research communications
4-Benzyl-1-(4-nitrophenyl)-1H-1,2,3-triazole: and Hirshfeld analysis
aLaboratório de Cristalografia, Esterodinâmica e, Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: julio@power.ufscar.br
The molecule in the title compound, C15H12N4O2, has a twisted L-shape with the dihedral angle between the aromatic rings of the N-bound benzene and C-bound benzyl groups being 70.60 (9)°. The nitro group is co-planar with the benzene ring to which it is connected [C—C—N—O torsion angle = 0.4 (3)°]. The three-dimensional packing is stabilized by a combination of methylene-C—H⋯O(nitro), methylene-C—H⋯π(phenyl), phenyl-C—H⋯π(triazolyl) and nitro-O⋯π(nitrobenzene) interactions, along with weak π(triazolyl)–π(nitrobenzene) contacts [inter-centroid distance = 3.8386 (10) Å]. The importance of the specified intermolecular contacts has been verified by an analysis of the calculated Hirshfeld surface.
Keywords: crystal structure; 1,2,3-triazole; Hirshfeld surface analysis.
CCDC reference: 1579464
1. Chemical context
The 1,2,3-triazoles comprise an important class of molecules, having a number of applications in biology and materials science. As reviewed recently, 1,2,3-triazoles display various potential pharmaceutical properties including anti-cancer, anti-viral, anti-tuberculosis and anti-microbial activities (Tron et al., 2008; Thirumurugan et al., 2013). The 1,2,3-triazole chromophore can function as a most useful scaffold in bio-conjugation owing to its rigid framework, stability, and, crucially, water-solubility (Jewett & Bertozzi, 2010; Holub & Kirshenbaum, 2010). Further applications are known in the fields of dyes, photostabilizers and as agrochemicals (Golas & Matyjaszewski, 2010; Qin et al., 2010). Very recently, a new and efficient synthesis for a metal-free and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles was described (Ali et al., 2014). Among the compounds synthesized in that study was the title compound, (I). Herein, the crystal and molecular structures of (I) are described along with an analysis of the Hirshfeld surface.
2. Structural commentary
The molecular structure of (I), Fig. 1, comprises a central, strictly planar 1,2,3-triazolyl ring (r.m.s. deviation of the five fitted atoms = 0.001 Å) flanked by C- and N-bound benzyl and 4-nitrobenzene substituents, respectively. The dihedral angle between the five-membered ring and phenyl ring is 83.23 (10)°, indicating a near perpendicular relationship. By contrast, the benzene ring is closer to co-planar to the triazolyl ring, forming a dihedral angle of 13.95 (9)°. The dihedral angle between the outer rings is 70.60 (9)°, indicating that the molecule has a skewed-shape based on the letter L. The nitro group is co-planar with the benzene ring to which it is bound as seen in the value of the C12—C13—N4—O1 torsion angle of 0.4 (3)°.
3. Supramolecular features
The molecular packing of (I) features methylene-C—H⋯O(nitro), methylene-C—H⋯π(phenyl), phenyl-C—H⋯π(triazolyl) and nitro-O⋯π(nitrobenzene) interactions, Table 1; the latter interactions have been described as being important in stabilizing the crystal packing of nitro-containing compounds (Huang et al., 2008). The C—H⋯O and nitro-O⋯π interactions occur between centrosymmetrically related molecules while the C—H⋯π(phenyl) contacts occur along the a-axis direction and the C—H⋯π(triazolyl) contacts along the b-axis direction and, all taken together, consolidate the three-dimensional architecture, Fig. 2. Within the specified framework, weak π(triazolyl)–π(nitrobenzene)i interactions occur with the inter-centroid distance = 3.8386 (10) Å, inter-planar angle = 13.95 (9)° for symmetry code: (i) 1 − x, − y, 2 − z.
4. Hirshfeld surface analysis
The study of the Hirshfeld surface and intermolecular interactions of (I) has been carried out using standard parameters of the CrystalExplorer package (Wolff et al., 2012) and using similar protocols as in earlier studies (Zukerman-Schpector et al., 2017). In (I), the Hirshfeld surface is controlled by attractive interactions such as non-conventional C—H⋯π, C—H⋯O, C—H⋯N hydrogen bonds and π–π interactions. The aforementioned contacts contribute around 70% to the overall surface area, Fig. 3 and Table 2. The repulsive H⋯H interactions account for the remaining 30%, Fig. 3b. These observations may be rationalized in terms of the structure having electron-rich groups, i.e. the three aromatic rings and the nitro substituent, for which the electron densities are highly delocalized allowing them to have significant overlap in the molecular packing.
|
As attractive interactions, the C⋯H/H⋯C contacts contribute a significant role (26.1%) to the overall surface area. These contacts arise mainly from C—H⋯π contacts spread over the entire molecule in which all rings, i.e. the triazole, nitrobenzene and benzyl rings, function as H-atom acceptors, Tables 1 and 3, and Fig. 3c. The O⋯H/H⋯O contacts contribute 21.0% to the Hirshfeld surface area. In essence, this arises owing to non-conventional C—H⋯O hydrogen bonds, Fig. 3d. There are two different H-donor carbon atoms participating in the weak C—H⋯O interactions, one of which is the methylene-C3 atom, Table 1, and the other being the nitrobenzene-C12 atom, Table 3. The N⋯H/H⋯N contacts contribute approximately 16% to the overall surface area, Fig. 3e. Non conventional C—H⋯N hydrogen bonds are formed with nitrobenzene-C atoms as H-atom donors, Table 3 and Fig. 3f. The C⋯N/N⋯C and C⋯O/O⋯C contacts contribute around 6% to the Hirshfeld surface, Table 2 and Fig. 3f and g. Other surface contacts do not contribute significantly to the molecular packing.
|
5. Database survey
There are only relatively few 1,2,3-triazole structures in the literature having N-bound have N-bound 4-chlorobenzene and C-bound n-butyl groups, i.e. (II) (Sarode et al., 2016), and N-bound 4-nitrobenzene and C-bound n-hexyl groups, i.e. (III) (Muhammad et al., 2015). In (II), the dihedral angle between the two planes is 22.59 (7)° and the n-butyl group is co-planar with the the five-membered ring as seen in the sp2-C—Cquaternary—C—Cmethylene = 0.06 (4)° and Cmethylene—C—C—Cmethyl = −177.39 (19)° torsion angles. In (III), the aromatic rings are considerably more co-planar, cf. (I) and (II), with the dihedral angle between them being 2.65 (8)°. With respect to the n-hexyl substituent, the structure of (III) resembles that of (I) in that the sp2-C—Cquaternary—C—Cmethylene torsion angle is −118.4 (3)°.
and C-bound alkyl substituents. The two molecules closest to (I)6. Synthesis and crystallization
The title compound was prepared as described in the literature (Ali et al., 2014). Crystals of (I) for the X-ray study were obtained by slow evaporation from an ethyl acetate/n-hexane solution (5:1 v/v). 1H NMR (400 MHz, CDCl3) δ 7.70–7.65 (m, 2H), 7.59 (s, 1H), 7.51–7.45 (m, 2H), 7.42–7.32 (m, 3H), 7.31–7.21 (m, 2H), 4.17 (s, 2H). 13C NMR (100 MHz, CDCl3) δ = 148.5, 138.8, 137.2, 129.6, 128.8, 128.7, 128.5, 126.6, 120.42, 119.6, 32.3 ppm. ESI–MS (m/z) calculated for C15H12N4O2 [M + H]+ 281.1038, found 281.1039.
7. details
Crystal data, data collection and structure . The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C).
details are summarized in Table 4
|
Supporting information
CCDC reference: 1579464
https://doi.org/10.1107/S2056989017014748/hg5498sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017014748/hg5498Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017014748/hg5498Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).C15H12N4O2 | Dx = 1.384 Mg m−3 |
Mr = 280.29 | Melting point = 371–373 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.1962 (1) Å | Cell parameters from 2937 reflections |
b = 10.7814 (3) Å | θ = 3.2–25.0° |
c = 24.0067 (6) Å | µ = 0.10 mm−1 |
β = 90.256 (2)° | T = 293 K |
V = 1344.90 (6) Å3 | Irregular, yellow |
Z = 4 | 0.46 × 0.26 × 0.14 mm |
F(000) = 584 |
Bruker APEXII CCD diffractometer | 1881 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.023 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | θmax = 25.4°, θmin = 1.7° |
Tmin = 0.695, Tmax = 0.745 | h = −6→6 |
9104 measured reflections | k = −12→12 |
2450 independent reflections | l = −28→28 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0383P)2 + 0.3766P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2450 reflections | Δρmax = 0.16 e Å−3 |
190 parameters | Δρmin = −0.18 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6006 (3) | −0.10629 (18) | 0.84523 (7) | 0.0532 (4) | |
C2 | 0.4648 (3) | −0.01241 (18) | 0.86767 (6) | 0.0531 (4) | |
H2 | 0.3030 | 0.0154 | 0.8566 | 0.064* | |
C3 | 0.5294 (4) | −0.1916 (2) | 0.79835 (7) | 0.0672 (5) | |
H3A | 0.3644 | −0.1662 | 0.7832 | 0.081* | |
H3B | 0.5100 | −0.2750 | 0.8129 | 0.081* | |
C4 | 0.7242 (3) | −0.19387 (16) | 0.75201 (7) | 0.0519 (4) | |
C5 | 0.7534 (4) | −0.09304 (18) | 0.71743 (8) | 0.0646 (5) | |
H5 | 0.6472 | −0.0244 | 0.7220 | 0.078* | |
C6 | 0.9359 (4) | −0.0918 (2) | 0.67636 (8) | 0.0762 (6) | |
H6 | 0.9520 | −0.0224 | 0.6536 | 0.091* | |
C7 | 1.0933 (4) | −0.1905 (3) | 0.66847 (9) | 0.0803 (7) | |
H7 | 1.2195 | −0.1884 | 0.6411 | 0.096* | |
C8 | 1.0641 (4) | −0.2926 (3) | 0.70110 (10) | 0.0836 (7) | |
H8 | 1.1682 | −0.3616 | 0.6954 | 0.100* | |
C9 | 0.8791 (4) | −0.29477 (19) | 0.74304 (8) | 0.0695 (5) | |
H9 | 0.8607 | −0.3651 | 0.7651 | 0.083* | |
C10 | 0.5585 (3) | 0.13033 (15) | 0.94757 (6) | 0.0444 (4) | |
C11 | 0.3575 (3) | 0.21075 (18) | 0.93671 (7) | 0.0577 (5) | |
H11 | 0.2615 | 0.2024 | 0.9041 | 0.069* | |
C12 | 0.2992 (4) | 0.30319 (18) | 0.97405 (8) | 0.0627 (5) | |
H12 | 0.1625 | 0.3569 | 0.9674 | 0.075* | |
C13 | 0.4468 (3) | 0.31461 (16) | 1.02137 (7) | 0.0541 (4) | |
C14 | 0.6508 (3) | 0.23726 (17) | 1.03240 (7) | 0.0562 (4) | |
H14 | 0.7494 | 0.2478 | 1.0645 | 0.067* | |
C15 | 0.7071 (3) | 0.14397 (17) | 0.99526 (6) | 0.0511 (4) | |
H15 | 0.8439 | 0.0904 | 1.0021 | 0.061* | |
N1 | 0.6118 (2) | 0.03310 (13) | 0.90952 (5) | 0.0451 (3) | |
N2 | 0.8341 (3) | −0.03164 (15) | 0.91281 (6) | 0.0583 (4) | |
N3 | 0.8269 (3) | −0.11635 (15) | 0.87374 (6) | 0.0628 (4) | |
N4 | 0.3812 (4) | 0.41242 (16) | 1.06168 (7) | 0.0729 (5) | |
O1 | 0.1984 (4) | 0.47864 (19) | 1.05159 (8) | 0.1170 (7) | |
O2 | 0.5137 (4) | 0.42327 (16) | 1.10290 (7) | 0.1031 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0419 (9) | 0.0744 (12) | 0.0432 (8) | −0.0121 (8) | 0.0010 (7) | 0.0016 (8) |
C2 | 0.0367 (8) | 0.0806 (13) | 0.0420 (8) | −0.0047 (8) | −0.0035 (7) | 0.0027 (8) |
C3 | 0.0609 (11) | 0.0851 (14) | 0.0556 (10) | −0.0213 (10) | 0.0005 (9) | −0.0091 (10) |
C4 | 0.0513 (10) | 0.0585 (11) | 0.0458 (8) | −0.0051 (8) | −0.0084 (7) | −0.0099 (8) |
C5 | 0.0728 (13) | 0.0615 (12) | 0.0596 (11) | 0.0065 (10) | 0.0030 (9) | −0.0019 (9) |
C6 | 0.0879 (15) | 0.0881 (16) | 0.0526 (11) | −0.0147 (13) | 0.0046 (10) | −0.0034 (10) |
C7 | 0.0646 (13) | 0.122 (2) | 0.0539 (11) | −0.0053 (14) | 0.0001 (10) | −0.0310 (13) |
C8 | 0.0712 (14) | 0.0994 (18) | 0.0800 (14) | 0.0278 (13) | −0.0165 (12) | −0.0410 (14) |
C9 | 0.0803 (14) | 0.0621 (12) | 0.0660 (12) | 0.0053 (11) | −0.0214 (10) | −0.0076 (10) |
C10 | 0.0371 (8) | 0.0573 (10) | 0.0389 (8) | −0.0030 (7) | 0.0038 (6) | 0.0098 (7) |
C11 | 0.0495 (10) | 0.0753 (13) | 0.0483 (9) | 0.0074 (9) | −0.0065 (8) | 0.0056 (9) |
C12 | 0.0561 (11) | 0.0688 (12) | 0.0631 (11) | 0.0122 (9) | 0.0009 (9) | 0.0083 (9) |
C13 | 0.0581 (10) | 0.0533 (10) | 0.0509 (9) | −0.0034 (8) | 0.0107 (8) | 0.0048 (8) |
C14 | 0.0568 (10) | 0.0665 (11) | 0.0454 (8) | −0.0074 (9) | −0.0031 (8) | 0.0035 (8) |
C15 | 0.0439 (9) | 0.0627 (11) | 0.0468 (9) | 0.0007 (8) | −0.0050 (7) | 0.0048 (8) |
N1 | 0.0337 (7) | 0.0630 (9) | 0.0384 (6) | 0.0005 (6) | −0.0008 (5) | 0.0050 (6) |
N2 | 0.0415 (8) | 0.0786 (10) | 0.0547 (8) | 0.0099 (7) | −0.0091 (6) | −0.0088 (8) |
N3 | 0.0518 (9) | 0.0784 (11) | 0.0582 (9) | 0.0064 (8) | −0.0062 (7) | −0.0122 (8) |
N4 | 0.0873 (13) | 0.0647 (11) | 0.0668 (11) | −0.0013 (10) | 0.0104 (10) | −0.0005 (9) |
O1 | 0.1292 (16) | 0.1118 (14) | 0.1100 (13) | 0.0544 (13) | −0.0054 (12) | −0.0279 (11) |
O2 | 0.1333 (15) | 0.0942 (12) | 0.0817 (11) | 0.0065 (11) | −0.0145 (11) | −0.0274 (9) |
C1—C2 | 1.347 (2) | C9—H9 | 0.9300 |
C1—N3 | 1.362 (2) | C10—C11 | 1.382 (2) |
C1—C3 | 1.499 (2) | C10—C15 | 1.386 (2) |
C2—N1 | 1.3516 (19) | C10—N1 | 1.418 (2) |
C2—H2 | 0.9300 | C11—C12 | 1.375 (3) |
C3—C4 | 1.507 (2) | C11—H11 | 0.9300 |
C3—H3A | 0.9700 | C12—C13 | 1.373 (2) |
C3—H3B | 0.9700 | C12—H12 | 0.9300 |
C4—C9 | 1.371 (3) | C13—C14 | 1.374 (2) |
C4—C5 | 1.377 (2) | C13—N4 | 1.472 (2) |
C5—C6 | 1.371 (3) | C14—C15 | 1.376 (2) |
C5—H5 | 0.9300 | C14—H14 | 0.9300 |
C6—C7 | 1.356 (3) | C15—H15 | 0.9300 |
C6—H6 | 0.9300 | N1—N2 | 1.3516 (18) |
C7—C8 | 1.360 (3) | N2—N3 | 1.310 (2) |
C7—H7 | 0.9300 | N4—O2 | 1.209 (2) |
C8—C9 | 1.395 (3) | N4—O1 | 1.212 (2) |
C8—H8 | 0.9300 | ||
C2—C1—N3 | 108.14 (15) | C4—C9—H9 | 119.8 |
C2—C1—C3 | 129.31 (16) | C8—C9—H9 | 119.8 |
N3—C1—C3 | 122.53 (17) | C11—C10—C15 | 120.48 (16) |
C1—C2—N1 | 105.95 (14) | C11—C10—N1 | 119.46 (14) |
C1—C2—H2 | 127.0 | C15—C10—N1 | 120.06 (14) |
N1—C2—H2 | 127.0 | C12—C11—C10 | 120.02 (15) |
C1—C3—C4 | 113.59 (14) | C12—C11—H11 | 120.0 |
C1—C3—H3A | 108.8 | C10—C11—H11 | 120.0 |
C4—C3—H3A | 108.8 | C13—C12—C11 | 118.71 (17) |
C1—C3—H3B | 108.8 | C13—C12—H12 | 120.6 |
C4—C3—H3B | 108.8 | C11—C12—H12 | 120.6 |
H3A—C3—H3B | 107.7 | C12—C13—C14 | 122.19 (17) |
C9—C4—C5 | 117.75 (18) | C12—C13—N4 | 118.55 (17) |
C9—C4—C3 | 121.69 (18) | C14—C13—N4 | 119.26 (16) |
C5—C4—C3 | 120.56 (17) | C13—C14—C15 | 119.00 (16) |
C6—C5—C4 | 121.32 (19) | C13—C14—H14 | 120.5 |
C6—C5—H5 | 119.3 | C15—C14—H14 | 120.5 |
C4—C5—H5 | 119.3 | C14—C15—C10 | 119.57 (16) |
C7—C6—C5 | 120.8 (2) | C14—C15—H15 | 120.2 |
C7—C6—H6 | 119.6 | C10—C15—H15 | 120.2 |
C5—C6—H6 | 119.6 | C2—N1—N2 | 109.62 (14) |
C6—C7—C8 | 119.1 (2) | C2—N1—C10 | 129.48 (13) |
C6—C7—H7 | 120.5 | N2—N1—C10 | 120.88 (12) |
C8—C7—H7 | 120.5 | N3—N2—N1 | 107.26 (13) |
C7—C8—C9 | 120.5 (2) | N2—N3—C1 | 109.03 (15) |
C7—C8—H8 | 119.7 | O2—N4—O1 | 123.3 (2) |
C9—C8—H8 | 119.7 | O2—N4—C13 | 118.35 (19) |
C4—C9—C8 | 120.5 (2) | O1—N4—C13 | 118.30 (18) |
N3—C1—C2—N1 | 0.06 (19) | N4—C13—C14—C15 | 178.33 (15) |
C3—C1—C2—N1 | 178.62 (16) | C13—C14—C15—C10 | 0.3 (3) |
C2—C1—C3—C4 | 125.1 (2) | C11—C10—C15—C14 | 1.0 (2) |
N3—C1—C3—C4 | −56.5 (2) | N1—C10—C15—C14 | −178.83 (15) |
C1—C3—C4—C9 | 108.8 (2) | C1—C2—N1—N2 | −0.02 (18) |
C1—C3—C4—C5 | −70.5 (2) | C1—C2—N1—C10 | −178.32 (15) |
C9—C4—C5—C6 | −1.8 (3) | C11—C10—N1—C2 | −14.9 (2) |
C3—C4—C5—C6 | 177.62 (17) | C15—C10—N1—C2 | 164.92 (16) |
C4—C5—C6—C7 | 0.2 (3) | C11—C10—N1—N2 | 166.96 (15) |
C5—C6—C7—C8 | 1.5 (3) | C15—C10—N1—N2 | −13.2 (2) |
C6—C7—C8—C9 | −1.6 (3) | C2—N1—N2—N3 | −0.03 (18) |
C5—C4—C9—C8 | 1.7 (3) | C10—N1—N2—N3 | 178.44 (14) |
C3—C4—C9—C8 | −177.68 (16) | N1—N2—N3—C1 | 0.07 (19) |
C7—C8—C9—C4 | −0.1 (3) | C2—C1—N3—N2 | −0.1 (2) |
C15—C10—C11—C12 | −1.7 (3) | C3—C1—N3—N2 | −178.76 (16) |
N1—C10—C11—C12 | 178.13 (16) | C12—C13—N4—O2 | −179.00 (18) |
C10—C11—C12—C13 | 1.0 (3) | C14—C13—N4—O2 | 1.6 (3) |
C11—C12—C13—C14 | 0.3 (3) | C12—C13—N4—O1 | 0.4 (3) |
C11—C12—C13—N4 | −179.03 (16) | C14—C13—N4—O1 | −178.99 (19) |
C12—C13—C14—C15 | −1.0 (3) |
Cg1–Cg3 are the centroids of the N1–N3/C1/C2, C4–C9 and C10-C15 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···O2i | 0.97 | 2.58 | 3.452 (3) | 150 |
C3—H3A···Cg2ii | 0.97 | 2.96 | 3.857 (2) | 154 |
C8—H8···Cg1iii | 0.93 | 2.86 | 3.665 (3) | 146 |
N4—O1···Cg3iv | 1.21 (1) | 3.67 (1) | 4.1254 (19) | 103 (1) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x−1, y, z; (iii) −x+2, y−1/2, −z+3/2; (iv) −x+1, −y+1, −z+2. |
Contact | Percentage contribution |
H···H | 28.7 |
C···H/H···C | 26.1 |
O···H/H···O | 21.0 |
N···H/H···N | 15.6 |
C···N/N···C | 3.9 |
C···O/O···C | 2.4 |
others | 2.3 |
Contact | Distance | Symmetry operation |
H15···H15 | 2.54 | 2 - x, - y, 2 - z |
C7···H11 | 2.78 | 1 - x, - 1/2 + y, 3/2 - z |
O1···H12 | 2.62 | -x, 1 - y, 2 - z |
O1···C13 | 3.386 (3) | 1 - x, 1 - y, 2 - z |
C15···N1 | 3.413 (2) | 1 - x, -y, 2 - z |
H15···N2 | 2.71 | 2 - x, -y, 2 - z |
H14···N3 | 3.00 | 2 - x, -y, 2 - z |
Footnotes
‡Additional correspondence author, e-mail: edwardt@sunway.edu.my.
Acknowledgements
We thank Professor Regina H. A. Santos from IQSC-USP for the X-ray data collection.
Funding information
The Brazilian agency National Council for Scientific and Technological Development, CNPq, is gratefully acknowledged for fellowships to JZ-S (305626/2013–2) and MWP (13/02311–3). AA acknowledges CNPQ–TWAS for a scholarship.
References
Ali, A., Corrêa, A. G., Alves, D., Zukerman-Schpector, J., Westermann, B., Ferreira, M. A. B. & Paixão, M. W. (2014). Chem. Commun. 50, 11926–11929. CrossRef CAS
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals
ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals
Golas, P. L. & Matyjaszewski, K. (2010). Chem. Soc. Rev. 39, 1338–1354. CrossRef CAS PubMed
Holub, J. M. & Kirshenbaum, K. (2010). Chem. Soc. Rev. 39, 1325–1337. CrossRef CAS PubMed
Huang, L., Massa, L. & Karle, J. (2008). Proc. Natl Acad. Sci. 105, 13720–13723. Web of Science CrossRef PubMed CAS
Jewett, J. C. & Bertozzi, C. R. (2010). Chem. Soc. Rev. 39, 1272–1279. CrossRef CAS PubMed
Muhammad, N. A., Khawaja, A. Y., Tariq, M., Fatima, W., Muhammad, H. K., Tahir, M. N., Safeena, Z. & Shaista, A. (2015). Chin. J. Struct. Chem. 34, 1830–1840. CAS
Qin, A., Lam, J. W. Y. & Tang, B. Z. (2010). Chem. Soc. Rev. 39, 2522–2544. Web of Science CrossRef CAS PubMed
Sarode, P. B., Bahekar, S. P. & Chandak, H. S. (2016). Synlett, 27, 2681–2684. CAS
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Thirumurugan, P., Matosiuk, D. & Jozwiak, K. (2013). Chem. Rev. 113, 4905–4979. Web of Science CrossRef CAS PubMed
Tron, G. C., Pirali, T., Billington, R. A., Canonico, P. L., Sorba, G. & Genazzani, A. A. (2008). Med. Res. Rev. 28, 278–308. Web of Science CrossRef PubMed CAS
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). University of Western Australia.
Zukerman-Schpector, J., Prado, K. E., Name, L. L., Cella, R., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 918–924. Web of Science CSD CrossRef IUCr Journals
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.