research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­iso­butyl­thiuram di­sulfide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA, and bDepartment of Chemistry, SUNY Stony Brook, 100 Nicolls Road, Stony Brook, New York 11790-3400, USA
*Correspondence e-mail: donahue@tulane.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 29 August 2017; accepted 17 October 2017; online 24 October 2017)

Tetra­kis(2-methyl­prop­yl)thio­per­oxy­dicarbonic di­amide, or tetra­iso­butyl­thiuram di­sulfide, C18H36N2S4, crystallizes in a general position in the triclinic space group P-1 but shows pseudo-C2 symmetry about the di­sulfide bond. The C—S—S—C torsion angle [−85.81 (2)°] and the dihedral angle between the two NCS2 mean planes [85.91 (5)°] are within the range observed for this compound type. Multiple intra- and inter­molecular S⋯H—C close contacts appear to play a role in assisting the specific conformation of the pendant isobutyl groups and the packing arrangement of mol­ecules within the cell. Tetra­iso­butyl­thiuram di­sulfide mol­ecules of one optical configuration form sheets in the plane of the a and b axes. Inversion centers exist between adjoining sheets, which stack along the c axis and alternate in the handedness of their constituent mol­ecules.

1. Chemical context

N,N,N′,N′-Tetra­alkyl­thio­per­oxy­dicarbonic di­amides, com­mon­ly called tetra­thiuram di­sulfides, comprise a class of organosulfur compounds with applications that are both diverse and long-standing. Tetra­methyl­thiuram di­sulfide, known by the commercial name thiram, is broadly useful both as a fungicide (Sharma et al., 2003[Sharma, V. K., Aulakh, J. S. & Malik, A. K. (2003). J. Environ. Monit. 5, 717-723.]) and as a repellent against animals that feed upon seedling trees (Radwan, 1969[Radwan, M. A. (1969). Forest Sci. 15, 439-445.]). In industry, thiram and related tetra­alkyl­thiuram di­sulfides find application as vulcanizing agents in the production of synthetic rubber (Datta & Ingham, 2001[Datta, R. N. & Ingham, F. A. A. (2001). Rubber Additives - Compounding Ingredients. In Rubber Technologist's Handbook, edited by S. K. De & J. R. White, pp. 167-208. Shrewsbury, UK: Rapra Technology, Ltd.]; Ignatz-Hoover & To, 2016[Ignatz-Hoover, F. & To, B. H. (2016). Vulcanization. In Rubber Compounding: Chemistry and Applications, edited by B. Rodgers, ch. 11, pp. 461-522. Boca Raton, FL: CRC Press.]). Tetra­ethyl­thiuram di­sulfide, under the trade name disulfiram, is used for the treatment of chronic alcoholism because of its inhibitory effect upon liver alcohol de­hydrogenase (Mutschler et al., 2016[Mutschler, J., Grosshans, M., Soyka, M. & Rösner, S. (2016). Pharmacopsychiatry, 49, 137-141.]). More recently, it has received scrutiny for its ability to sensitize cancer cells to radiotherapy and to the effects of anti­cancer drugs (Jiao et al., 2016[Jiao, Y., Hannafon, B. N. & Ding, W.-Q. (2016). Anticancer Agents Med. Chem. 16, 1378-1384.]) as well as for its bactericidal action against drug-resistant Mycobacterium tuberculosis (Horita et al., 2012[Horita, Y., Takii, T., Yagi, T., Ogawa, K., Fujiwara, N., Inagaki, E., Kremer, L., Sato, Y., Kuroishi, R., Lee, Y., Makino, T., Mizukami, H., Hasegawa, T., Yamamoto, R. & Onozaki, K. (2012). Antimicrob. Agents Chemother. 56, 4140-4145.]). Tetra­alkyl­thiuram di­sulfides function both as chelating ligands themselves (Chieh, 1977[Chieh, C. (1977). Can. J. Chem. 55, 1115-1119.]; Chieh, 1978[Chieh, C. (1978). Can. J. Chem. 56, 974-975.]; Thirumaran et al., 2000[Thirumaran, S., Ramalingam, K., Bocelli, G. & Cantoni, A. (2000). Polyhedron, 19, 1279-1282.]; Saravanan et al., 2005[Saravanan, M., Prakasam, B. A., Ramalingam, K., Bocelli, G. & Cantoni, A. (2005). Z. Anorg. Allg. Chem. 631, 1688-1692.]; Prakasam et al., 2009[Prakasam, B. A., Ramalingam, K., Bocelli, G. & Cantoni, A. (2009). Phosphorus Sulfur Silicon, 184, 2020-2033.]) and as precursors to di­thio­carbamate ligands, which are used in the coordination chemistry of both the transition metals (Hogarth, 2005[Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.]) and main group elements (Heard, 2005[Heard, P. J. (2005). Prog. Inorg. Chem. 53, 1-70.]).

In the course of some studies of diiso­butyl­dithio­carbamate coordination complexes of molybdenum, we have noted a report describing an 1H NMR spectrum of [Ni(S2CNiBu2)2] that was more complex than anti­cipated, even considering the hindered rotation about the S2–CNiBu2 bond (Raston & White, 1976[Raston, C. L. & White, A. H. (1976). Aust. J. Chem. 29, 523-529.]). This complexity was attributed to intra­ligand S⋯H inter­actions involving the tertiary hydrogen of the isobutyl group. Although the room temperature 1H NMR spectrum of N,N,N′,N′- tetra­kis­(2-methyl­prop­yl)thio­per­oxy­dicarbonic di­amide (tetra­iso­butyl­thiuram di­sulfide) itself does not show evidence of such intra­molecular inter­action, several recent studies of tetra­thiuram di­sulfides have suggested such inter­actions in the crystalline state (Raya et al., 2005[Raya, I., Baba, I., Rosli, F. Z. & Yamin, B. M. (2005). Acta Cryst. E61, o3131-o3132.]; Srinivasan et al., 2012[Srinivasan, N., Thirumaran, S. & Selvanayagam, S. (2012). Acta Cryst. E68, o3446.]; Nath et al., 2016[Nath, P., Bharty, M. K., Maiti, B., Bharti, B., Butcher, R. J., Wikaira, J. L. & Singh, N. K. (2016). RSC Adv. 6, 93867-93880.]). This possibility of similar weak inter­action(s) in the crystal structure of tetra­iso­butyl­thiuram di­sulfide has motivated a determination of its structure by X-ray diffraction, reported herein.

[Scheme 1]

2. Structural commentary

Tetra­iso­butyl­thiuram di­sulfide crystallizes upon a general position in P[\overline{1}] but has pseudo-C2 symmetry across the di­sulfide bond, strict C2 symmetry being disrupted by conformational differences among the pendant isobutyl groups (Fig. 1[link]a). Despite the lack of strict C2 symmetry, tetra­iso­butyl­thiuram di­sulfide is nevertheless chiral. The image in Fig. 1[link]a presents the mol­ecule with a left-handed configuration to the core –H2CNC(S)S–SC(S)NCH2– portion. If Fig. 1[link]a were to be viewed from above, along the pseudo C2 axis that bis­ects the S3—S4 bond, the C1—S1 and C2—S2 thione bonds would project forward and backward, respectively, from the plane of the paper and thereby define a left-handed propeller. The right-handed counterpart is necessarily the other occupant of the unit cell, as required by the racemic space group. Among the structurally characterized thiuram di­sulfides, crystallographically imposed C2 symmetry is also common (Fig. 3[link]).

[Figure 1]
Figure 1
(a) Displacement ellipsoid plot (50%) of tetra­iso­butyl­thiuram di­sulfide with complete labeling for the non-H atoms. (b) Displacement ellipsoid plot (50% probability) of tetra­iso­butyl­thiuram di­sulfide illustrating close intra­molecular S⋯H—C contacts (dashed lines).
[Figure 3]
Figure 3
Summary of structurally characterized tetra­thiuram di­sulfides, RR'NC(S)SSC(S)NRR'.

The S3—S4 bond length is 1.9931 (10) Å, while the thione C=S bonds are essentially identical at 1.642 (3) and 1.643 (3) Å. The C1—S3—S4—C2 torsion angle, τ, is −85.81 (2)° and, as is typical of tetra­thiuram di­sulfides, very similar in magnitude to the angle of 85.91 (5)° between the mean planes defined by the S2CN fragments, θ.

Multiple intra­molecular S⋯H–C contacts that are shorter than, or close to, the 2.92 Å sum of the van der Waals radii (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]) for sulfur and hydrogen are calculated for the structure of tetra­iso­butyl­thiuram di­sulfide. Each of the four sulfur atoms on the mol­ecule is a participant in such a close contact, as illustrated in Fig. 1[link]b and shown in Table 1[link]. Although weak individually, particularly since these D—H⋯A angles are closer to 90° than to 180° (Table 1[link]), these inter­actions may act cooperatively with packing forces to decide the specific mol­ecular conformation that is adopted. Weak inter­molecular S⋯H—C contacts are also calculated for mol­ecules that stack along the a axis of the cell (Fig. 2[link]). While angles for these contacts are larger (145.6, 159.5°), the DA separations are longer [3.834 (3), 3.810 (3) Å]. The geometric parameters for both these intra­molecular and inter­molecular S⋯C–H contacts fall within the range defined as consistent with a weak D—H⋯A inter­action (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]). These features of the mol­ecular packing in the crystal structure of tetra­iso­butyl­thiuram di­sulfide suggest that the crystal structures of coordination complexes with the diiso­butyl­dithio­carbamate ligand be considered for similar S⋯H—C contacts and, importantly, that variable temperature 1H NMR spectroscopy be used to assess the importance of any such inter­actions in solution.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯S3 0.99 2.34 2.907 (3) 115
C7—H7A⋯S1 0.99 2.60 3.084 (3) 110
C8—H8⋯S1i 1.00 2.97 3.834 (3) 146
C11—H11A⋯S4 0.99 2.33 2.896 (3) 115
C11—H11B⋯S2ii 0.99 2.87 3.810 (3) 160
C16—H16⋯S2 1.00 2.91 3.473 (3) 117
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.
[Figure 2]
Figure 2
Stacking of tetra­iso­butyl­thiuram di­sulfide mol­ecules along the a axis of the unit cell, showing inter­molecular S⋯H—C close contacts. Displacement ellipsoids are represented at the 50% probability level. Parallel stacks fill in the ab plane to form two-dimensional sheets, as shown. (Symmetry operations: x + 1, y, z; x, y + 1, z.)

3. Supra­molecular features

Mol­ecules of tetra­iso­butyl­thiuram di­sulfide are linked by C—H⋯S hydrogen bonds (Table 1[link]) to form linear chains directed along the a axis of the cell, and parallel chains then align within the ab plane to form sheets (Fig. 2[link]). Because the mol­ecules within a single sheet are related, one from another, only by translations along a or b, they all have the same optical configuration. The sheets in the ab plane then stack along the c axis of the cell. The cell's inversion center resides within the center of the cell and relates mol­ecules from neighboring sheets. Consequently, the sheets alternate in the handedness of the mol­ecules from which they are comprised.

4. Database survey

Values for τ and θ for structures in the Cambridge Structural Database (Web CSD v1.1.1; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) were determined using Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). These structures are: METHUS (Marøy, 1965[Marøy, K. (1965). Acta Chem. Scand. 19, 1509.]), METHUS01 (Ymén, 1983[Ymén, I. (1983). Acta Chem. Scand. B, 37, 707-713.]), METHUS02 (Wang et al., 1986[Wang, Y., Liao, J.-H. & Ueng, C.-H. (1986). Acta Cryst. C42, 1420-1423.]), METHUS03 (Wang & Liao, 1989[Wang, Y. & Liao, J. H. (1989). Acta Cryst. B45, 65-69.]), METHUS04 (Wang & Liao, 1989[Wang, Y. & Liao, J. H. (1989). Acta Cryst. B45, 65-69.]), ETHUSS (Karle et al., 1967[Karle, I. L., Estlin, J. A. & Britts, K. (1967). Acta Cryst. 22, 273-280.]) ETHUSS01 (Wang et al., 1986[Wang, Y., Liao, J.-H. & Ueng, C.-H. (1986). Acta Cryst. C42, 1420-1423.]), ETHUSS02 (Wang & Liao, 1989[Wang, Y. & Liao, J. H. (1989). Acta Cryst. B45, 65-69.]), ETHUSS03 (Wang & Liao, 1989[Wang, Y. & Liao, J. H. (1989). Acta Cryst. B45, 65-69.]), ETHUSS04 (Shi & Wang, 1992[Shi, B. & Wang, J. (1992). Xiamen Daxue Xuebao, Ziran Kexueban 31, 176-181.]), ETHUSS05 (Hu, 2000[Hu, S.-Z. (2000). Chin. J. Struct. Chem. 19, 234-238.]), HIQJUM (Jian et al., 1999[Jian, F., Jiang, L., Fun, H.-K., Chinnakali, K., Razak, I. A. & You, X. (1999). Acta Cryst. C55, 573-574.]), HIQJUM01 (Yu & Wang, 2003[Yu, B. & Wang, J.-L. (2003). Qingdao Keji Daxue Xuebao, Ziran Kexueban 24, 394-397.]), JECYAZ (Kumar et al., 1990[Kumar, V., Aravamudan, G. & Seshasayee, M. (1990). Acta Cryst. C46, 674-676.]), TIBFEQ (Zhai et al., 2007[Zhai, J., Yin, H.-D., Li, F., Chen, S.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, o1969-o1970.]), ZEMPUC (Hall & Tiekink, 1995[Hall, V. J. & Tiekink, E. R. T. (1995). Z. Kristallogr. 210, 701-702.]), KAZHEA (Karim et al., 2012[Karim, Md. M., Abser, Md. M., Hassan, M. R., Ghosh, N., Alt, H. G., Richards, I. & Hogarth, G. (2012). Polyhedron, 42, 84-88.]), NELTUT (Fun et al., 2001[Fun, H.-K., Chantrapromma, S., Razak, I. A., Bei, F.-L., Jian, F.-F., Yang, X.-J., Lu, L. & Wang, X. (2001). Acta Cryst. E57, o717-o718.]), XEBJOF (Ajibade et al., 2012[Ajibade, P. A., Ejelonu, B. C. & Omondi, B. (2012). Acta Cryst. E68, o2182.]), JAXPOO (Raya et al., 2005[Raya, I., Baba, I., Rosli, F. Z. & Yamin, B. M. (2005). Acta Cryst. E61, o3131-o3132.]), CAPLEK (Williams et al., 1983[Williams, G. A., Statham, J. R. & White, A. H. (1983). Aust. J. Chem. 36, 1371-1377.]), CAPLEK01 (Ymén, 1983[Ymén, I. (1983). Acta Chem. Scand. B, 37, 707-713.]), CAPLEK02 (Yamin et al., 1996[Yamin, B. M., Suwandi, S. A., Fun, H.-K., Sivakumar, K. & Shawkataly, O. B. (1996). Acta Cryst. C52, 951-953.]), CAPLEK03 (Bai et al., 2010[Bai, F. Y., Li, X. T., Zhu, G. S. & Xing, Y. H. (2010). Spectrochim. Acta Part A, 75, 1388-1393.]), RISNEN (Quan et al., 2008[Quan, L., Yin, H., Zhai, J. & Wang, D. (2008). Acta Cryst. E64, m108.]), ULOXIC (Bodige & Watson, 2003[Bodige, S. G. & Watson, W. H. (2003). Private communication (refcode: ULOXIC). CCDC, Cambridge, England.]), PIPTHS (Dix & Rae, 1973[Dix, M. F. & Rae, A. D. (1973). Cryst. Struct. Commun. 2, 159-162.]), PIPTHS01 (Shi & Wang, 1992[Shi, B. & Wang, J. (1992). Xiamen Daxue Xuebao, Ziran Kexueban 31, 176-181.]), EWESUW (Nath et al., 2016[Nath, P., Bharty, M. K., Maiti, B., Bharti, B., Butcher, R. J., Wikaira, J. L. & Singh, N. K. (2016). RSC Adv. 6, 93867-93880.]), BOMPAU (Rout et al., 1982[Rout, G. C., Seshasayee, M. & Aravamudan, G. (1982). Cryst. Struct. Commun. 11, 1389-1393.]), VOHFIH (Polyakova & Starikova, 1990[Polyakova, I. N. & Starikova, Z. A. (1990). Zh. Strukt. Khim. 31, 148-152.]), VOHFIH01 (Ivanov et al., 2003[Ivanov, A. V., Zinkin, S. A., Forzling, W., Antzutkin, O. N. & Kritikos, M. (2003). Koord. Khim. 29, 151-160.]), PECWOL (Uludağ et al., 2013[Uludağ, N., Ateş, M., Çaylak Delibaş, N., Çelik, Ö. & Hökelek, T. (2013). Acta Cryst. E69, o771.]), ZIJLOV (Srinivasan et al., 2012[Srinivasan, N., Thirumaran, S. & Selvanayagam, S. (2012). Acta Cryst. E68, o3446.]) and MEMFUG (Sączewski et al., 2006[Sączewski, J., Frontera, A., Gdaniec, M., Brzozowski, Z., Sączewski, F., Tabin, P., Quiñonero, D. & Deyà, P. M. (2006). Chem. Phys. Lett. 422, 234-239.]).

The C—S—S—C torsion angle (τ) and the dihedral angle (θ) between S2CN mean planes are closely comparable to values observed for the analogous features in most other tetra­thiuram di­sulfides, as summarized in Fig. 3[link]. Positive and negative values of τ occur with approximately equal frequency for tetra­thium di­sulfides that have been characterized structurally by X-ray diffraction (Fig. 3[link]). For those which do not reside on an inversion center (Kumar et al., 1990[Kumar, V., Aravamudan, G. & Seshasayee, M. (1990). Acta Cryst. C46, 674-676.]; Sączewski et al., 2006[Sączewski, J., Frontera, A., Gdaniec, M., Brzozowski, Z., Sączewski, F., Tabin, P., Quiñonero, D. & Deyà, P. M. (2006). Chem. Phys. Lett. 422, 234-239.]) or have conformations obviously perturbed by inter­molecular inter­actions involving the pendant groups on nitro­gen (Srinivasan et al., 2012[Srinivasan, N., Thirumaran, S. & Selvanayagam, S. (2012). Acta Cryst. E68, o3446.]), the average of the absolute value of τ is 88.4°, and the range is 78.0–99.0°. Similarly, the average value of θ is 86.1°, with a range of 79.0–90.0°.

5. Synthesis and crystallization

The synthesis procedure employed was that described by Kapanda et al., 2009[Kapanda, C. N., Muccioli, C. G., Labar, G., Poupaert, J. H. & Lambert, D. M. (2009). J. Med. Chem. 52, 7310-7314.]. Pale-yellow block-shaped crystals of tetra­iso­butyl­thiuram di­sulfide (m.p. 343 K) were obtained by slow evaporation of a CH2Cl2 solution. 1H NMR (δ, ppm in DMSO-d6): 3.83 [d, J = 12 Hz, 8H, –CH2CH(CH3)2], 2.39 [br m, 4H, –CH2CH(CH3)2], 0.98 [d, J = 8 Hz, 12H, –CH2CH(CH3)2], 0.87 [d, J = 8 Hz, 12H, –CH2CH(CH3)2].

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were added in calculated positions and refined with isotropic displacement parameters that were approximately 1.2 times (for –CH– and –CH2) or 1.5 times (for –CH3) those of the carbon atoms to which they were attached. The C—H distances assumed were 1.00, 0.99, and 0.98 Å for the –CH–, –CH2, and –CH3 types of hydrogen atoms, respectively.

Table 2
Experimental details

Crystal data
Chemical formula C18H36N2S4
Mr 408.73
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.2449 (11), 9.6102 (14), 17.196 (3)
α, β, γ (°) 98.580 (2), 94.540 (2), 103.409 (2)
V3) 1143.5 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.17 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.])
Tmin, Tmax 0.745, 0.977
No. of measured, independent and observed [I > 2σ(I)] reflections 17180, 4168, 3161
Rint 0.057
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.146, 1.07
No. of reflections 4168
No. of parameters 225
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.87, −0.35
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N,N,N',N'-Tetrakis(2-methylpropyl)disulfane-1,2-dicarbothioamide top
Crystal data top
C18H36N2S4Z = 2
Mr = 408.73F(000) = 444
Triclinic, P1Dx = 1.187 Mg m3
a = 7.2449 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6102 (14) ÅCell parameters from 4848 reflections
c = 17.196 (3) Åθ = 2.2–25.2°
α = 98.580 (2)°µ = 0.42 mm1
β = 94.540 (2)°T = 100 K
γ = 103.409 (2)°Block, pale yellow
V = 1143.5 (3) Å30.17 × 0.12 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
4168 independent reflections
Radiation source: fine-focus sealed tube3161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 8.3333 pixels mm-1θmax = 25.4°, θmin = 2.2°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1111
Tmin = 0.745, Tmax = 0.977l = 2020
17180 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0883P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4168 reflectionsΔρmax = 0.87 e Å3
225 parametersΔρmin = 0.35 e Å3
0 restraints
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 60 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11097 (10)0.22088 (8)0.72835 (4)0.0265 (2)
S20.35046 (10)0.62092 (8)0.68215 (4)0.0268 (2)
S30.37169 (10)0.47724 (7)0.84025 (4)0.0250 (2)
S40.13548 (10)0.54581 (8)0.82084 (4)0.0253 (2)
N10.4760 (3)0.2440 (2)0.77920 (12)0.0177 (5)
N20.0291 (3)0.6939 (2)0.71490 (12)0.0184 (5)
C10.3217 (4)0.2980 (3)0.77839 (15)0.0195 (6)
C20.1689 (4)0.6296 (3)0.73258 (16)0.0208 (6)
C30.6574 (4)0.3090 (3)0.83096 (15)0.0195 (6)
H3A0.66410.41250.85060.023*
H3B0.76500.30520.79930.023*
C40.6811 (4)0.2335 (3)0.90154 (15)0.0253 (6)
H40.65670.12700.88130.030*
C50.8874 (4)0.2875 (4)0.94048 (18)0.0375 (8)
H5A0.91550.39240.95970.056*
H5B0.97400.26740.90170.056*
H5C0.90520.23750.98510.056*
C60.5418 (5)0.2552 (4)0.96030 (17)0.0384 (8)
H6A0.57220.35760.98540.058*
H6B0.55110.19481.00090.058*
H6C0.41150.22730.93280.058*
C70.4768 (4)0.1089 (3)0.72601 (15)0.0215 (6)
H7A0.34330.05280.70850.026*
H7B0.54110.04910.75560.026*
C80.5774 (4)0.1370 (3)0.65392 (16)0.0295 (7)
H80.70630.20310.67340.035*
C90.6088 (4)0.0045 (3)0.61130 (17)0.0303 (7)
H9A0.68140.04650.64800.045*
H9B0.68030.01450.56640.045*
H9C0.48490.07270.59200.045*
C100.4765 (5)0.2120 (4)0.59941 (19)0.0437 (9)
H10A0.55280.23360.55620.066*
H10B0.45980.30260.62910.066*
H10C0.35100.14840.57750.066*
C110.1242 (4)0.7070 (3)0.76450 (15)0.0191 (6)
H11A0.13610.63200.79880.023*
H11B0.24620.68640.72960.023*
C120.0943 (4)0.8561 (3)0.81718 (16)0.0266 (7)
H120.11950.92620.78260.032*
C130.1058 (4)0.9157 (3)0.86038 (18)0.0337 (7)
H13A0.11641.01260.89060.051*
H13B0.19880.92200.82180.051*
H13C0.13160.85100.89660.051*
C140.2443 (5)0.8413 (3)0.87450 (18)0.0353 (7)
H14A0.22470.77100.90810.053*
H14B0.37190.80770.84460.053*
H14C0.23290.93580.90770.053*
C150.0346 (4)0.7671 (3)0.64587 (15)0.0209 (6)
H15A0.16830.81980.64360.025*
H15B0.04200.84000.65310.025*
C160.0405 (4)0.6652 (3)0.56672 (15)0.0232 (6)
H160.03210.58830.56140.028*
C170.2504 (4)0.5917 (4)0.56081 (18)0.0360 (8)
H17A0.32430.66530.56590.054*
H17B0.27250.53430.60330.054*
H17C0.29080.52760.50940.054*
C180.0007 (5)0.7523 (3)0.50071 (17)0.0385 (8)
H18A0.06410.83150.50640.058*
H18B0.04590.68880.44940.058*
H18C0.13880.79270.50360.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0192 (4)0.0294 (4)0.0315 (4)0.0091 (3)0.0001 (3)0.0041 (3)
S20.0186 (4)0.0343 (4)0.0328 (4)0.0133 (3)0.0059 (3)0.0101 (3)
S30.0285 (4)0.0215 (4)0.0278 (4)0.0155 (3)0.0030 (3)0.0013 (3)
S40.0285 (4)0.0274 (4)0.0283 (4)0.0188 (3)0.0074 (3)0.0100 (3)
N10.0191 (12)0.0171 (11)0.0176 (11)0.0076 (9)0.0006 (9)0.0013 (9)
N20.0163 (11)0.0180 (11)0.0235 (12)0.0087 (9)0.0031 (9)0.0045 (9)
C10.0240 (15)0.0182 (13)0.0206 (14)0.0106 (11)0.0053 (11)0.0070 (11)
C20.0195 (14)0.0196 (14)0.0237 (14)0.0061 (11)0.0002 (11)0.0037 (11)
C30.0184 (14)0.0165 (13)0.0243 (14)0.0066 (11)0.0010 (11)0.0039 (11)
C40.0280 (16)0.0263 (15)0.0239 (15)0.0103 (12)0.0007 (12)0.0075 (12)
C50.0311 (18)0.053 (2)0.0319 (17)0.0170 (15)0.0057 (13)0.0111 (15)
C60.0363 (18)0.054 (2)0.0283 (17)0.0109 (16)0.0034 (14)0.0167 (15)
C70.0260 (15)0.0158 (13)0.0255 (15)0.0111 (11)0.0052 (12)0.0020 (11)
C80.0365 (18)0.0273 (16)0.0288 (16)0.0152 (14)0.0092 (13)0.0033 (13)
C90.0390 (18)0.0301 (16)0.0289 (16)0.0204 (14)0.0079 (13)0.0068 (13)
C100.059 (2)0.048 (2)0.0371 (19)0.0299 (18)0.0191 (17)0.0126 (16)
C110.0152 (13)0.0184 (13)0.0267 (14)0.0088 (11)0.0041 (11)0.0047 (11)
C120.0342 (17)0.0212 (14)0.0301 (16)0.0143 (13)0.0071 (13)0.0088 (12)
C130.0413 (19)0.0250 (16)0.0339 (17)0.0071 (14)0.0042 (14)0.0040 (13)
C140.0410 (19)0.0326 (17)0.0377 (18)0.0196 (15)0.0118 (15)0.0033 (14)
C150.0216 (14)0.0179 (13)0.0258 (15)0.0101 (11)0.0001 (11)0.0050 (11)
C160.0206 (14)0.0256 (14)0.0257 (15)0.0102 (12)0.0020 (11)0.0048 (12)
C170.0275 (17)0.0418 (19)0.0328 (17)0.0045 (14)0.0003 (13)0.0043 (14)
C180.0384 (19)0.045 (2)0.0327 (18)0.0081 (15)0.0006 (14)0.0130 (15)
Geometric parameters (Å, º) top
S1—C11.642 (3)C9—H9B0.9800
S2—C21.643 (3)C9—H9C0.9800
S3—C11.826 (3)C10—H10A0.9800
S3—S41.9931 (10)C10—H10B0.9800
S4—C21.828 (3)C10—H10C0.9800
N1—C11.337 (3)C11—C121.536 (4)
N1—C71.474 (3)C11—H11A0.9900
N1—C31.476 (3)C11—H11B0.9900
N2—C21.341 (3)C12—C131.516 (4)
N2—C151.466 (3)C12—C141.521 (4)
N2—C111.469 (3)C12—H121.0000
C3—C41.522 (4)C13—H13A0.9800
C3—H3A0.9900C13—H13B0.9800
C3—H3B0.9900C13—H13C0.9800
C4—C61.510 (4)C14—H14A0.9800
C4—C51.527 (4)C14—H14B0.9800
C4—H41.0000C14—H14C0.9800
C5—H5A0.9800C15—C161.532 (4)
C5—H5B0.9800C15—H15A0.9900
C5—H5C0.9800C15—H15B0.9900
C6—H6A0.9800C16—C171.510 (4)
C6—H6B0.9800C16—C181.516 (4)
C6—H6C0.9800C16—H161.0000
C7—C81.514 (4)C17—H17A0.9800
C7—H7A0.9900C17—H17B0.9800
C7—H7B0.9900C17—H17C0.9800
C8—C101.506 (4)C18—H18A0.9800
C8—C91.520 (4)C18—H18B0.9800
C8—H81.0000C18—H18C0.9800
C9—H9A0.9800
C1—S3—S4104.71 (9)H9B—C9—H9C109.5
C2—S4—S3104.22 (9)C8—C10—H10A109.5
C1—N1—C7121.1 (2)C8—C10—H10B109.5
C1—N1—C3125.3 (2)H10A—C10—H10B109.5
C7—N1—C3113.6 (2)C8—C10—H10C109.5
C2—N2—C15119.3 (2)H10A—C10—H10C109.5
C2—N2—C11123.9 (2)H10B—C10—H10C109.5
C15—N2—C11116.6 (2)N2—C11—C12114.6 (2)
N1—C1—S1126.7 (2)N2—C11—H11A108.6
N1—C1—S3111.45 (18)C12—C11—H11A108.6
S1—C1—S3121.80 (15)N2—C11—H11B108.6
N2—C2—S2125.8 (2)C12—C11—H11B108.6
N2—C2—S4112.26 (19)H11A—C11—H11B107.6
S2—C2—S4121.90 (16)C13—C12—C14111.6 (2)
N1—C3—C4113.4 (2)C13—C12—C11113.9 (2)
N1—C3—H3A108.9C14—C12—C11107.2 (2)
C4—C3—H3A108.9C13—C12—H12108.0
N1—C3—H3B108.9C14—C12—H12108.0
C4—C3—H3B108.9C11—C12—H12108.0
H3A—C3—H3B107.7C12—C13—H13A109.5
C6—C4—C3112.5 (2)C12—C13—H13B109.5
C6—C4—C5111.4 (2)H13A—C13—H13B109.5
C3—C4—C5108.8 (2)C12—C13—H13C109.5
C6—C4—H4108.0H13A—C13—H13C109.5
C3—C4—H4108.0H13B—C13—H13C109.5
C5—C4—H4108.0C12—C14—H14A109.5
C4—C5—H5A109.5C12—C14—H14B109.5
C4—C5—H5B109.5H14A—C14—H14B109.5
H5A—C5—H5B109.5C12—C14—H14C109.5
C4—C5—H5C109.5H14A—C14—H14C109.5
H5A—C5—H5C109.5H14B—C14—H14C109.5
H5B—C5—H5C109.5N2—C15—C16114.4 (2)
C4—C6—H6A109.5N2—C15—H15A108.7
C4—C6—H6B109.5C16—C15—H15A108.7
H6A—C6—H6B109.5N2—C15—H15B108.7
C4—C6—H6C109.5C16—C15—H15B108.7
H6A—C6—H6C109.5H15A—C15—H15B107.6
H6B—C6—H6C109.5C17—C16—C18111.2 (2)
N1—C7—C8112.5 (2)C17—C16—C15112.8 (2)
N1—C7—H7A109.1C18—C16—C15108.2 (2)
C8—C7—H7A109.1C17—C16—H16108.2
N1—C7—H7B109.1C18—C16—H16108.2
C8—C7—H7B109.1C15—C16—H16108.2
H7A—C7—H7B107.8C16—C17—H17A109.5
C10—C8—C7113.3 (3)C16—C17—H17B109.5
C10—C8—C9112.2 (3)H17A—C17—H17B109.5
C7—C8—C9109.4 (2)C16—C17—H17C109.5
C10—C8—H8107.2H17A—C17—H17C109.5
C7—C8—H8107.2H17B—C17—H17C109.5
C9—C8—H8107.2C16—C18—H18A109.5
C8—C9—H9A109.5C16—C18—H18B109.5
C8—C9—H9B109.5H18A—C18—H18B109.5
H9A—C9—H9B109.5C16—C18—H18C109.5
C8—C9—H9C109.5H18A—C18—H18C109.5
H9A—C9—H9C109.5H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···S30.992.342.907 (3)115
C7—H7A···S10.992.603.084 (3)110
C8—H8···S1i1.002.973.834 (3)146
C11—H11A···S40.992.332.896 (3)115
C11—H11B···S2ii0.992.873.810 (3)160
C16—H16···S21.002.913.473 (3)117
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Funding information

This work has been funded in part by support from the NSF (OIA 1539035 and DMR 1460637). The Louisiana Board of Regents is thanked for enhancement grant LEQSF–(2002–03)–ENH–TR–67 with which the Tulane X–ray diffractometer was purchased, and Tulane University is acknowledged for its ongoing support with operational costs for the diffraction facility.

References

First citationAjibade, P. A., Ejelonu, B. C. & Omondi, B. (2012). Acta Cryst. E68, o2182.  CSD CrossRef IUCr Journals
First citationBai, F. Y., Li, X. T., Zhu, G. S. & Xing, Y. H. (2010). Spectrochim. Acta Part A, 75, 1388–1393.  CSD CrossRef CAS
First citationBodige, S. G. & Watson, W. H. (2003). Private communication (refcode: ULOXIC). CCDC, Cambridge, England.
First citationBruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.
First citationChieh, C. (1977). Can. J. Chem. 55, 1115–1119.  CSD CrossRef CAS
First citationChieh, C. (1978). Can. J. Chem. 56, 974–975.  CSD CrossRef CAS
First citationDatta, R. N. & Ingham, F. A. A. (2001). Rubber Additives – Compounding Ingredients. In Rubber Technologist's Handbook, edited by S. K. De & J. R. White, pp. 167–208. Shrewsbury, UK: Rapra Technology, Ltd.
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
First citationDix, M. F. & Rae, A. D. (1973). Cryst. Struct. Commun. 2, 159–162.  CAS
First citationFun, H.-K., Chantrapromma, S., Razak, I. A., Bei, F.-L., Jian, F.-F., Yang, X.-J., Lu, L. & Wang, X. (2001). Acta Cryst. E57, o717–o718.  Web of Science CSD CrossRef IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHall, V. J. & Tiekink, E. R. T. (1995). Z. Kristallogr. 210, 701–702.  CAS
First citationHeard, P. J. (2005). Prog. Inorg. Chem. 53, 1–70.  CAS
First citationHogarth, G. (2005). Prog. Inorg. Chem. 53, 71–561.  Web of Science CrossRef CAS
First citationHorita, Y., Takii, T., Yagi, T., Ogawa, K., Fujiwara, N., Inagaki, E., Kremer, L., Sato, Y., Kuroishi, R., Lee, Y., Makino, T., Mizukami, H., Hasegawa, T., Yamamoto, R. & Onozaki, K. (2012). Antimicrob. Agents Chemother. 56, 4140–4145.  CrossRef CAS PubMed
First citationHu, S.-Z. (2000). Chin. J. Struct. Chem. 19, 234–238.  CAS
First citationIgnatz-Hoover, F. & To, B. H. (2016). Vulcanization. In Rubber Compounding: Chemistry and Applications, edited by B. Rodgers, ch. 11, pp. 461–522. Boca Raton, FL: CRC Press.
First citationIvanov, A. V., Zinkin, S. A., Forzling, W., Antzutkin, O. N. & Kritikos, M. (2003). Koord. Khim. 29, 151–160.
First citationJian, F., Jiang, L., Fun, H.-K., Chinnakali, K., Razak, I. A. & You, X. (1999). Acta Cryst. C55, 573–574.  Web of Science CSD CrossRef CAS IUCr Journals
First citationJiao, Y., Hannafon, B. N. & Ding, W.-Q. (2016). Anticancer Agents Med. Chem. 16, 1378–1384.  CrossRef CAS PubMed
First citationKapanda, C. N., Muccioli, C. G., Labar, G., Poupaert, J. H. & Lambert, D. M. (2009). J. Med. Chem. 52, 7310–7314.  CrossRef PubMed CAS
First citationKarim, Md. M., Abser, Md. M., Hassan, M. R., Ghosh, N., Alt, H. G., Richards, I. & Hogarth, G. (2012). Polyhedron, 42, 84–88.  CSD CrossRef CAS
First citationKarle, I. L., Estlin, J. A. & Britts, K. (1967). Acta Cryst. 22, 273–280.  CSD CrossRef CAS IUCr Journals Web of Science
First citationKumar, V., Aravamudan, G. & Seshasayee, M. (1990). Acta Cryst. C46, 674–676.  CSD CrossRef CAS Web of Science IUCr Journals
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationMarøy, K. (1965). Acta Chem. Scand. 19, 1509.
First citationMutschler, J., Grosshans, M., Soyka, M. & Rösner, S. (2016). Pharmacopsychiatry, 49, 137–141.  CAS PubMed
First citationNath, P., Bharty, M. K., Maiti, B., Bharti, B., Butcher, R. J., Wikaira, J. L. & Singh, N. K. (2016). RSC Adv. 6, 93867–93880.  CSD CrossRef CAS
First citationPolyakova, I. N. & Starikova, Z. A. (1990). Zh. Strukt. Khim. 31, 148–152.  CAS
First citationPrakasam, B. A., Ramalingam, K., Bocelli, G. & Cantoni, A. (2009). Phosphorus Sulfur Silicon, 184, 2020–2033.  CSD CrossRef CAS
First citationQuan, L., Yin, H., Zhai, J. & Wang, D. (2008). Acta Cryst. E64, m108.  CSD CrossRef IUCr Journals
First citationRadwan, M. A. (1969). Forest Sci. 15, 439–445.  CAS
First citationRaston, C. L. & White, A. H. (1976). Aust. J. Chem. 29, 523–529.  CSD CrossRef CAS
First citationRaya, I., Baba, I., Rosli, F. Z. & Yamin, B. M. (2005). Acta Cryst. E61, o3131–o3132.  Web of Science CSD CrossRef IUCr Journals
First citationRout, G. C., Seshasayee, M. & Aravamudan, G. (1982). Cryst. Struct. Commun. 11, 1389–1393.  CAS
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CSD CrossRef CAS Web of Science
First citationSączewski, J., Frontera, A., Gdaniec, M., Brzozowski, Z., Sączewski, F., Tabin, P., Quiñonero, D. & Deyà, P. M. (2006). Chem. Phys. Lett. 422, 234–239.
First citationSaravanan, M., Prakasam, B. A., Ramalingam, K., Bocelli, G. & Cantoni, A. (2005). Z. Anorg. Allg. Chem. 631, 1688–1692.  CSD CrossRef CAS
First citationSharma, V. K., Aulakh, J. S. & Malik, A. K. (2003). J. Environ. Monit. 5, 717–723.  CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationShi, B. & Wang, J. (1992). Xiamen Daxue Xuebao, Ziran Kexueban 31, 176-181.
First citationSrinivasan, N., Thirumaran, S. & Selvanayagam, S. (2012). Acta Cryst. E68, o3446.  CSD CrossRef IUCr Journals
First citationThirumaran, S., Ramalingam, K., Bocelli, G. & Cantoni, A. (2000). Polyhedron, 19, 1279–1282.  CSD CrossRef CAS
First citationUludağ, N., Ateş, M., Çaylak Delibaş, N., Çelik, Ö. & Hökelek, T. (2013). Acta Cryst. E69, o771.  CSD CrossRef IUCr Journals
First citationWang, Y. & Liao, J. H. (1989). Acta Cryst. B45, 65–69.  CSD CrossRef CAS Web of Science IUCr Journals
First citationWang, Y., Liao, J.-H. & Ueng, C.-H. (1986). Acta Cryst. C42, 1420–1423.  CSD CrossRef CAS IUCr Journals
First citationWilliams, G. A., Statham, J. R. & White, A. H. (1983). Aust. J. Chem. 36, 1371–1377.  CSD CrossRef CAS
First citationYamin, B. M., Suwandi, S. A., Fun, H.-K., Sivakumar, K. & Shawkataly, O. B. (1996). Acta Cryst. C52, 951–953.  CSD CrossRef CAS IUCr Journals
First citationYmén, I. (1983). Acta Chem. Scand. B, 37, 707–713.
First citationYu, B. & Wang, J.-L. (2003). Qingdao Keji Daxue Xuebao, Ziran Kexueban 24, 394-397.
First citationZhai, J., Yin, H.-D., Li, F., Chen, S.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, o1969–o1970.  CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds