 (6)
H14A0.2913910.8558120.3868820.027*
C150.6555 (3)0.89443 (15)0.40998 (11)0.0127 (5)
C160.6481 (3)0.89741 (16)0.35177 (11)0.0169 (6)
H16A0.6132960.8515030.3302610.020*
C170.6905 (4)0.96585 (17)0.32535 (12)0.0213 (6)
H17A0.6815490.9670310.2859110.026*
C180.7463 (4)1.03317 (17)0.35622 (12)0.0235 (6)
H18A0.7765521.0801680.3381160.028*
C190.7570 (4)1.03079 (16)0.41308 (12)0.0205 (6)
H19A0.7961811.0766460.4340610.025*
C200.7118 (3)0.96260 (15)0.44124 (11)0.0144 (5)
C210.7319 (4)0.96765 (15)0.50133 (11)0.0157 (6)
H21A0.7694871.0174650.5170970.019*
C220.7358 (4)0.93284 (15)0.59553 (11)0.0175 (6)
H22A0.6195790.9479580.6076370.021*
H22B0.8179650.9789510.6014210.021*
C230.8174 (4)0.86374 (16)0.63077 (11)0.0171 (6)
H23A0.9202770.8421130.6140100.020*
H23B0.8649040.8833470.6684700.020*
C240.6844 (4)0.79844 (15)0.63580 (11)0.0165 (6)
C250.6525 (4)0.76883 (16)0.68695 (11)0.0215 (6)
H25A0.7160100.7897440.7204790.026*
C260.5278 (4)0.70870 (16)0.68878 (12)0.0246 (7)
H26A0.5069070.6870920.7234460.030*
C270.4339 (4)0.68053 (17)0.63949 (12)0.0246 (7)
H27A0.3448820.6404720.6397270.030*
C280.4720 (4)0.71164 (16)0.59010 (12)0.0199 (6)
H28A0.4085090.6919640.5561800.024*
Cl10.84605 (9)0.52555 (4)0.28292 (3)0.02048 (15)
O111.0053 (5)0.5149 (3)0.25905 (18)0.0327 (13)0.586 (4)
O120.8916 (5)0.57231 (19)0.33492 (12)0.0341 (11)0.586 (4)
O130.7085 (5)0.5647 (3)0.24778 (15)0.0414 (13)0.586 (4)
O140.7827 (5)0.45020 (19)0.30101 (17)0.0399 (12)0.586 (4)
O11A1.0101 (6)0.4844 (3)0.2771 (2)0.0227 (15)0.414 (4)
O12A0.8864 (6)0.60924 (18)0.28866 (18)0.0245 (14)0.414 (4)
O13A0.7265 (6)0.5176 (3)0.22912 (15)0.0247 (13)0.414 (4)
O14A0.7602 (6)0.4962 (3)0.32548 (17)0.0297 (15)0.414 (4)
Cl20.12635 (9)0.78538 (4)0.48455 (3)0.02373 (16)
O210.2961 (2)0.82746 (11)0.49259 (8)0.0234 (4)
O220.1576 (3)0.70495 (11)0.47020 (10)0.0387 (6)
O230.0085 (3)0.82239 (14)0.43977 (10)0.0504 (7)
O240.0460 (3)0.78881 (13)0.53443 (10)0.0478 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01441 (17)0.01313 (16)0.01154 (16)0.00321 (12)0.00060 (12)0.00125 (13)
Cu20.01958 (18)0.00892 (15)0.01046 (16)0.00099 (13)0.00097 (12)0.00080 (12)
O10.0207 (10)0.0102 (9)0.0131 (9)0.0009 (7)0.0016 (8)0.0004 (7)
O20.0150 (9)0.0123 (9)0.0130 (9)0.0024 (7)0.0014 (7)0.0006 (7)
O1W0.0282 (14)0.0264 (13)0.0465 (16)0.0081 (11)0.0175 (12)0.0170 (12)
N10.0192 (12)0.0215 (12)0.0161 (12)0.0064 (10)0.0012 (9)0.0054 (10)
N20.0167 (12)0.0193 (12)0.0151 (12)0.0051 (9)0.0015 (9)0.0066 (10)
N30.0208 (12)0.0122 (11)0.0140 (11)0.0003 (9)0.0036 (9)0.0008 (9)
N40.0155 (11)0.0125 (11)0.0128 (11)0.0012 (9)0.0004 (9)0.0025 (9)
C10.0126 (13)0.0127 (13)0.0150 (13)0.0008 (10)0.0026 (10)0.0014 (10)
C20.0183 (14)0.0144 (13)0.0172 (14)0.0016 (11)0.0025 (11)0.0009 (11)
C30.0171 (14)0.0192 (14)0.0253 (16)0.0008 (11)0.0036 (12)0.0076 (12)
C40.0169 (14)0.0158 (14)0.0289 (16)0.0038 (11)0.0086 (12)0.0090 (12)
C50.0209 (15)0.0095 (13)0.0297 (16)0.0001 (11)0.0108 (12)0.0006 (12)
C60.0121 (13)0.0127 (13)0.0184 (14)0.0019 (10)0.0046 (10)0.0012 (11)
C70.0177 (14)0.0120 (13)0.0240 (15)0.0045 (11)0.0055 (12)0.0053 (11)
C80.0286 (17)0.0223 (15)0.0200 (15)0.0095 (13)0.0041 (12)0.0071 (12)
C90.0353 (18)0.0369 (18)0.0140 (14)0.0166 (15)0.0017 (13)0.0082 (13)
C100.0237 (16)0.0347 (17)0.0146 (14)0.0182 (13)0.0026 (12)0.0063 (13)
C110.036 (2)0.048 (2)0.0235 (17)0.0229 (17)0.0080 (14)0.0092 (16)
C120.0251 (18)0.053 (2)0.0311 (19)0.0159 (16)0.0167 (14)0.0215 (17)
C130.0207 (16)0.0354 (18)0.040 (2)0.0048 (14)0.0069 (14)0.0178 (16)
C140.0196 (15)0.0235 (15)0.0240 (16)0.0066 (12)0.0010 (12)0.0044 (13)
C150.0088 (12)0.0137 (13)0.0148 (13)0.0003 (10)0.0006 (10)0.0031 (10)
C160.0153 (14)0.0177 (14)0.0169 (14)0.0034 (11)0.0004 (11)0.0005 (11)
C170.0211 (15)0.0279 (16)0.0143 (14)0.0051 (12)0.0003 (11)0.0057 (12)
C180.0248 (16)0.0210 (15)0.0232 (16)0.0083 (12)0.0012 (12)0.0104 (13)
C190.0232 (15)0.0136 (13)0.0238 (15)0.0038 (11)0.0002 (12)0.0015 (12)
C200.0135 (13)0.0133 (13)0.0160 (14)0.0015 (10)0.0005 (10)0.0011 (11)
C210.0173 (14)0.0083 (12)0.0206 (14)0.0005 (10)0.0009 (11)0.0032 (11)
C220.0230 (15)0.0138 (13)0.0154 (14)0.0024 (11)0.0019 (11)0.0031 (11)
C230.0194 (14)0.0191 (14)0.0124 (13)0.0025 (11)0.0009 (11)0.0024 (11)
C240.0167 (14)0.0158 (13)0.0175 (14)0.0051 (11)0.0040 (11)0.0011 (11)
C250.0299 (16)0.0223 (15)0.0126 (13)0.0070 (12)0.0044 (12)0.0011 (12)
C260.0381 (18)0.0204 (15)0.0181 (15)0.0036 (13)0.0136 (13)0.0034 (12)
C270.0319 (17)0.0185 (15)0.0259 (16)0.0025 (12)0.0126 (13)0.0004 (13)
C280.0255 (16)0.0156 (14)0.0188 (14)0.0007 (11)0.0042 (12)0.0018 (11)
Cl10.0191 (3)0.0175 (3)0.0249 (4)0.0010 (3)0.0035 (3)0.0016 (3)
O110.022 (2)0.044 (3)0.035 (3)0.008 (2)0.014 (2)0.016 (2)
O120.051 (3)0.027 (2)0.023 (2)0.0146 (18)0.0019 (18)0.0074 (17)
O130.041 (3)0.048 (3)0.033 (3)0.021 (2)0.001 (2)0.019 (2)
O140.058 (3)0.031 (2)0.032 (3)0.013 (2)0.013 (2)0.010 (2)
O11A0.018 (3)0.029 (4)0.020 (3)0.001 (2)0.001 (2)0.008 (3)
O12A0.036 (3)0.012 (2)0.026 (3)0.002 (2)0.003 (2)0.003 (2)
O13A0.025 (3)0.024 (3)0.021 (3)0.001 (2)0.007 (2)0.001 (2)
O14A0.031 (3)0.039 (4)0.021 (3)0.000 (3)0.011 (2)0.020 (3)
Cl20.0191 (4)0.0171 (3)0.0371 (4)0.0021 (3)0.0110 (3)0.0043 (3)
O210.0161 (10)0.0262 (11)0.0285 (11)0.0041 (8)0.0052 (8)0.0001 (9)
O220.0504 (16)0.0196 (11)0.0480 (15)0.0036 (10)0.0140 (12)0.0149 (11)
O230.0166 (12)0.0536 (16)0.077 (2)0.0060 (11)0.0057 (12)0.0130 (15)
O240.0596 (17)0.0368 (14)0.0570 (17)0.0252 (12)0.0431 (14)0.0218 (12)
Geometric parameters (Å, º) top
Cu1—O11.9469 (18)C12—C131.379 (5)
Cu1—N21.959 (2)C12—H12A0.9500
Cu1—N11.996 (2)C13—C141.378 (4)
Cu1—O22.0204 (17)C13—H13A0.9500
Cu1—O1W2.248 (2)C14—H14A0.9500
Cu1—Cu23.0225 (5)C15—C161.407 (4)
Cu2—O21.9375 (18)C15—C201.409 (4)
Cu2—N41.940 (2)C16—C171.380 (4)
Cu2—O11.9545 (17)C16—H16A0.9500
Cu2—N31.987 (2)C17—C181.392 (4)
Cu2—O212.6101 (18)C17—H17A0.9500
O1—C11.348 (3)C18—C191.371 (4)
O2—C151.340 (3)C18—H18A0.9500
O1W—H1W10.77 (4)C19—C201.405 (4)
O1W—H1W20.75 (4)C19—H19A0.9500
N1—C101.347 (4)C20—C211.447 (4)
N1—C141.348 (4)C21—H21A0.9500
N2—C71.277 (3)C22—C231.522 (4)
N2—C81.474 (3)C22—H22A0.9900
N3—C281.343 (3)C22—H22B0.9900
N3—C241.348 (3)C23—C241.502 (4)
N4—C211.285 (3)C23—H23A0.9900
N4—C221.472 (3)C23—H23B0.9900
C1—C21.390 (4)C24—C251.390 (4)
C1—C61.411 (4)C25—C261.384 (4)
C2—C31.386 (4)C25—H25A0.9500
C2—H2A0.9500C26—C271.382 (4)
C3—C41.386 (4)C26—H26A0.9500
C3—H3A0.9500C27—C281.375 (4)
C4—C51.374 (4)C27—H27A0.9500
C4—H4A0.9500C28—H28A0.9500
C5—C61.406 (4)Cl1—O14A1.383 (3)
C5—H5A0.9500Cl1—O131.405 (3)
C6—C71.446 (4)Cl1—O111.408 (3)
C7—H7A0.9500Cl1—O11A1.435 (3)
C8—C91.524 (4)Cl1—O141.448 (3)
C8—H8A0.9900Cl1—O12A1.448 (3)
C8—H8B0.9900Cl1—O13A1.480 (3)
C9—C101.502 (4)Cl1—O121.486 (3)
C9—H9A0.9900Cl2—O241.4271 (19)
C9—H9B0.9900Cl2—O221.4296 (18)
C10—C111.391 (4)Cl2—O231.441 (2)
C11—C121.373 (5)Cl2—O211.4443 (18)
C11—H11A0.9500
O1—Cu1—N291.85 (8)H9A—C9—H9B107.9
O1—Cu1—N1155.14 (9)N1—C10—C11120.5 (3)
N2—Cu1—N195.26 (10)N1—C10—C9117.8 (3)
O1—Cu1—O275.95 (7)C11—C10—C9121.7 (3)
N2—Cu1—O2167.78 (8)C12—C11—C10120.4 (3)
N1—Cu1—O296.23 (8)C12—C11—H11A119.8
O1—Cu1—O1W99.89 (9)C10—C11—H11A119.8
N2—Cu1—O1W94.19 (9)C11—C12—C13118.8 (3)
N1—Cu1—O1W103.30 (10)C11—C12—H12A120.6
O2—Cu1—O1W87.20 (9)C13—C12—H12A120.6
O1—Cu1—Cu239.31 (5)C14—C13—C12118.8 (3)
N2—Cu1—Cu2129.24 (7)C14—C13—H13A120.6
N1—Cu1—Cu2123.81 (7)C12—C13—H13A120.6
O2—Cu1—Cu239.21 (5)N1—C14—C13122.6 (3)
O1W—Cu1—Cu2105.09 (8)N1—C14—H14A118.7
O2—Cu2—N494.63 (8)C13—C14—H14A118.7
O2—Cu2—O177.71 (7)O2—C15—C16120.0 (2)
N4—Cu2—O1163.92 (8)O2—C15—C20121.5 (2)
O2—Cu2—N3161.00 (9)C16—C15—C20118.5 (2)
N4—Cu2—N395.65 (9)C17—C16—C15121.2 (3)
O1—Cu2—N395.83 (8)C17—C16—H16A119.4
O2—Cu2—O2177.88 (7)C15—C16—H16A119.4
N4—Cu2—O2195.97 (8)C16—C17—C18120.3 (3)
O1—Cu2—O2196.18 (7)C16—C17—H17A119.8
N3—Cu2—O2185.18 (8)C18—C17—H17A119.8
O2—Cu2—Cu141.24 (5)C19—C18—C17119.2 (3)
N4—Cu2—Cu1135.80 (7)C19—C18—H18A120.4
O1—Cu2—Cu139.13 (5)C17—C18—H18A120.4
N3—Cu2—Cu1125.94 (6)C18—C19—C20122.0 (3)
O21—Cu2—Cu175.74 (4)C18—C19—H19A119.0
C1—O1—Cu1127.77 (16)C20—C19—H19A119.0
C1—O1—Cu2130.37 (16)C19—C20—C15118.8 (2)
Cu1—O1—Cu2101.56 (8)C19—C20—C21116.4 (2)
C15—O2—Cu2127.02 (16)C15—C20—C21124.8 (2)
C15—O2—Cu1132.68 (16)N4—C21—C20127.7 (2)
Cu2—O2—Cu199.55 (8)N4—C21—H21A116.1
Cu1—O1W—H1W1122 (3)C20—C21—H21A116.1
Cu1—O1W—H1W2106 (3)N4—C22—C23111.7 (2)
H1W1—O1W—H1W2106 (4)N4—C22—H22A109.3
C10—N1—C14118.9 (3)C23—C22—H22A109.3
C10—N1—Cu1122.3 (2)N4—C22—H22B109.3
C14—N1—Cu1118.78 (19)C23—C22—H22B109.3
C7—N2—C8116.3 (2)H22A—C22—H22B107.9
C7—N2—Cu1124.14 (19)C24—C23—C22113.0 (2)
C8—N2—Cu1119.54 (18)C24—C23—H23A109.0
C28—N3—C24119.4 (2)C22—C23—H23A109.0
C28—N3—Cu2118.00 (18)C24—C23—H23B109.0
C24—N3—Cu2122.56 (18)C22—C23—H23B109.0
C21—N4—C22117.3 (2)H23A—C23—H23B107.8
C21—N4—Cu2123.24 (18)N3—C24—C25120.6 (3)
C22—N4—Cu2119.30 (16)N3—C24—C23117.0 (2)
O1—C1—C2121.1 (2)C25—C24—C23122.5 (3)
O1—C1—C6120.6 (2)C26—C25—C24119.7 (3)
C2—C1—C6118.4 (2)C26—C25—H25A120.2
C3—C2—C1121.3 (3)C24—C25—H25A120.2
C3—C2—H2A119.4C27—C26—C25119.1 (3)
C1—C2—H2A119.4C27—C26—H26A120.4
C2—C3—C4120.7 (3)C25—C26—H26A120.4
C2—C3—H3A119.6C28—C27—C26118.7 (3)
C4—C3—H3A119.6C28—C27—H27A120.7
C5—C4—C3118.8 (3)C26—C27—H27A120.7
C5—C4—H4A120.6N3—C28—C27122.5 (3)
C3—C4—H4A120.6N3—C28—H28A118.8
C4—C5—C6121.8 (3)C27—C28—H28A118.8
C4—C5—H5A119.1O13—Cl1—O11113.6 (2)
C6—C5—H5A119.1O14A—Cl1—O11A113.2 (3)
C5—C6—C1119.1 (2)O13—Cl1—O14110.8 (2)
C5—C6—C7117.0 (2)O11—Cl1—O14110.2 (2)
C1—C6—C7123.9 (2)O14A—Cl1—O12A113.0 (3)
N2—C7—C6127.9 (2)O11A—Cl1—O12A108.2 (3)
N2—C7—H7A116.1O14A—Cl1—O13A109.8 (2)
C6—C7—H7A116.1O11A—Cl1—O13A106.7 (3)
N2—C8—C9111.4 (2)O12A—Cl1—O13A105.4 (2)
N2—C8—H8A109.3O13—Cl1—O12108.9 (2)
C9—C8—H8A109.3O11—Cl1—O12108.2 (2)
N2—C8—H8B109.3O14—Cl1—O12104.8 (2)
C9—C8—H8B109.3O24—Cl2—O22110.39 (13)
H8A—C8—H8B108.0O24—Cl2—O23109.59 (15)
C10—C9—C8112.0 (2)O22—Cl2—O23109.41 (14)
C10—C9—H9A109.2O24—Cl2—O21109.51 (13)
C8—C9—H9A109.2O22—Cl2—O21109.20 (12)
C10—C9—H9B109.2O23—Cl2—O21108.70 (13)
C8—C9—H9B109.2Cl2—O21—Cu2141.99 (12)
Cu1—O1—C1—C2162.18 (18)Cu2—O2—C15—C2010.0 (3)
Cu2—O1—C1—C210.3 (3)Cu1—O2—C15—C20177.95 (17)
Cu1—O1—C1—C617.7 (3)O2—C15—C16—C17178.6 (2)
Cu2—O1—C1—C6169.79 (17)C20—C15—C16—C171.5 (4)
O1—C1—C2—C3178.5 (2)C15—C16—C17—C181.7 (4)
C6—C1—C2—C31.7 (4)C16—C17—C18—C190.6 (4)
C1—C2—C3—C40.7 (4)C17—C18—C19—C200.6 (4)
C2—C3—C4—C50.5 (4)C18—C19—C20—C150.7 (4)
C3—C4—C5—C60.7 (4)C18—C19—C20—C21179.0 (3)
C4—C5—C6—C10.2 (4)O2—C15—C20—C19179.7 (2)
C4—C5—C6—C7179.1 (2)C16—C15—C20—C190.4 (4)
O1—C1—C6—C5178.7 (2)O2—C15—C20—C212.1 (4)
C2—C1—C6—C51.4 (4)C16—C15—C20—C21177.8 (2)
O1—C1—C6—C70.1 (4)C22—N4—C21—C20179.8 (2)
C2—C1—C6—C7179.8 (2)Cu2—N4—C21—C204.4 (4)
C8—N2—C7—C6177.8 (3)C19—C20—C21—N4177.5 (3)
Cu1—N2—C7—C65.1 (4)C15—C20—C21—N40.8 (4)
C5—C6—C7—N2174.8 (3)C21—N4—C22—C23143.3 (2)
C1—C6—C7—N26.4 (4)Cu2—N4—C22—C2332.2 (3)
C7—N2—C8—C9144.5 (3)N4—C22—C23—C2473.3 (3)
Cu1—N2—C8—C932.8 (3)C28—N3—C24—C251.8 (4)
N2—C8—C9—C1073.9 (3)Cu2—N3—C24—C25176.81 (19)
C14—N1—C10—C111.7 (4)C28—N3—C24—C23178.4 (2)
Cu1—N1—C10—C11179.8 (2)Cu2—N3—C24—C233.0 (3)
C14—N1—C10—C9177.8 (2)C22—C23—C24—N353.7 (3)
Cu1—N1—C10—C90.3 (3)C22—C23—C24—C25126.4 (3)
C8—C9—C10—N156.1 (3)N3—C24—C25—C260.4 (4)
C8—C9—C10—C11123.4 (3)C23—C24—C25—C26179.8 (3)
N1—C10—C11—C120.7 (4)C24—C25—C26—C271.5 (4)
C9—C10—C11—C12178.8 (3)C25—C26—C27—C282.0 (4)
C10—C11—C12—C130.5 (5)C24—N3—C28—C271.3 (4)
C11—C12—C13—C140.6 (5)Cu2—N3—C28—C27177.4 (2)
C10—N1—C14—C131.5 (4)C26—C27—C28—N30.6 (4)
Cu1—N1—C14—C13179.7 (2)O24—Cl2—O21—Cu2100.6 (2)
C12—C13—C14—N10.4 (5)O22—Cl2—O21—Cu220.4 (2)
Cu2—O2—C15—C16169.93 (18)O23—Cl2—O21—Cu2139.70 (19)
Cu1—O2—C15—C161.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O120.77 (4)1.98 (4)2.735 (4)168 (4)
O1W—H1W1···O12A0.77 (4)2.06 (4)2.769 (5)153 (4)
O1W—H1W2···O23i0.75 (4)2.23 (4)2.938 (4)160 (4)
C2—H2A···N30.952.613.142 (3)116
C2—H2A···O24i0.952.553.196 (3)125
C8—H8A···O12ii0.992.543.488 (5)161
C9—H9A···O130.992.403.121 (5)129
C14—H14A···O20.952.543.073 (3)116
C14—H14A···O210.952.603.345 (4)135
C16—H16A···O1W0.952.613.154 (4)117
C16—H16A···N10.952.663.294 (3)124
C23—H23A···O24i0.992.443.336 (3)151
C23—H23B···O13iii0.992.553.293 (4)132
C23—H23B···O13Aiii0.992.543.261 (5)129
C25—H25A···O13iii0.952.553.175 (4)124
C25—H25A···O12Aiii0.952.583.488 (5)159
C27—H27A···O14iv0.952.393.202 (4)143
C27—H27A···O14Aiv0.952.623.477 (5)151
C28—H28A···Cl20.952.993.594 (3)123
C28—H28A···O220.952.613.473 (4)151
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z+1.
 

Funding information

RJB is grateful for the NSF award 1205608, Partnership for Reduced Dimensional Materials for partial funding of this research as well as the Howard University Nanoscience Facility access to liquid nitro­gen. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAddison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science
First citationAnbu, S., Kandaswamy, M., Suthakaran, P., Murugan, V. & Varghese, B. (2009). J. Inorg. Biochem. 103, 401–410.  Web of Science CSD CrossRef PubMed CAS
First citationBlake, A. J., Champness, N. R., Hubberstey, P., Li, W., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138.  Web of Science CrossRef CAS
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChakraborty, P., Guha, A., Das, S., Zangrando, E. & Das, D. (2013). Polyhedron, 49, 12–18.  CSD CrossRef CAS
First citationCheng, Q. R., Zhou, H., Pan, Z.-Q. & Chen, J.-Z. (2012). Transition Met. Chem. 37, 407–414.  CSD CrossRef CAS
First citationCheng, Q. R., Zhou, H., Pan, Z.-Q., Liao, G.-Y. & Xu, Z.-G. (2014). J. Mol. Struct. 1074, 255–262.  CSD CrossRef CAS
First citationEgekenze, R., Gultneh, Y. & Butcher, R. J. (2017). Acta Cryst. E73, 1113–1116.  CSD CrossRef IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHazra, S., Majumder, S., Fleck, M., Aliaga-Alcalde, N. & Mohanta, S. (2009). Polyhedron, 28, 3707–3714.  CSD CrossRef CAS
First citationJagoda, M., Warzeska, S., Pritzkow, H., Wadepohl, H., Imhof, P., Smith, J. C. & Krämer, R. (2005). J. Am. Chem. Soc. 127, 15061–15070.  CSD CrossRef PubMed CAS
First citationKarlin, K. D. & Z. Tyeklar, Z. (1993). Bioinorganic Chemistry of Copper. New York: Chapman and Hill.
First citationKuzuhara, D., Furukawa, W., Kitashiro, A., Aratani, N. & Yamada, H. (2016). Chem. Eur. J. 22, 10671–10678.  CSD CrossRef CAS PubMed
First citationLatour, J.-M., Tandon, S. S. & Povey, D. C. (1989). Acta Cryst. C45, 7–11.  CSD CrossRef CAS IUCr Journals
First citationMandal, S. K., Thompson, L. K., Newlands, M. J. & Gabe, E. J. (1989). Inorg. Chem. 28, 3707–3713.  CSD CrossRef CAS Web of Science
First citationPoater, A., Ribas, X., Llobet, A., Cavallo, L. & Solà, M. (2008). J. Am. Chem. Soc. 130, 17710–17717.  CrossRef PubMed CAS
First citationRobson, R. (1996). Comprehensive Supramolecular Chemistry, Vol. 6, edited by J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle and R. B. Toda, p. 733. Oxford: Pergamon.
First citationRocha, J. C. da, Zambiazi, P. J., Hörner, M., Poneti, G., Ribeiro, R. R. & Nunes, F. S. (2014). J. Mol. Struct. 1072, 69–76.
First citationSanyal, R., Guha, A., Ghosh, T., Mondal, T. K., Zangrando, E. & Das, D. (2014). Inorg. Chem. 53, 85–96.  CSD CrossRef CAS PubMed
First citationSauvage, J.-P. (1999). Transition Metals in Supramolecular Chemistry. In Perspectives in Supramolecular Chemistry, Vol. 5. London: Wiley.
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationTandon, S. S., Chander, S. & Thompson, L. K. (2000). Inorg. Chim. Acta, 300–302, 683–692.  Web of Science CSD CrossRef CAS
First citationTandon, S. S., Chander, S., Thompson, L. K., Bridson, J. N. & McKeec, V. (1994). Inorg. Chim. Acta, 219, 55–65.  CSD CrossRef CAS
First citationTorelli, S., Belle, C., Gautier-Luneau, I., Pierre, J. L., Saint-Aman, E., Latour, J. M., Le Pape, L. & Luneau, D. (2000). Inorg. Chem. 39, 3526–3536.  Web of Science CSD CrossRef PubMed CAS
First citationUtz, D., Heinemann, F. W., Hampel, F., Richens, D. T. & Schindler, S. (2003). Inorg. Chem. 42, 1430–1436.  Web of Science CSD CrossRef PubMed CAS
First citationYin, Y.-G., Cheung, C.-K. & Wong, W.-T. (1998). Gaodeng Xuexiao Huaxue Xuebao 19, 1546–1550.  CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds