research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of a two-dimensional CoII coordination polymer: poly[(μ3-3-carb­­oxy­benzoato)[μ2-5-(pyridin-4-yl)-1H,2′H-3,3′-bi[1,2,4-triazole]]cobalt(II)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Biology and Chemical Engineering, Nanyang Institute of Technology, 473004 Nanyang, Henan, People's Republic of China, bDepartment of Chemical and Chemical Engineering, Guang Xi University, 530000 Nanning, Guangxi, People's Republic of China, and cLaiwu Steel Hospital, 271126 Laiwu, Shandong, People's Republic of China
*Correspondence e-mail: hyperchem@126.com

Edited by V. Khrustalev, Russian Academy of Sciences, Russia (Received 9 August 2017; accepted 21 October 2017; online 27 October 2017)

In the title compound, [Co(C8H5O4)(C9H6N7)]n, the divalent CoII atom is six-coordinated to three N atoms from two symmetrical 5-(pyridin-4-yl)-1H,2′H-3,3′-bi[1,2,4-triazole] (H2pyttz) ligands and three O atoms from three symmetrical 3-carb­oxy­benzoate (Hbdic) ligands, leading to a distorted {CoN3O3} octa­hedral coordination environment. Two CoII cations are linked by four bridging carboxyl­ate groups to generate a dinuclear [Co2(CO2)4] unit. The dinuclear units are further connected into a chain along [010] via the Hbdic ligands. The other infinite chain, along [100], is formed through the H2pyttz ligands. Finally, the two kinds of chains are cross-linked, by sharing the CoII cations, into a two-dimensional network. In the crystal, adjacent layers are further linked by O—H⋯N hydrogen bonds into a three-dimensional framework.

1. Chemical context

In recent years, the design and synthesis of coordination polymers (CPs) or metal–organic frameworks (MOFs) have attracted great inter­est because of their fascinating architectures and potential applications in areas such as gas storage and separation, catalysis, fluorescence, magnetism, mol­ecular recognition, conductivity etc (Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]; Zhou et al., 2012[Zhou, H. C., Long, J. R. & Yaghi, O. M. (2012). Chem. Rev. 112, 673-674.]; Cavka et al., 2014[Cavka, J. H., Grande, C. A., Mondino, G. & Blom, R. (2014). Ind. Eng. Chem. Res. 53, 15500-15507.]; Zhang et al., 2014[Zhang, Z., Yao, Z.-Z., Xiang, S. C. & Chen, B. L. (2014). Energ. Environ. Sci. 7, 2868-2899.]; Huang et al., 2017[Huang, Y.-B., Liang, J., Wang, X.-S. & Cao, R. (2017). Chem. Soc. Rev. 46, 126-157.]; Nath et al., 2016[Nath, I., Chakraborty, J. & Verpoort, F. (2016). Chem. Soc. Rev. 45, 4127-4170.]; Ni et al., 2017[Ni, Z.-P., Liu, J.-L., Hoque, Md. N., Liu, W., Li, J.-Y., Chen, Y.-C. & Tong, M.-L. (2017). Chem. Rev. 335, 28-43.]; Yi et al., 2016[Yi, F.-Y., Chen, D., Wu, M.-K., Han, L. & Jiang, H.-L. (2016). ChemPlusChem, 81, 675-690.]; Sun et al., 2016[Sun, L., Campbell, M. G. & Dincă, M. (2016). Angew. Chem. Int. Ed. 55, 3566-3579.]). It is well known that organic ligands play a crucial role in the rational design and synthesis of coordination polymers (Li & Sato, 2017[Li, G.-L. & Sato, O. (2017). Acta Cryst. E73, 993-995.]; Sun & Sun, 2015[Sun, Y.-X. & Sun, W.-Y. (2015). CrystEngComm, 17, 4045-4063.]). Among the many organo­nitro­gen ligands, the rigid 5-(pyridin-4-yl)-1H,2′H-3,3′-bi(1,2,4-triazole) ligand (H2pyttz) attracted our attention for the following reasons. First, the H2pyttz ligand possesses seven potential N-donor coordination sites and can exhibit various coordination modes. Second, the uncoordinated N atoms are helpful for the construction of hydrogen bonds. The hydrogen bonds not only increase the diversity of coordination polymer structures, but also enhance their stability. With an increasing inter­est in H2pyttz organometallic systems, we report herein on the synthesis and crystal structure of the title compound [Co(C8H5O4)(C9H6N7)]n, (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] contains one independent CoII cation, one partially deprotonated Hpyttz ligand and one partial deprotonated Hbtc ligand. Notably, the deprotonated Hbtc ligand adopts two different coordination modes. The deprotonated carboxyl­ate group has a bis­(monodentate) coordination mode to bridge two CoII centers while the undeprotonated carb­oxy­lic group adopts a monodentate mode. As shown in Fig. 1[link], the CoII cation is six-coordinated to three carb­oxy­lic oxygen atoms from three symmetrical Hbtc ligands and three nitro­gen atoms from two symmetrical Hpyttz ligands in a distorted [CoN3O3] octa­hedral coordination geometry. Four bridging carboxyl­ate groups link two CoII cations to generate a dinuclear [Co2(CO2)4] unit, which is further connected into an infinite chain along the b-axis direction. There exist eight- and 16-membered metallamacrocycles in the chain structure. In the 16-membered metallamacrocycle, the dihedral angle between the two aromatic rings is 0°, indicating the parallel orientation of the two aromatic rings.

[Figure 1]
Figure 1
Coordination environment of the CoII cation in (I)[link] showing the atomic numbering scheme, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (A) 1 − x, −y, 1 − z; (B) 1 − x, 1 − y, 1 − z; (C) −1 + x, y, z.]

The other infinite linear chain is along the a-axis direction with a Co⋯Co distance of 6.5825 (5) Å and Co—Co—Co angle of 180.00° and it is also generated through the coordination between the Hpyttz ligands and the CoII cations. In the complex, the Hpyttz ligand is almost coplanar, with dihedral angles of 7.48 (4), 6.87 (4) and 4.43 (4) ° between the pyridine and the two triazole rings, respectively. Finally, these two kinds of chains are cross-linked, by sharing the CoII cations, into a two-dimensional network.

3. Supra­molecular features

In the crystal, adjacent two-dimensional networks are packed parallel to each other in an ⋯AAAA⋯ fashion (Fig. 2[link]). It should be noted that the carb­oxy­lic oxygen atom O3 and the uncoordinated nitro­gen atom N7 in adjacent networks inter­act with each other and form strong O3—H3⋯N7 hydrogen bonds (Table 1[link]), which further link the two-dimensional networks into a three-dimensional supra­molecular architecture.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N7i 0.89 (5) 1.72 (5) 2.592 (4) 166 (5)
Symmetry code: (i) x+1, y-1, z-1.
[Figure 2]
Figure 2
The three-dimensional structure of the title complex formed by the O—H⋯N hydrogen bonds (dashed lines) between adjacent networks (depicted in different colours). H atoms not involved in hydrogen bonds have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 5-(pyridin-4-yl)-1H,2′H-3,3′-bi(1,2,4-triazole) reveals five structures. Of these, there is only one CoII coordination structure (ZOTDIX; Gong et al., 2014[Gong, Y., Yang, Y. X., Zhang, P., Gao, X. L., Yin, J. L. & Lin, J. H. (2014). Dalton Trans. 43, 16928-16936.]). In this structure, the pyridyl nitro­gen atom is not coordinated to the CoII cation.

5. Synthesis and crystallization

A mixture of Co(NO3)2.6H2O (0.10 mmol), 5-(pyridin-4-yl)-1H,2′H-3,3′-bi(1,2,4-triazole) (0.10 mmol), benzene-1,3-di­carb­oxy­lic acid (0.10 mmol) and H2O (10 ml) was stirred at room temperature for 30 min. When the pH value had been adjusted to about 7.0 with 0.1 M NaOH, the mixture was sealed in a 20 ml Tefon-lined stainless-steel reactor and then heated to 433 K for 72 h under autogenous pressure, and then slowly cooled to room temperature at a rate of 5 K h−1. Pink block-shaped crystals of the title complex were isolated, washed with distilled water, and dried in air (yield 52%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms attached to C and N atoms were placed in calculated positions (C—H = 0.93 Å, N—H = 0.86 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C,N), respectively. The carboxyl H atom was located in the difference Fourier-map and refined isotropically with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [Co(C8H5O4)(C9H6N7)]
Mr 436.26
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.5825 (5), 9.0574 (12), 13.9842 (12)
α, β, γ (°) 74.214 (1), 84.690 (2), 82.303 (1)
V3) 793.69 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.13
Crystal size (mm) 0.20 × 0.18 × 0.15
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.797, 0.858
No. of measured, independent and observed [I > 2σ(I)] reflections 5565, 3507, 2338
Rint 0.055
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.113, 1.09
No. of reflections 3507
No. of parameters 265
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.59
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SMART (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg & Putz, 2006).

Poly[(µ3-3-carboxybenzoato)[µ2-5-(pyridin-4-yl)-1H,2'H-3,3'-bi[1,2,4-triazole]]cobalt(II)] top
Crystal data top
[Co(C8H5O4)(C9H6N7)]Z = 2
Mr = 436.26F(000) = 442
Triclinic, P1Dx = 1.825 Mg m3
a = 6.5825 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0574 (12) ÅCell parameters from 1163 reflections
c = 13.9842 (12) Åθ = 3.0–28.3°
α = 74.214 (1)°µ = 1.13 mm1
β = 84.690 (2)°T = 293 K
γ = 82.303 (1)°Block, pink
V = 793.69 (14) Å30.20 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
2338 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
φ and ω scansθmax = 28.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.797, Tmax = 0.858k = 1112
5565 measured reflectionsl = 1618
3507 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: mixed
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0172P)2 + 0.0319P]
where P = (Fo2 + 2Fc2)/3
3507 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.36855 (8)0.42648 (8)0.65379 (5)0.02024 (18)
N10.2335 (5)0.5770 (4)0.8362 (3)0.0196 (9)
N20.3746 (5)0.5162 (4)0.7767 (3)0.0182 (9)
N30.5482 (5)0.6182 (4)0.8697 (3)0.0210 (9)
N40.9301 (5)0.5039 (4)0.7413 (3)0.0200 (9)
H40.98320.54340.78110.024*
N51.0369 (5)0.4445 (4)0.6689 (3)0.0197 (9)
N60.7019 (5)0.4259 (4)0.6688 (3)0.0191 (9)
N70.0562 (5)0.8553 (5)1.1093 (3)0.0273 (10)
O10.3534 (4)0.3140 (4)0.5493 (2)0.0209 (7)
O20.6377 (4)0.3585 (4)0.4500 (2)0.0209 (7)
O30.8393 (5)0.0128 (4)0.2340 (3)0.0342 (10)
H30.917 (7)0.071 (6)0.200 (4)0.051*
O40.6280 (4)0.1888 (4)0.2391 (2)0.0257 (8)
C10.5576 (6)0.5438 (5)0.7995 (3)0.0180 (10)
C20.3424 (6)0.6368 (5)0.8906 (3)0.0199 (10)
C30.7332 (6)0.4911 (5)0.7405 (3)0.0173 (10)
C40.8918 (6)0.3997 (5)0.6277 (3)0.0206 (11)
H4A0.91830.35420.57510.025*
C50.0515 (6)0.7829 (6)1.0630 (4)0.0280 (12)
H50.19090.77931.08070.034*
C60.0347 (6)0.7140 (6)0.9909 (4)0.0282 (12)
H60.04610.66620.95980.034*
C70.2431 (6)0.7154 (5)0.9641 (3)0.0209 (10)
C80.3536 (6)0.7892 (6)1.0130 (4)0.0297 (12)
H80.49380.79230.99770.036*
C90.2573 (7)0.8578 (6)1.0842 (4)0.0300 (13)
H90.33420.90751.11590.036*
C100.4755 (6)0.2952 (5)0.4773 (3)0.0186 (10)
C110.6668 (6)0.0715 (6)0.2607 (3)0.0213 (10)
C120.4189 (6)0.1867 (5)0.4224 (3)0.0173 (10)
C130.5649 (6)0.1212 (5)0.3625 (3)0.0191 (10)
H130.69730.14990.35230.023*
C140.5117 (6)0.0126 (5)0.3179 (3)0.0198 (10)
C150.3112 (6)0.0227 (5)0.3286 (3)0.0235 (11)
H150.27610.09460.29820.028*
C160.1631 (6)0.0470 (6)0.3834 (4)0.0285 (12)
H160.02760.02570.38800.034*
C170.2189 (6)0.1497 (6)0.4316 (3)0.0239 (11)
H170.12060.19430.47060.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0155 (3)0.0282 (4)0.0212 (4)0.0045 (3)0.0037 (2)0.0142 (3)
N10.0152 (18)0.027 (2)0.019 (2)0.0025 (16)0.0041 (15)0.0124 (19)
N20.0152 (17)0.022 (2)0.019 (2)0.0014 (16)0.0029 (15)0.0101 (19)
N30.0155 (18)0.028 (2)0.023 (2)0.0047 (16)0.0039 (15)0.0132 (19)
N40.0158 (18)0.030 (2)0.019 (2)0.0041 (16)0.0025 (15)0.0150 (19)
N50.0120 (17)0.024 (2)0.025 (2)0.0028 (16)0.0053 (15)0.0112 (19)
N60.0159 (17)0.027 (2)0.019 (2)0.0039 (16)0.0009 (15)0.0129 (19)
N70.031 (2)0.029 (3)0.025 (2)0.0022 (19)0.0044 (18)0.016 (2)
O10.0245 (16)0.0234 (19)0.0183 (18)0.0064 (14)0.0066 (13)0.0120 (15)
O20.0201 (15)0.0205 (18)0.0247 (19)0.0065 (13)0.0016 (13)0.0096 (16)
O30.0267 (18)0.041 (2)0.043 (2)0.0092 (17)0.0161 (16)0.029 (2)
O40.0300 (17)0.026 (2)0.026 (2)0.0057 (15)0.0039 (14)0.0147 (17)
C10.018 (2)0.022 (3)0.016 (2)0.0021 (19)0.0014 (17)0.008 (2)
C20.019 (2)0.025 (3)0.018 (3)0.006 (2)0.0003 (18)0.010 (2)
C30.015 (2)0.020 (3)0.018 (2)0.0010 (18)0.0004 (17)0.008 (2)
C40.017 (2)0.022 (3)0.026 (3)0.000 (2)0.0024 (19)0.014 (2)
C50.020 (2)0.038 (3)0.027 (3)0.004 (2)0.010 (2)0.015 (3)
C60.021 (2)0.042 (3)0.027 (3)0.003 (2)0.006 (2)0.021 (3)
C70.025 (2)0.023 (3)0.017 (3)0.001 (2)0.0010 (19)0.011 (2)
C80.017 (2)0.044 (3)0.034 (3)0.004 (2)0.003 (2)0.022 (3)
C90.031 (3)0.037 (3)0.032 (3)0.009 (2)0.002 (2)0.024 (3)
C100.016 (2)0.016 (3)0.023 (3)0.0015 (19)0.0000 (18)0.004 (2)
C110.022 (2)0.026 (3)0.016 (3)0.001 (2)0.0006 (18)0.007 (2)
C120.019 (2)0.023 (3)0.013 (2)0.0060 (19)0.0008 (17)0.010 (2)
C130.016 (2)0.025 (3)0.019 (3)0.0109 (19)0.0068 (17)0.009 (2)
C140.025 (2)0.019 (3)0.017 (2)0.004 (2)0.0040 (18)0.008 (2)
C150.024 (2)0.026 (3)0.026 (3)0.008 (2)0.002 (2)0.016 (2)
C160.021 (2)0.038 (3)0.033 (3)0.007 (2)0.003 (2)0.019 (3)
C170.025 (2)0.027 (3)0.022 (3)0.002 (2)0.0048 (19)0.013 (2)
Geometric parameters (Å, º) top
Co1—O12.012 (3)O4—C111.244 (5)
Co1—O2i2.086 (3)O4—Co1iii2.262 (4)
Co1—N22.097 (3)C1—C31.461 (5)
Co1—N5ii2.162 (3)C2—C71.463 (5)
Co1—N62.223 (3)C4—H4A0.9300
Co1—O4iii2.262 (4)C5—C61.368 (5)
N1—C21.347 (5)C5—H50.9300
N1—N21.352 (4)C6—C71.389 (6)
N2—C11.345 (5)C6—H60.9300
N3—C11.327 (5)C7—C81.384 (6)
N3—C21.357 (5)C8—C91.377 (6)
N4—C31.318 (5)C8—H80.9300
N4—N51.368 (4)C9—H90.9300
N4—H40.8600C10—C121.502 (5)
N5—C41.320 (5)C11—C141.495 (5)
N5—Co1iv2.162 (3)C12—C171.387 (6)
N6—C31.338 (5)C12—C131.395 (5)
N6—C41.345 (5)C13—C141.394 (5)
N7—C51.339 (5)C13—H130.9300
N7—C91.339 (5)C14—C151.385 (5)
O1—C101.262 (5)C15—C161.377 (5)
O2—C101.258 (5)C15—H150.9300
O2—Co1i2.086 (3)C16—C171.391 (6)
O3—C111.299 (5)C16—H160.9300
O3—H30.89 (5)C17—H170.9300
O1—Co1—O2i93.18 (12)N5—C4—N6113.9 (4)
O1—Co1—N2172.28 (15)N5—C4—H4A123.1
O2i—Co1—N294.31 (13)N6—C4—H4A123.1
O1—Co1—N5ii87.27 (12)N7—C5—C6122.8 (4)
O2i—Co1—N5ii91.64 (13)N7—C5—H5118.6
N2—Co1—N5ii90.64 (12)C6—C5—H5118.6
O1—Co1—N6105.23 (11)C5—C6—C7119.9 (4)
O2i—Co1—N690.18 (13)C5—C6—H6120.1
N2—Co1—N676.64 (12)C7—C6—H6120.1
N5ii—Co1—N6167.25 (12)C8—C7—C6116.9 (4)
O1—Co1—O4iii84.32 (12)C8—C7—C2121.6 (4)
O2i—Co1—O4iii177.47 (11)C6—C7—C2121.4 (4)
N2—Co1—O4iii88.17 (13)C9—C8—C7120.4 (4)
N5ii—Co1—O4iii87.82 (13)C9—C8—H8119.8
N6—Co1—O4iii90.88 (13)C7—C8—H8119.8
C2—N1—N2105.2 (3)N7—C9—C8122.0 (4)
C1—N2—N1105.6 (3)N7—C9—H9119.0
C1—N2—Co1117.7 (3)C8—C9—H9119.0
N1—N2—Co1136.0 (2)O2—C10—O1125.2 (4)
C1—N3—C2100.7 (3)O2—C10—C12119.0 (4)
C3—N4—N5109.5 (3)O1—C10—C12115.8 (4)
C3—N4—H4125.2O4—C11—O3123.0 (4)
N5—N4—H4125.2O4—C11—C14121.0 (4)
C4—N5—N4103.0 (3)O3—C11—C14116.1 (4)
C4—N5—Co1iv135.8 (3)C17—C12—C13119.2 (4)
N4—N5—Co1iv121.0 (2)C17—C12—C10119.8 (4)
C3—N6—C4103.5 (3)C13—C12—C10121.0 (4)
C3—N6—Co1111.1 (2)C14—C13—C12119.8 (4)
C4—N6—Co1144.9 (3)C14—C13—H13120.1
C5—N7—C9118.1 (4)C12—C13—H13120.1
C10—O1—Co1132.1 (3)C15—C14—C13119.8 (4)
C10—O2—Co1i120.5 (3)C15—C14—C11118.3 (4)
C11—O3—H3108 (3)C13—C14—C11121.9 (4)
C11—O4—Co1iii124.8 (3)C16—C15—C14120.9 (4)
N3—C1—N2114.7 (3)C16—C15—H15119.5
N3—C1—C3130.7 (4)C14—C15—H15119.5
N2—C1—C3114.6 (3)C15—C16—C17119.1 (4)
N1—C2—N3113.8 (3)C15—C16—H16120.5
N1—C2—C7121.9 (4)C17—C16—H16120.5
N3—C2—C7124.3 (4)C12—C17—C16121.1 (4)
N4—C3—N6110.1 (3)C12—C17—H17119.5
N4—C3—C1130.3 (4)C16—C17—H17119.5
N6—C3—C1119.5 (3)
C2—N1—N2—C10.1 (5)N1—C2—C7—C8173.9 (5)
C2—N1—N2—Co1169.6 (4)N3—C2—C7—C85.4 (8)
C3—N4—N5—C40.5 (5)N1—C2—C7—C68.8 (7)
C3—N4—N5—Co1iv174.9 (3)N3—C2—C7—C6171.9 (5)
C2—N3—C1—N20.1 (5)C6—C7—C8—C90.4 (8)
C2—N3—C1—C3177.7 (5)C2—C7—C8—C9177.8 (5)
N1—N2—C1—N30.1 (5)C5—N7—C9—C80.2 (8)
Co1—N2—C1—N3171.9 (3)C7—C8—C9—N70.5 (8)
N1—N2—C1—C3178.1 (4)Co1i—O2—C10—O188.9 (5)
Co1—N2—C1—C36.3 (5)Co1i—O2—C10—C1291.8 (4)
N2—N1—C2—N30.0 (5)Co1—O1—C10—O26.3 (7)
N2—N1—C2—C7179.3 (4)Co1—O1—C10—C12173.1 (3)
C1—N3—C2—N10.1 (5)Co1iii—O4—C11—O3104.3 (5)
C1—N3—C2—C7179.3 (5)Co1iii—O4—C11—C1477.2 (5)
N5—N4—C3—N60.6 (5)O2—C10—C12—C17162.0 (4)
N5—N4—C3—C1176.6 (5)O1—C10—C12—C1718.6 (6)
C4—N6—C3—N40.4 (5)O2—C10—C12—C1318.4 (7)
Co1—N6—C3—N4173.6 (3)O1—C10—C12—C13161.0 (4)
C4—N6—C3—C1177.0 (4)C17—C12—C13—C144.1 (7)
Co1—N6—C3—C13.0 (5)C10—C12—C13—C14175.5 (4)
N3—C1—C3—N40.2 (9)C12—C13—C14—C153.9 (7)
N2—C1—C3—N4177.7 (5)C12—C13—C14—C11174.3 (4)
N3—C1—C3—N6175.9 (5)O4—C11—C14—C1513.1 (7)
N2—C1—C3—N61.9 (6)O3—C11—C14—C15165.5 (4)
N4—N5—C4—N60.2 (5)O4—C11—C14—C13165.1 (5)
Co1iv—N5—C4—N6174.1 (3)O3—C11—C14—C1316.3 (7)
C3—N6—C4—N50.1 (5)C13—C14—C15—C160.6 (7)
Co1—N6—C4—N5170.1 (4)C11—C14—C15—C16177.7 (4)
C9—N7—C5—C60.9 (8)C14—C15—C16—C172.5 (7)
N7—C5—C6—C71.0 (8)C13—C12—C17—C161.0 (7)
C5—C6—C7—C80.3 (7)C10—C12—C17—C16178.6 (5)
C5—C6—C7—C2177.1 (5)C15—C16—C17—C122.3 (8)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N7v0.89 (5)1.72 (5)2.592 (4)166 (5)
Symmetry code: (v) x+1, y1, z1.
 

Funding information

We acknowledge financial support from Henan Province Project Education Fund (17 A430027).

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCavka, J. H., Grande, C. A., Mondino, G. & Blom, R. (2014). Ind. Eng. Chem. Res. 53, 15500–15507.  Web of Science CrossRef CAS
First citationGong, Y., Yang, Y. X., Zhang, P., Gao, X. L., Yin, J. L. & Lin, J. H. (2014). Dalton Trans. 43, 16928–16936.  CSD CrossRef CAS PubMed
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHuang, Y.-B., Liang, J., Wang, X.-S. & Cao, R. (2017). Chem. Soc. Rev. 46, 126–157.  CrossRef CAS PubMed
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS
First citationLi, G.-L. & Sato, O. (2017). Acta Cryst. E73, 993–995.  CSD CrossRef IUCr Journals
First citationNath, I., Chakraborty, J. & Verpoort, F. (2016). Chem. Soc. Rev. 45, 4127–4170.  CrossRef CAS PubMed
First citationNi, Z.-P., Liu, J.-L., Hoque, Md. N., Liu, W., Li, J.-Y., Chen, Y.-C. & Tong, M.-L. (2017). Chem. Rev. 335, 28–43.  CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSun, L., Campbell, M. G. & Dincă, M. (2016). Angew. Chem. Int. Ed. 55, 3566–3579.  CrossRef CAS
First citationSun, Y.-X. & Sun, W.-Y. (2015). CrystEngComm, 17, 4045–4063.  CrossRef CAS
First citationYi, F.-Y., Chen, D., Wu, M.-K., Han, L. & Jiang, H.-L. (2016). ChemPlusChem, 81, 675–690.  CrossRef CAS
First citationZhang, Z., Yao, Z.-Z., Xiang, S. C. & Chen, B. L. (2014). Energ. Environ. Sci. 7, 2868–2899.  CrossRef CAS
First citationZhou, H. C., Long, J. R. & Yaghi, O. M. (2012). Chem. Rev. 112, 673–674.  Web of Science CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds