research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Benzyl-1-(4-nitro­phen­yl)-1H-1,2,3-triazole: crystal structure and Hirshfeld analysis

CROSSMARK_Color_square_no_text.svg

aLaboratório de Cristalografia, Esterodinâmica e, Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by P. C. Healy, Griffith University, Australia (Received 10 October 2017; accepted 11 October 2017; online 20 October 2017)

The mol­ecule in the title compound, C15H12N4O2, has a twisted L-shape with the dihedral angle between the aromatic rings of the N-bound benzene and C-bound benzyl groups being 70.60 (9)°. The nitro group is co-planar with the benzene ring to which it is connected [C—C—N—O torsion angle = 0.4 (3)°]. The three-dimensional packing is stabilized by a combination of methyl­ene-C—H⋯O(nitro), methyl­ene-C—H⋯π(phen­yl), phenyl-C—H⋯π(triazol­yl) and nitro-O⋯π(nitro­benzene) inter­actions, along with weak π(triazol­yl)–π(nitrobenzene) contacts [inter-centroid distance = 3.8386 (10) Å]. The importance of the specified inter­molecular contacts has been verified by an analysis of the calculated Hirshfeld surface.

1. Chemical context

The 1,2,3-triazoles comprise an important class of mol­ecules, having a number of applications in biology and materials science. As reviewed recently, 1,2,3-triazoles display various potential pharmaceutical properties including anti-cancer, anti-viral, anti-tuberculosis and anti-microbial activities (Tron et al., 2008[Tron, G. C., Pirali, T., Billington, R. A., Canonico, P. L., Sorba, G. & Genazzani, A. A. (2008). Med. Res. Rev. 28, 278-308.]; Thirumurugan et al., 2013[Thirumurugan, P., Matosiuk, D. & Jozwiak, K. (2013). Chem. Rev. 113, 4905-4979.]). The 1,2,3-triazole chromo­phore can function as a most useful scaffold in bio-conjugation owing to its rigid framework, stability, and, crucially, water-solubility (Jewett & Bertozzi, 2010[Jewett, J. C. & Bertozzi, C. R. (2010). Chem. Soc. Rev. 39, 1272-1279.]; Holub & Kirshenbaum, 2010[Holub, J. M. & Kirshenbaum, K. (2010). Chem. Soc. Rev. 39, 1325-1337.]). Further applications are known in the fields of dyes, photostabilizers and as agrochemicals (Golas & Matyjaszewski, 2010[Golas, P. L. & Matyjaszewski, K. (2010). Chem. Soc. Rev. 39, 1338-1354.]; Qin et al., 2010[Qin, A., Lam, J. W. Y. & Tang, B. Z. (2010). Chem. Soc. Rev. 39, 2522-2544.]). Very recently, a new and efficient synthesis for a metal-free and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles was described (Ali et al., 2014[Ali, A., Corrêa, A. G., Alves, D., Zukerman-Schpector, J., Westermann, B., Ferreira, M. A. B. & Paixão, M. W. (2014). Chem. Commun. 50, 11926-11929.]). Among the compounds synthesized in that study was the title compound, (I)[link]. Herein, the crystal and mol­ecular structures of (I)[link] are described along with an analysis of the Hirshfeld surface.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], comprises a central, strictly planar 1,2,3-triazolyl ring (r.m.s. deviation of the five fitted atoms = 0.001 Å) flanked by C- and N-bound benzyl and 4-nitro­benzene substituents, respectively. The dihedral angle between the five-membered ring and phenyl ring is 83.23 (10)°, indicating a near perpendicular relationship. By contrast, the benzene ring is closer to co-planar to the triazolyl ring, forming a dihedral angle of 13.95 (9)°. The dihedral angle between the outer rings is 70.60 (9)°, indicating that the mol­ecule has a skewed-shape based on the letter L. The nitro group is co-planar with the benzene ring to which it is bound as seen in the value of the C12—C13—N4—O1 torsion angle of 0.4 (3)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

3. Supra­molecular features

The mol­ecular packing of (I)[link] features methyl­ene-C—H⋯O(nitro), methyl­ene-C—H⋯π(phen­yl), phenyl-C—H⋯π(triazol­yl) and nitro-O⋯π(nitro­benzene) inter­actions, Table 1[link]; the latter inter­actions have been described as being important in stabilizing the crystal packing of nitro-containing compounds (Huang et al., 2008[Huang, L., Massa, L. & Karle, J. (2008). Proc. Natl Acad. Sci. 105, 13720-13723.]). The C—H⋯O and nitro-O⋯π inter­actions occur between centrosymmetrically related mol­ecules while the C—H⋯π(phen­yl) contacts occur along the a-axis direction and the C—H⋯π(triazol­yl) contacts along the b-axis direction and, all taken together, consolidate the three-dimensional architecture, Fig. 2[link]. Within the specified framework, weak π(triazol­yl)–π(nitro­benzene)i inter­actions occur with the inter-centroid distance = 3.8386 (10) Å, inter-planar angle = 13.95 (9)° for symmetry code: (i) 1 − x, − y, 2 − z.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg3 are the centroids of the N1–N3,C1,C2, C4–C9 and C10-C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O2i 0.97 2.58 3.452 (3) 150
C3—H3ACg2ii 0.97 2.96 3.857 (2) 154
C8—H8⋯Cg1iii 0.93 2.86 3.665 (3) 146
N4—O1⋯Cg3iv 1.21 (1) 3.67 (1) 4.1254 (19) 103 (1)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x-1, y, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+2.
[Figure 2]
Figure 2
A view of the unit-cell contents in projection down the a axis. The C—H⋯O, C—H⋯π and nitro-O⋯π contacts are shown as orange, purple and blue dashed lines, respectively.

4. Hirshfeld surface analysis

The study of the Hirshfeld surface and inter­molecular inter­actions of (I)[link] has been carried out using standard parameters of the CrystalExplorer package (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). University of Western Australia.]) and using similar protocols as in earlier studies (Zukerman-Schpector et al., 2017[Zukerman-Schpector, J., Prado, K. E., Name, L. L., Cella, R., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 918-924.]). In (I)[link], the Hirshfeld surface is controlled by attractive inter­actions such as non-conventional C—H⋯π, C—H⋯O, C—H⋯N hydrogen bonds and ππ inter­actions. The aforementioned contacts contribute around 70% to the overall surface area, Fig. 3[link] and Table 2[link]. The repulsive H⋯H inter­actions account for the remaining 30%, Fig. 3[link]b. These observations may be rationalized in terms of the structure having electron-rich groups, i.e. the three aromatic rings and the nitro substituent, for which the electron densities are highly delocal­ized allowing them to have significant overlap in the mol­ecular packing.

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 28.7
C⋯H/H⋯C 26.1
O⋯H/H⋯O 21.0
N⋯H/H⋯N 15.6
C⋯N/N⋯C 3.9
C⋯O/O⋯C 2.4
others 2.3
[Figure 3]
Figure 3
(a) The full two-dimensional fingerprint plot for (I)[link] and two views of the Hirshfeld surface mapped over the shape-index property, and fingerprint plots delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) N⋯H/H⋯N, (f) C⋯N/N⋯C and (g) C⋯O/O⋯C inter­atomic contacts along with two views of Hirshfeld surface mapped over shape-index.

As attractive inter­actions, the C⋯H/H⋯C contacts contribute a significant role (26.1%) to the overall surface area. These contacts arise mainly from C—H⋯π contacts spread over the entire mol­ecule in which all rings, i.e. the triazole, nitro­benzene and benzyl rings, function as H-atom acceptors, Tables 1[link] and 3[link], and Fig. 3[link]c. The O⋯H/H⋯O contacts contribute 21.0% to the Hirshfeld surface area. In essence, this arises owing to non-conventional C—H⋯O hydrogen bonds, Fig. 3[link]d. There are two different H-donor carbon atoms participating in the weak C—H⋯O inter­actions, one of which is the methyl­ene-C3 atom, Table 1[link], and the other being the nitro­benzene-C12 atom, Table 3[link]. The N⋯H/H⋯N contacts contribute approximately 16% to the overall surface area, Fig. 3[link]e. Non conventional C—H⋯N hydrogen bonds are formed with nitro­benzene-C atoms as H-atom donors, Table 3[link] and Fig. 3[link]f. The C⋯N/N⋯C and C⋯O/O⋯C contacts contribute around 6% to the Hirshfeld surface, Table 2[link] and Fig. 3[link]f and g. Other surface contacts do not contribute significantly to the mol­ecular packing.

Table 3
Summary of short inter­atomic contacts (Å) in (I)

Contact Distance Symmetry operation
H15⋯H15 2.54 2 − x, −y, 2 − z
C7⋯H11 2.78 1 − x, − [{1\over 2}] + y, [{3\over 2}] − z
O1⋯H12 2.62 x, 1 − y, 2 − z
O1⋯C13 3.386 (3) 1 − x, 1 − y, 2 − z
C15⋯N1 3.413 (2) 1 − x, −y, 2 − z
H15⋯N2 2.71 2 − x, −y, 2 − z
H14⋯N3 3.00 2 − x, −y, 2 − z

5. Database survey

There are only relatively few 1,2,3-triazole structures in the literature having N-bound aryl groups and C-bound alkyl substituents. The two mol­ecules closest to (I)[link] have N-bound 4-chloro­benzene and C-bound n-butyl groups, i.e. (II) (Sarode et al., 2016[Sarode, P. B., Bahekar, S. P. & Chandak, H. S. (2016). Synlett, 27, 2681-2684.]), and N-bound 4-nitro­benzene and C-bound n-hexyl groups, i.e. (III) (Muhammad et al., 2015[Muhammad, N. A., Khawaja, A. Y., Tariq, M., Fatima, W., Muhammad, H. K., Tahir, M. N., Safeena, Z. & Shaista, A. (2015). Chin. J. Struct. Chem. 34, 1830-1840.]). In (II), the dihedral angle between the two planes is 22.59 (7)° and the n-butyl group is co-planar with the the five-membered ring as seen in the sp2-C—Cquaternary—C—Cmethyl­ene = 0.06 (4)° and Cmethyl­ene—C—C—Cmeth­yl = −177.39 (19)° torsion angles. In (III), the aromatic rings are considerably more co-planar, cf. (I)[link] and (II), with the dihedral angle between them being 2.65 (8)°. With respect to the n-hexyl substituent, the structure of (III) resembles that of (I)[link] in that the sp2-C—Cquaternary—C—Cmethyl­ene torsion angle is −118.4 (3)°.

6. Synthesis and crystallization

The title compound was prepared as described in the literature (Ali et al., 2014[Ali, A., Corrêa, A. G., Alves, D., Zukerman-Schpector, J., Westermann, B., Ferreira, M. A. B. & Paixão, M. W. (2014). Chem. Commun. 50, 11926-11929.]). Crystals of (I)[link] for the X-ray study were obtained by slow evaporation from an ethyl acetate/n-hexane solution (5:1 v/v). 1H NMR (400 MHz, CDCl3) δ 7.70–7.65 (m, 2H), 7.59 (s, 1H), 7.51–7.45 (m, 2H), 7.42–7.32 (m, 3H), 7.31–7.21 (m, 2H), 4.17 (s, 2H). 13C NMR (100 MHz, CDCl3) δ = 148.5, 138.8, 137.2, 129.6, 128.8, 128.7, 128.5, 126.6, 120.42, 119.6, 32.3 ppm. ESI–MS (m/z) calculated for C15H12N4O2 [M + H]+ 281.1038, found 281.1039.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula C15H12N4O2
Mr 280.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 5.1962 (1), 10.7814 (3), 24.0067 (6)
β (°) 90.256 (2)
V3) 1344.90 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.46 × 0.26 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.695, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 9104, 2450, 1881
Rint 0.023
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.06
No. of reflections 2450
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

4-Benzyl-1-(4-nitrophenyl)-1H-1,2,3-triazole top
Crystal data top
C15H12N4O2Dx = 1.384 Mg m3
Mr = 280.29Melting point = 371–373 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.1962 (1) ÅCell parameters from 2937 reflections
b = 10.7814 (3) Åθ = 3.2–25.0°
c = 24.0067 (6) ŵ = 0.10 mm1
β = 90.256 (2)°T = 293 K
V = 1344.90 (6) Å3Irregular, yellow
Z = 40.46 × 0.26 × 0.14 mm
F(000) = 584
Data collection top
Bruker APEXII CCD
diffractometer
1881 reflections with I > 2σ(I)
φ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.4°, θmin = 1.7°
Tmin = 0.695, Tmax = 0.745h = 66
9104 measured reflectionsk = 1212
2450 independent reflectionsl = 2828
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.3766P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2450 reflectionsΔρmax = 0.16 e Å3
190 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6006 (3)0.10629 (18)0.84523 (7)0.0532 (4)
C20.4648 (3)0.01241 (18)0.86767 (6)0.0531 (4)
H20.30300.01540.85660.064*
C30.5294 (4)0.1916 (2)0.79835 (7)0.0672 (5)
H3A0.36440.16620.78320.081*
H3B0.51000.27500.81290.081*
C40.7242 (3)0.19387 (16)0.75201 (7)0.0519 (4)
C50.7534 (4)0.09304 (18)0.71743 (8)0.0646 (5)
H50.64720.02440.72200.078*
C60.9359 (4)0.0918 (2)0.67636 (8)0.0762 (6)
H60.95200.02240.65360.091*
C71.0933 (4)0.1905 (3)0.66847 (9)0.0803 (7)
H71.21950.18840.64110.096*
C81.0641 (4)0.2926 (3)0.70110 (10)0.0836 (7)
H81.16820.36160.69540.100*
C90.8791 (4)0.29477 (19)0.74304 (8)0.0695 (5)
H90.86070.36510.76510.083*
C100.5585 (3)0.13033 (15)0.94757 (6)0.0444 (4)
C110.3575 (3)0.21075 (18)0.93671 (7)0.0577 (5)
H110.26150.20240.90410.069*
C120.2992 (4)0.30319 (18)0.97405 (8)0.0627 (5)
H120.16250.35690.96740.075*
C130.4468 (3)0.31461 (16)1.02137 (7)0.0541 (4)
C140.6508 (3)0.23726 (17)1.03240 (7)0.0562 (4)
H140.74940.24781.06450.067*
C150.7071 (3)0.14397 (17)0.99526 (6)0.0511 (4)
H150.84390.09041.00210.061*
N10.6118 (2)0.03310 (13)0.90952 (5)0.0451 (3)
N20.8341 (3)0.03164 (15)0.91281 (6)0.0583 (4)
N30.8269 (3)0.11635 (15)0.87374 (6)0.0628 (4)
N40.3812 (4)0.41242 (16)1.06168 (7)0.0729 (5)
O10.1984 (4)0.47864 (19)1.05159 (8)0.1170 (7)
O20.5137 (4)0.42327 (16)1.10290 (7)0.1031 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0419 (9)0.0744 (12)0.0432 (8)0.0121 (8)0.0010 (7)0.0016 (8)
C20.0367 (8)0.0806 (13)0.0420 (8)0.0047 (8)0.0035 (7)0.0027 (8)
C30.0609 (11)0.0851 (14)0.0556 (10)0.0213 (10)0.0005 (9)0.0091 (10)
C40.0513 (10)0.0585 (11)0.0458 (8)0.0051 (8)0.0084 (7)0.0099 (8)
C50.0728 (13)0.0615 (12)0.0596 (11)0.0065 (10)0.0030 (9)0.0019 (9)
C60.0879 (15)0.0881 (16)0.0526 (11)0.0147 (13)0.0046 (10)0.0034 (10)
C70.0646 (13)0.122 (2)0.0539 (11)0.0053 (14)0.0001 (10)0.0310 (13)
C80.0712 (14)0.0994 (18)0.0800 (14)0.0278 (13)0.0165 (12)0.0410 (14)
C90.0803 (14)0.0621 (12)0.0660 (12)0.0053 (11)0.0214 (10)0.0076 (10)
C100.0371 (8)0.0573 (10)0.0389 (8)0.0030 (7)0.0038 (6)0.0098 (7)
C110.0495 (10)0.0753 (13)0.0483 (9)0.0074 (9)0.0065 (8)0.0056 (9)
C120.0561 (11)0.0688 (12)0.0631 (11)0.0122 (9)0.0009 (9)0.0083 (9)
C130.0581 (10)0.0533 (10)0.0509 (9)0.0034 (8)0.0107 (8)0.0048 (8)
C140.0568 (10)0.0665 (11)0.0454 (8)0.0074 (9)0.0031 (8)0.0035 (8)
C150.0439 (9)0.0627 (11)0.0468 (9)0.0007 (8)0.0050 (7)0.0048 (8)
N10.0337 (7)0.0630 (9)0.0384 (6)0.0005 (6)0.0008 (5)0.0050 (6)
N20.0415 (8)0.0786 (10)0.0547 (8)0.0099 (7)0.0091 (6)0.0088 (8)
N30.0518 (9)0.0784 (11)0.0582 (9)0.0064 (8)0.0062 (7)0.0122 (8)
N40.0873 (13)0.0647 (11)0.0668 (11)0.0013 (10)0.0104 (10)0.0005 (9)
O10.1292 (16)0.1118 (14)0.1100 (13)0.0544 (13)0.0054 (12)0.0279 (11)
O20.1333 (15)0.0942 (12)0.0817 (11)0.0065 (11)0.0145 (11)0.0274 (9)
Geometric parameters (Å, º) top
C1—C21.347 (2)C9—H90.9300
C1—N31.362 (2)C10—C111.382 (2)
C1—C31.499 (2)C10—C151.386 (2)
C2—N11.3516 (19)C10—N11.418 (2)
C2—H20.9300C11—C121.375 (3)
C3—C41.507 (2)C11—H110.9300
C3—H3A0.9700C12—C131.373 (2)
C3—H3B0.9700C12—H120.9300
C4—C91.371 (3)C13—C141.374 (2)
C4—C51.377 (2)C13—N41.472 (2)
C5—C61.371 (3)C14—C151.376 (2)
C5—H50.9300C14—H140.9300
C6—C71.356 (3)C15—H150.9300
C6—H60.9300N1—N21.3516 (18)
C7—C81.360 (3)N2—N31.310 (2)
C7—H70.9300N4—O21.209 (2)
C8—C91.395 (3)N4—O11.212 (2)
C8—H80.9300
C2—C1—N3108.14 (15)C4—C9—H9119.8
C2—C1—C3129.31 (16)C8—C9—H9119.8
N3—C1—C3122.53 (17)C11—C10—C15120.48 (16)
C1—C2—N1105.95 (14)C11—C10—N1119.46 (14)
C1—C2—H2127.0C15—C10—N1120.06 (14)
N1—C2—H2127.0C12—C11—C10120.02 (15)
C1—C3—C4113.59 (14)C12—C11—H11120.0
C1—C3—H3A108.8C10—C11—H11120.0
C4—C3—H3A108.8C13—C12—C11118.71 (17)
C1—C3—H3B108.8C13—C12—H12120.6
C4—C3—H3B108.8C11—C12—H12120.6
H3A—C3—H3B107.7C12—C13—C14122.19 (17)
C9—C4—C5117.75 (18)C12—C13—N4118.55 (17)
C9—C4—C3121.69 (18)C14—C13—N4119.26 (16)
C5—C4—C3120.56 (17)C13—C14—C15119.00 (16)
C6—C5—C4121.32 (19)C13—C14—H14120.5
C6—C5—H5119.3C15—C14—H14120.5
C4—C5—H5119.3C14—C15—C10119.57 (16)
C7—C6—C5120.8 (2)C14—C15—H15120.2
C7—C6—H6119.6C10—C15—H15120.2
C5—C6—H6119.6C2—N1—N2109.62 (14)
C6—C7—C8119.1 (2)C2—N1—C10129.48 (13)
C6—C7—H7120.5N2—N1—C10120.88 (12)
C8—C7—H7120.5N3—N2—N1107.26 (13)
C7—C8—C9120.5 (2)N2—N3—C1109.03 (15)
C7—C8—H8119.7O2—N4—O1123.3 (2)
C9—C8—H8119.7O2—N4—C13118.35 (19)
C4—C9—C8120.5 (2)O1—N4—C13118.30 (18)
N3—C1—C2—N10.06 (19)N4—C13—C14—C15178.33 (15)
C3—C1—C2—N1178.62 (16)C13—C14—C15—C100.3 (3)
C2—C1—C3—C4125.1 (2)C11—C10—C15—C141.0 (2)
N3—C1—C3—C456.5 (2)N1—C10—C15—C14178.83 (15)
C1—C3—C4—C9108.8 (2)C1—C2—N1—N20.02 (18)
C1—C3—C4—C570.5 (2)C1—C2—N1—C10178.32 (15)
C9—C4—C5—C61.8 (3)C11—C10—N1—C214.9 (2)
C3—C4—C5—C6177.62 (17)C15—C10—N1—C2164.92 (16)
C4—C5—C6—C70.2 (3)C11—C10—N1—N2166.96 (15)
C5—C6—C7—C81.5 (3)C15—C10—N1—N213.2 (2)
C6—C7—C8—C91.6 (3)C2—N1—N2—N30.03 (18)
C5—C4—C9—C81.7 (3)C10—N1—N2—N3178.44 (14)
C3—C4—C9—C8177.68 (16)N1—N2—N3—C10.07 (19)
C7—C8—C9—C40.1 (3)C2—C1—N3—N20.1 (2)
C15—C10—C11—C121.7 (3)C3—C1—N3—N2178.76 (16)
N1—C10—C11—C12178.13 (16)C12—C13—N4—O2179.00 (18)
C10—C11—C12—C131.0 (3)C14—C13—N4—O21.6 (3)
C11—C12—C13—C140.3 (3)C12—C13—N4—O10.4 (3)
C11—C12—C13—N4179.03 (16)C14—C13—N4—O1178.99 (19)
C12—C13—C14—C151.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the N1–N3/C1/C2, C4–C9 and C10-C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3B···O2i0.972.583.452 (3)150
C3—H3A···Cg2ii0.972.963.857 (2)154
C8—H8···Cg1iii0.932.863.665 (3)146
N4—O1···Cg3iv1.21 (1)3.67 (1)4.1254 (19)103 (1)
Symmetry codes: (i) x+1, y, z+2; (ii) x1, y, z; (iii) x+2, y1/2, z+3/2; (iv) x+1, y+1, z+2.
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···H28.7
C···H/H···C26.1
O···H/H···O21.0
N···H/H···N15.6
C···N/N···C3.9
C···O/O···C2.4
others2.3
Summary of short interatomic contacts (Å) in (I) top
ContactDistanceSymmetry operation
H15···H152.542 - x, - y, 2 - z
C7···H112.781 - x, - 1/2 + y, 3/2 - z
O1···H122.62-x, 1 - y, 2 - z
O1···C133.386 (3)1 - x, 1 - y, 2 - z
C15···N13.413 (2)1 - x, -y, 2 - z
H15···N22.712 - x, -y, 2 - z
H14···N33.002 - x, -y, 2 - z
 

Footnotes

Additional correspondence author, e-mail: edwardt@sunway.edu.my.

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC-USP for the X-ray data collection.

Funding information

The Brazilian agency National Council for Scientific and Technological Development, CNPq, is gratefully acknowledged for fellowships to JZ-S (305626/2013–2) and MWP (13/02311–3). AA acknowledges CNPQ–TWAS for a scholarship.

References

First citationAli, A., Corrêa, A. G., Alves, D., Zukerman-Schpector, J., Westermann, B., Ferreira, M. A. B. & Paixão, M. W. (2014). Chem. Commun. 50, 11926–11929.  CrossRef CAS
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGolas, P. L. & Matyjaszewski, K. (2010). Chem. Soc. Rev. 39, 1338–1354.  CrossRef CAS PubMed
First citationHolub, J. M. & Kirshenbaum, K. (2010). Chem. Soc. Rev. 39, 1325–1337.  CrossRef CAS PubMed
First citationHuang, L., Massa, L. & Karle, J. (2008). Proc. Natl Acad. Sci. 105, 13720–13723.  Web of Science CrossRef PubMed CAS
First citationJewett, J. C. & Bertozzi, C. R. (2010). Chem. Soc. Rev. 39, 1272–1279.  CrossRef CAS PubMed
First citationMuhammad, N. A., Khawaja, A. Y., Tariq, M., Fatima, W., Muhammad, H. K., Tahir, M. N., Safeena, Z. & Shaista, A. (2015). Chin. J. Struct. Chem. 34, 1830–1840.  CAS
First citationQin, A., Lam, J. W. Y. & Tang, B. Z. (2010). Chem. Soc. Rev. 39, 2522–2544.  Web of Science CrossRef CAS PubMed
First citationSarode, P. B., Bahekar, S. P. & Chandak, H. S. (2016). Synlett, 27, 2681–2684.  CAS
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationThirumurugan, P., Matosiuk, D. & Jozwiak, K. (2013). Chem. Rev. 113, 4905–4979.  Web of Science CrossRef CAS PubMed
First citationTron, G. C., Pirali, T., Billington, R. A., Canonico, P. L., Sorba, G. & Genazzani, A. A. (2008). Med. Res. Rev. 28, 278–308.  Web of Science CrossRef PubMed CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). University of Western Australia.
First citationZukerman-Schpector, J., Prado, K. E., Name, L. L., Cella, R., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 918–924.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds