research communications
II coordination polymer: catena-poly[[bis(nitrato-κO)cobalt(II)]bis[μ-bis(pyridin-3-ylmethyl)sulfane-κ2N:N′]]
of a looped-chain CoaDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bMineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea, and cResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: joobeomi@kigam.re.kr, kmpark@gnu.ac.kr
The 3)2(C12H12N2S)2]n, contains a bis(pyridin-3-ylmethyl)sulfane (L) ligand, an NO3− anion and half a CoII cation, which lies on an inversion centre. The CoII cation is six-coordinated, being bound to four pyridine N atoms from four symmetry-related L ligands. The remaining coordination sites are occupied by two O atoms from two symmetry-related nitrate anions in a monodentate manner. Thus, the CoII centre adopts a distorted octahedral geometry. Two symmetry-related L ligands are connected by two symmetry-related CoII cations, forming a 20-membered cyclic dimer, in which the CoII atoms are separated by 10.2922 (7) Å. The cyclic dimers are connected to each other by sharing CoII atoms, giving rise to the formation of an infinite looped chain propagating along the [101] direction. Intermolecular C—H⋯π (H⋯ring centroid = 2.89 Å) interactions between one pair of corresponding L ligands and C—H⋯O hydrogen bonds between the L ligands and the nitrate anions occur in the looped chain. In the crystal, adjacent looped chains are connected by intermolecular π–π stacking interactions [centroid-to-centroid distance = 3.8859 (14) Å] and C—H⋯π hydrogen bonds (H⋯ring centroid = 2.65 Å), leading to the formation of layers parallel to (101). These layers are further connected through C—H⋯O hydrogen bonds between the layers, resulting in the formation of a three-dimensional supramolecular architecture.
of the title compound, [Co(NOKeywords: crystal structure; cobalt(II); dipyridyl ligand; looped chain; hydrogen bonding; π–π interactions.
CCDC reference: 1580230
1. Chemical context
Over the last two decades, numerous one-dimensional coordination polymers have been developed, not only because of their fascinating architectures but also their potential applications as functional materials (Furukawa et al., 2014; Silva et al., 2015). In this area of research, dipyridyl-type molecules as organic building blocks have been widely used to construct diverse one-dimensional self-assembled coordination polymers with intriguing structural topologies (Leong & Vittal, 2011; Wang et al., 2012). Our group has also developed several one-dimensional coordination polymers with fascinating topologies such as zigzag (Lee et al., 2013; Moon et al., 2016), helical (Moon et al., 2014, 2015), double helical (Lee et al., 2015), looped chain (Ju et al., 2014) and ribbon-type double-stranded (Moon et al., 2017; Park et al., 2010) structures using dipyridyl-type ligands. In an extension of our research, the title compound was prepared by the reaction of cobalt(II) nitrate with bis(pyridin-3-ylmethyl)sulfane (L) as a flexible dipyridyl-type ligand, synthesized using a literature procedure (Park et al., 2010; Lee et al., 2012). Herein, we report the of the title compound, which adopts a one-dimensional looped-chain structure.
2. Structural commentary
As illustrated in Fig. 1, the of the title compound consists of one CoII cation located on an inversion centre, one (pyridin-3-ylmethyl)sulfane ligand, L, and one NO3− anion. The CoII cation is coordinated by four pyridine N atoms from four symmetry-related L ligands. In addition, the CoII cation binds to two O atoms of two symmetry-related monodentate nitrate anions, forming a distorted octahedral CoN4O2 coordination. Selected bond lengths and angles around the Co1 atom are listed in Table 1. The N1- and N2-pyridine rings coordinated to the CoII centre are tilted by 70.75 (7)° with respect to each other (Fig. 1).
Two symmetry-related L ligands bridge two CoII atoms, resulting in the formation of a 20-membered cyclic dimer with a Co⋯Co separation of 10.2922 (7) Å. The cyclic dimers are connected by sharing CoII atoms, leading to the formation of an infinite looped chain propagating along the [101] direction. An intermolecular C7—H7B⋯ Cg2i interactions [H⋯π = 2.89 Å; Table 2; yellow dashed lines in Fig. 1; Cg2 is the centroid of atoms N2/C8–C12; symmetry code: (i) −x, −y + 1, −z] between one pair of corresponding L ligands and several C—H⋯O hydrogen bonds between the L ligands and the NO3− anions (Table 2; black dashed lines in Fig. 1) contribute to the stabilization of the looped chain.
|
3. Supramolecular features
Adjacent looped chains in the structure are connected by intermolecular π–π stacking interactions between the N1-pyridine rings [Cg1⋯Cg1ii = 3.8859 (14) Å; yellow dashed lines in Fig. 2; Cg1 is the centroid of atoms N1/C1–C5; symmetry code: (ii) −x + 1, −y + 2, −z + 1] together with intermolecular C6—H6A⋯Cg2iii hydrogen bonds [H⋯π = 2.65 Å; Table 2; black dashed lines in Fig. 2; symmetry code: (iii) −x, −y + 2, −z], generating layers parallel to (101). Neighboring layers are packed by C1—H1⋯O3iv hydrogen bonds [H⋯O = 2.60 Å; Table 2; yellow dashed lines in Fig. 3; symmetry code: (iv) −x + 2, −y + 1, −z + 1] between pyridine H atoms and nitrogen O atoms, resulting in the formation of a three-dimensional supramolecular architecture.
4. Synthesis and crystallization
The L ligand was synthesized according to a literature method (Park et al., 2010; Lee et al., 2012). Crystals of the title compound were grown by slow evaporation of a methanol/H2O (2:1) solution of the L ligand with Co(NO3)2·6H2O in a 2:1 molar ratio.
5. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined as riding: C—H = 0.93 Å for Csp2—H and 0.97 Å for methylene C—H with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1580230
https://doi.org/10.1107/S2056989017014980/hg5499sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017014980/hg5499Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[Co(NO3)2(C12H12N2S)2] | Z = 1 |
Mr = 615.54 | F(000) = 317 |
Triclinic, P1 | Dx = 1.607 Mg m−3 |
a = 8.1620 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.8158 (8) Å | Cell parameters from 3659 reflections |
c = 9.5078 (8) Å | θ = 2.3–26.0° |
α = 98.531 (2)° | µ = 0.89 mm−1 |
β = 109.218 (2)° | T = 298 K |
γ = 92.062 (2)° | Plate, violet |
V = 636.22 (10) Å3 | 0.45 × 0.30 × 0.15 mm |
Bruker APEXII CCD area detector diffractometer | 2082 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.040 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 26.0°, θmin = 2.3° |
Tmin = 0.634, Tmax = 0.896 | h = −7→10 |
3659 measured reflections | k = −10→10 |
2456 independent reflections | l = −11→7 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0488P)2 + 0.1617P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2456 reflections | Δρmax = 0.33 e Å−3 |
178 parameters | Δρmin = −0.37 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.5000 | 0.5000 | 0.5000 | 0.02620 (13) | |
S1 | 0.20509 (7) | 0.89446 (7) | −0.01804 (7) | 0.03834 (17) | |
N1 | 0.5427 (2) | 0.7131 (2) | 0.42595 (19) | 0.0294 (4) | |
N2 | −0.3498 (2) | 0.5946 (2) | −0.2639 (2) | 0.0294 (4) | |
N3 | 0.8472 (2) | 0.3452 (2) | 0.4702 (2) | 0.0353 (4) | |
O1 | 0.7307 (2) | 0.4382 (2) | 0.4536 (2) | 0.0459 (4) | |
O2 | 0.9392 (2) | 0.3314 (3) | 0.5987 (2) | 0.0623 (6) | |
O3 | 0.8698 (3) | 0.2729 (2) | 0.3594 (2) | 0.0600 (5) | |
C1 | 0.7012 (3) | 0.7803 (3) | 0.4459 (3) | 0.0359 (5) | |
H1 | 0.7992 | 0.7378 | 0.5020 | 0.043* | |
C2 | 0.7239 (3) | 0.9093 (3) | 0.3867 (3) | 0.0419 (6) | |
H2 | 0.8356 | 0.9533 | 0.4041 | 0.050* | |
C3 | 0.5807 (3) | 0.9731 (3) | 0.3014 (3) | 0.0377 (5) | |
H3 | 0.5945 | 1.0595 | 0.2595 | 0.045* | |
C4 | 0.4158 (3) | 0.9065 (2) | 0.2792 (2) | 0.0293 (4) | |
C5 | 0.4044 (3) | 0.7788 (2) | 0.3446 (2) | 0.0288 (4) | |
H5 | 0.2939 | 0.7352 | 0.3316 | 0.035* | |
C6 | 0.2546 (3) | 0.9672 (3) | 0.1822 (3) | 0.0345 (5) | |
H6A | 0.2707 | 1.0788 | 0.1994 | 0.041* | |
H6B | 0.1566 | 0.9379 | 0.2119 | 0.041* | |
C7 | 0.1232 (3) | 0.6961 (3) | −0.0308 (3) | 0.0345 (5) | |
H7A | 0.1544 | 0.6312 | −0.1080 | 0.041* | |
H7B | 0.1802 | 0.6624 | 0.0648 | 0.041* | |
C8 | −0.0710 (3) | 0.6735 (2) | −0.0675 (2) | 0.0298 (5) | |
C9 | −0.1533 (3) | 0.7008 (3) | 0.0387 (3) | 0.0390 (5) | |
H9 | −0.0889 | 0.7344 | 0.1402 | 0.047* | |
C10 | −0.3334 (3) | 0.6773 (3) | −0.0089 (3) | 0.0425 (6) | |
H10 | −0.3915 | 0.6973 | 0.0603 | 0.051* | |
C11 | −0.4259 (3) | 0.6242 (3) | −0.1590 (3) | 0.0369 (5) | |
H11 | −0.5466 | 0.6082 | −0.1889 | 0.044* | |
C12 | −0.1752 (3) | 0.6202 (2) | −0.2167 (2) | 0.0292 (4) | |
H12 | −0.1205 | 0.6011 | −0.2885 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0226 (2) | 0.0291 (2) | 0.0237 (2) | 0.00094 (15) | 0.00236 (16) | 0.00769 (16) |
S1 | 0.0360 (3) | 0.0407 (3) | 0.0324 (3) | −0.0055 (2) | 0.0012 (2) | 0.0141 (2) |
N1 | 0.0260 (9) | 0.0313 (9) | 0.0286 (9) | 0.0012 (7) | 0.0049 (7) | 0.0082 (7) |
N2 | 0.0280 (9) | 0.0285 (9) | 0.0279 (9) | −0.0005 (7) | 0.0039 (7) | 0.0067 (7) |
N3 | 0.0288 (10) | 0.0424 (11) | 0.0357 (11) | −0.0022 (8) | 0.0122 (8) | 0.0074 (9) |
O1 | 0.0323 (9) | 0.0589 (11) | 0.0496 (10) | 0.0161 (8) | 0.0135 (8) | 0.0168 (9) |
O2 | 0.0407 (10) | 0.1040 (17) | 0.0441 (11) | 0.0230 (11) | 0.0094 (9) | 0.0258 (11) |
O3 | 0.0686 (13) | 0.0642 (13) | 0.0510 (12) | 0.0086 (10) | 0.0314 (10) | −0.0046 (10) |
C1 | 0.0243 (11) | 0.0422 (13) | 0.0367 (12) | 0.0025 (9) | 0.0023 (9) | 0.0114 (10) |
C2 | 0.0292 (12) | 0.0469 (14) | 0.0478 (14) | −0.0051 (10) | 0.0093 (11) | 0.0133 (11) |
C3 | 0.0368 (12) | 0.0334 (12) | 0.0398 (13) | −0.0066 (9) | 0.0077 (10) | 0.0113 (10) |
C4 | 0.0308 (11) | 0.0282 (10) | 0.0247 (10) | 0.0002 (8) | 0.0044 (9) | 0.0040 (8) |
C5 | 0.0238 (10) | 0.0331 (11) | 0.0274 (10) | −0.0003 (8) | 0.0056 (8) | 0.0067 (9) |
C6 | 0.0337 (12) | 0.0285 (11) | 0.0370 (12) | 0.0035 (9) | 0.0042 (10) | 0.0100 (9) |
C7 | 0.0305 (11) | 0.0330 (11) | 0.0311 (11) | 0.0001 (9) | −0.0008 (9) | 0.0047 (9) |
C8 | 0.0315 (11) | 0.0254 (10) | 0.0276 (11) | −0.0008 (8) | 0.0027 (9) | 0.0071 (8) |
C9 | 0.0440 (13) | 0.0419 (13) | 0.0249 (11) | −0.0050 (10) | 0.0051 (10) | 0.0037 (9) |
C10 | 0.0441 (14) | 0.0520 (15) | 0.0334 (12) | −0.0032 (11) | 0.0181 (11) | 0.0039 (11) |
C11 | 0.0321 (12) | 0.0444 (13) | 0.0347 (12) | −0.0005 (10) | 0.0117 (10) | 0.0083 (10) |
C12 | 0.0294 (11) | 0.0279 (10) | 0.0282 (11) | 0.0004 (8) | 0.0072 (9) | 0.0052 (8) |
Co1—O1i | 2.1414 (16) | C2—H2 | 0.9300 |
Co1—O1 | 2.1414 (16) | C3—C4 | 1.386 (3) |
Co1—N1 | 2.1571 (17) | C3—H3 | 0.9300 |
Co1—N1i | 2.1571 (17) | C4—C5 | 1.378 (3) |
Co1—N2ii | 2.1907 (18) | C4—C6 | 1.505 (3) |
Co1—N2iii | 2.1907 (18) | C5—H5 | 0.9300 |
S1—C6 | 1.820 (2) | C6—H6A | 0.9700 |
S1—C7 | 1.822 (2) | C6—H6B | 0.9700 |
N1—C1 | 1.346 (3) | C7—C8 | 1.505 (3) |
N1—C5 | 1.346 (3) | C7—H7A | 0.9700 |
N2—C11 | 1.338 (3) | C7—H7B | 0.9700 |
N2—C12 | 1.345 (3) | C8—C9 | 1.384 (3) |
N2—Co1iv | 2.1907 (17) | C8—C12 | 1.392 (3) |
N3—O3 | 1.219 (3) | C9—C10 | 1.386 (3) |
N3—O2 | 1.232 (3) | C9—H9 | 0.9300 |
N3—O1 | 1.264 (2) | C10—C11 | 1.376 (3) |
C1—C2 | 1.374 (3) | C10—H10 | 0.9300 |
C1—H1 | 0.9300 | C11—H11 | 0.9300 |
C2—C3 | 1.378 (3) | C12—H12 | 0.9300 |
O1i—Co1—O1 | 180.0 | C4—C3—H3 | 120.5 |
O1i—Co1—N1 | 94.66 (7) | C5—C4—C3 | 117.63 (19) |
O1—Co1—N1 | 85.34 (7) | C5—C4—C6 | 120.95 (19) |
O1i—Co1—N1i | 85.34 (7) | C3—C4—C6 | 121.38 (19) |
O1—Co1—N1i | 94.66 (7) | N1—C5—C4 | 124.37 (19) |
N1—Co1—N1i | 180.0 | N1—C5—H5 | 117.8 |
O1i—Co1—N2ii | 88.21 (7) | C4—C5—H5 | 117.8 |
O1—Co1—N2ii | 91.79 (7) | C4—C6—S1 | 112.23 (16) |
N1—Co1—N2ii | 92.32 (6) | C4—C6—H6A | 109.2 |
N1i—Co1—N2ii | 87.68 (6) | S1—C6—H6A | 109.2 |
O1i—Co1—N2iii | 91.79 (7) | C4—C6—H6B | 109.2 |
O1—Co1—N2iii | 88.21 (7) | S1—C6—H6B | 109.2 |
N1—Co1—N2iii | 87.68 (6) | H6A—C6—H6B | 107.9 |
N1i—Co1—N2iii | 92.32 (6) | C8—C7—S1 | 113.88 (15) |
N2ii—Co1—N2iii | 180.0 | C8—C7—H7A | 108.8 |
C6—S1—C7 | 101.13 (11) | S1—C7—H7A | 108.8 |
C1—N1—C5 | 116.71 (18) | C8—C7—H7B | 108.8 |
C1—N1—Co1 | 123.98 (14) | S1—C7—H7B | 108.8 |
C5—N1—Co1 | 119.10 (13) | H7A—C7—H7B | 107.7 |
C11—N2—C12 | 116.94 (19) | C9—C8—C12 | 117.5 (2) |
C11—N2—Co1iv | 121.87 (15) | C9—C8—C7 | 124.0 (2) |
C12—N2—Co1iv | 121.15 (14) | C12—C8—C7 | 118.5 (2) |
O3—N3—O2 | 120.9 (2) | C8—C9—C10 | 118.8 (2) |
O3—N3—O1 | 119.8 (2) | C8—C9—H9 | 120.6 |
O2—N3—O1 | 119.3 (2) | C10—C9—H9 | 120.6 |
N3—O1—Co1 | 145.89 (15) | C11—C10—C9 | 119.7 (2) |
N1—C1—C2 | 122.6 (2) | C11—C10—H10 | 120.2 |
N1—C1—H1 | 118.7 | C9—C10—H10 | 120.2 |
C2—C1—H1 | 118.7 | N2—C11—C10 | 122.9 (2) |
C1—C2—C3 | 119.8 (2) | N2—C11—H11 | 118.6 |
C1—C2—H2 | 120.1 | C10—C11—H11 | 118.6 |
C3—C2—H2 | 120.1 | N2—C12—C8 | 124.2 (2) |
C2—C3—C4 | 118.9 (2) | N2—C12—H12 | 117.9 |
C2—C3—H3 | 120.5 | C8—C12—H12 | 117.9 |
O3—N3—O1—Co1 | 122.6 (3) | C7—S1—C6—C4 | 73.67 (17) |
O2—N3—O1—Co1 | −59.0 (4) | C6—S1—C7—C8 | 91.15 (17) |
C5—N1—C1—C2 | −0.2 (3) | S1—C7—C8—C9 | −82.8 (2) |
Co1—N1—C1—C2 | 174.55 (18) | S1—C7—C8—C12 | 98.0 (2) |
N1—C1—C2—C3 | −0.9 (4) | C12—C8—C9—C10 | −1.4 (3) |
C1—C2—C3—C4 | 1.0 (4) | C7—C8—C9—C10 | 179.4 (2) |
C2—C3—C4—C5 | 0.1 (3) | C8—C9—C10—C11 | 1.5 (4) |
C2—C3—C4—C6 | −177.6 (2) | C12—N2—C11—C10 | −0.5 (3) |
C1—N1—C5—C4 | 1.4 (3) | Co1iv—N2—C11—C10 | 177.10 (18) |
Co1—N1—C5—C4 | −173.66 (16) | C9—C10—C11—N2 | −0.6 (4) |
C3—C4—C5—N1 | −1.3 (3) | C11—N2—C12—C8 | 0.6 (3) |
C6—C4—C5—N1 | 176.39 (19) | Co1iv—N2—C12—C8 | −177.01 (15) |
C5—C4—C6—S1 | −95.4 (2) | C9—C8—C12—N2 | 0.4 (3) |
C3—C4—C6—S1 | 82.2 (2) | C7—C8—C12—N2 | 179.61 (19) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z+1; (iii) −x, −y+1, −z; (iv) x−1, y, z−1. |
Cg2 is the centroid of the N2/C8–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O3v | 0.93 | 2.60 | 3.466 (3) | 155 |
C5—H5···O2i | 0.93 | 2.30 | 3.171 (3) | 157 |
C9—H9···O2i | 0.93 | 2.54 | 3.373 (3) | 149 |
C11—H11···O1iii | 0.93 | 2.43 | 3.032 (3) | 122 |
C12—H12···O1iv | 0.93 | 2.53 | 3.134 (3) | 123 |
C12—H12···O2iv | 0.93 | 2.59 | 3.219 (3) | 125 |
C6—H6A···Cg2vi | 0.97 | 2.65 | 3.546 (3) | 154 |
C7—H7B···Cg2iii | 0.97 | 2.89 | 3.565 (3) | 127 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) x−1, y, z−1; (v) −x+2, −y+1, −z+1; (vi) −x, −y+2, −z. |
Funding information
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020410).
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700–5734. Web of Science CrossRef CAS PubMed
Ju, H., Lee, E., Moon, S.-H., Lee, S. S. & Park, K.-M. (2014). Bull. Korean Chem. Soc. 35, 3658–3660. Web of Science CSD CrossRef CAS
Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532–1535. Web of Science CrossRef CAS
Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477–3480. Web of Science CSD CrossRef CAS
Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834–3837. Web of Science CSD CrossRef CAS
Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764. Web of Science CrossRef CAS PubMed
Moon, B., Jeon, Y., Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, 507–509. CSD CrossRef IUCr Journals
Moon, S.-H., Kang, Y. & Park, K.-M. (2015). Acta Cryst. E71, 1287–1289. Web of Science CSD CrossRef IUCr Journals
Moon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513–1516. Web of Science CSD CrossRef IUCr Journals
Moon, S.-H., Kang, Y. & Park, K.-M. (2017). Acta Cryst. E73, 1587–1589. CSD CrossRef IUCr Journals
Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148–4154. Web of Science CSD CrossRef CAS
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Silva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774–6803. Web of Science CrossRef CAS PubMed
Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104. Web of Science CrossRef CAS PubMed
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.