research communications
of tetraisobutylthiuram disulfide
aDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA, and bDepartment of Chemistry, SUNY Stony Brook, 100 Nicolls Road, Stony Brook, New York 11790-3400, USA
*Correspondence e-mail: donahue@tulane.edu
Tetrakis(2-methylpropyl)thioperoxydicarbonic diamide, or tetraisobutylthiuram disulfide, C18H36N2S4, crystallizes in a general position in the triclinic P-1 but shows pseudo-C2 symmetry about the disulfide bond. The C—S—S—C torsion angle [−85.81 (2)°] and the dihedral angle between the two NCS2 mean planes [85.91 (5)°] are within the range observed for this compound type. Multiple intra- and intermolecular S⋯H—C close contacts appear to play a role in assisting the specific conformation of the pendant isobutyl groups and the packing arrangement of molecules within the cell. Tetraisobutylthiuram disulfide molecules of one optical configuration form sheets in the plane of the a and b axes. Inversion centers exist between adjoining sheets, which stack along the c axis and alternate in the handedness of their constituent molecules.
Keywords: crystal structure; tetrathiuram disulfide; dithiocarbamate; precursor; weak S⋯H—C interaction.
CCDC reference: 1580550
1. Chemical context
N,N,N′,N′-Tetraalkylthioperoxydicarbonic diamides, commonly called tetrathiuram disulfides, comprise a class of organosulfur compounds with applications that are both diverse and long-standing. Tetramethylthiuram disulfide, known by the commercial name thiram, is broadly useful both as a fungicide (Sharma et al., 2003) and as a repellent against animals that feed upon seedling trees (Radwan, 1969). In industry, thiram and related tetraalkylthiuram disulfides find application as vulcanizing agents in the production of synthetic rubber (Datta & Ingham, 2001; Ignatz-Hoover & To, 2016). Tetraethylthiuram disulfide, under the trade name disulfiram, is used for the treatment of chronic alcoholism because of its inhibitory effect upon liver alcohol dehydrogenase (Mutschler et al., 2016). More recently, it has received scrutiny for its ability to sensitize cancer cells to radiotherapy and to the effects of anticancer drugs (Jiao et al., 2016) as well as for its bactericidal action against drug-resistant Mycobacterium tuberculosis (Horita et al., 2012). Tetraalkylthiuram disulfides function both as chelating ligands themselves (Chieh, 1977; Chieh, 1978; Thirumaran et al., 2000; Saravanan et al., 2005; Prakasam et al., 2009) and as precursors to dithiocarbamate ligands, which are used in the coordination chemistry of both the transition metals (Hogarth, 2005) and main group elements (Heard, 2005).
In the course of some studies of diisobutyldithiocarbamate coordination complexes of molybdenum, we have noted a report describing an 1H NMR spectrum of [Ni(S2CNiBu2)2] that was more complex than anticipated, even considering the about the −S2–CNiBu2 bond (Raston & White, 1976). This complexity was attributed to intraligand S⋯H interactions involving the tertiary hydrogen of the isobutyl group. Although the room temperature 1H NMR spectrum of N,N,N′,N′- tetrakis(2-methylpropyl)thioperoxydicarbonic diamide (tetraisobutylthiuram disulfide) itself does not show evidence of such intramolecular interaction, several recent studies of tetrathiuram disulfides have suggested such interactions in the crystalline state (Raya et al., 2005; Srinivasan et al., 2012; Nath et al., 2016). This possibility of similar weak interaction(s) in the of tetraisobutylthiuram disulfide has motivated a determination of its structure by X-ray diffraction, reported herein.
2. Structural commentary
Tetraisobutylthiuram disulfide crystallizes upon a general position in P but has pseudo-C2 symmetry across the disulfide bond, strict C2 symmetry being disrupted by conformational differences among the pendant isobutyl groups (Fig. 1a). Despite the lack of strict C2 symmetry, tetraisobutylthiuram disulfide is nevertheless chiral. The image in Fig. 1a presents the molecule with a left-handed configuration to the core –H2CNC(S)S–SC(S)NCH2– portion. If Fig. 1a were to be viewed from above, along the pseudo C2 axis that bisects the S3—S4 bond, the C1—S1 and C2—S2 thione bonds would project forward and backward, respectively, from the plane of the paper and thereby define a left-handed propeller. The right-handed counterpart is necessarily the other occupant of the as required by the racemic Among the structurally characterized thiuram disulfides, crystallographically imposed C2 symmetry is also common (Fig. 3).
The S3—S4 bond length is 1.9931 (10) Å, while the thione C=S bonds are essentially identical at 1.642 (3) and 1.643 (3) Å. The C1—S3—S4—C2 torsion angle, τ, is −85.81 (2)° and, as is typical of tetrathiuram disulfides, very similar in magnitude to the angle of 85.91 (5)° between the mean planes defined by the S2CN fragments, θ.
Multiple intramolecular S⋯H–C contacts that are shorter than, or close to, the 2.92 Å sum of the van der Waals radii (Rowland & Taylor, 1996) for sulfur and hydrogen are calculated for the structure of tetraisobutylthiuram disulfide. Each of the four sulfur atoms on the molecule is a participant in such a close contact, as illustrated in Fig. 1b and shown in Table 1. Although weak individually, particularly since these D—H⋯A angles are closer to 90° than to 180° (Table 1), these interactions may act cooperatively with packing forces to decide the specific molecular conformation that is adopted. Weak intermolecular S⋯H—C contacts are also calculated for molecules that stack along the a axis of the cell (Fig. 2). While angles for these contacts are larger (145.6, 159.5°), the D⋯A separations are longer [3.834 (3), 3.810 (3) Å]. The geometric parameters for both these intramolecular and intermolecular S⋯C–H contacts fall within the range defined as consistent with a weak D—H⋯A interaction (Desiraju & Steiner, 1999). These features of the molecular packing in the of tetraisobutylthiuram disulfide suggest that the crystal structures of coordination complexes with the diisobutyldithiocarbamate ligand be considered for similar S⋯H—C contacts and, importantly, that variable temperature 1H NMR spectroscopy be used to assess the importance of any such interactions in solution.
3. Supramolecular features
Molecules of tetraisobutylthiuram disulfide are linked by C—H⋯S hydrogen bonds (Table 1) to form linear chains directed along the a axis of the cell, and parallel chains then align within the ab plane to form sheets (Fig. 2). Because the molecules within a single sheet are related, one from another, only by translations along a or b, they all have the same optical configuration. The sheets in the ab plane then stack along the c axis of the cell. The cell's inversion center resides within the center of the cell and relates molecules from neighboring sheets. Consequently, the sheets alternate in the handedness of the molecules from which they are comprised.
4. Database survey
Values for τ and θ for structures in the Cambridge Structural Database (Web CSD v1.1.1; Groom et al., 2016) were determined using Mercury (Macrae et al., 2008). These structures are: METHUS (Marøy, 1965), METHUS01 (Ymén, 1983), METHUS02 (Wang et al., 1986), METHUS03 (Wang & Liao, 1989), METHUS04 (Wang & Liao, 1989), ETHUSS (Karle et al., 1967) ETHUSS01 (Wang et al., 1986), ETHUSS02 (Wang & Liao, 1989), ETHUSS03 (Wang & Liao, 1989), ETHUSS04 (Shi & Wang, 1992), ETHUSS05 (Hu, 2000), HIQJUM (Jian et al., 1999), HIQJUM01 (Yu & Wang, 2003), JECYAZ (Kumar et al., 1990), TIBFEQ (Zhai et al., 2007), ZEMPUC (Hall & Tiekink, 1995), KAZHEA (Karim et al., 2012), NELTUT (Fun et al., 2001), XEBJOF (Ajibade et al., 2012), JAXPOO (Raya et al., 2005), CAPLEK (Williams et al., 1983), CAPLEK01 (Ymén, 1983), CAPLEK02 (Yamin et al., 1996), CAPLEK03 (Bai et al., 2010), RISNEN (Quan et al., 2008), ULOXIC (Bodige & Watson, 2003), PIPTHS (Dix & Rae, 1973), PIPTHS01 (Shi & Wang, 1992), EWESUW (Nath et al., 2016), BOMPAU (Rout et al., 1982), VOHFIH (Polyakova & Starikova, 1990), VOHFIH01 (Ivanov et al., 2003), PECWOL (Uludağ et al., 2013), ZIJLOV (Srinivasan et al., 2012) and MEMFUG (Sączewski et al., 2006).
The C—S—S—C torsion angle (τ) and the dihedral angle (θ) between S2CN mean planes are closely comparable to values observed for the analogous features in most other tetrathiuram disulfides, as summarized in Fig. 3. Positive and negative values of τ occur with approximately equal frequency for tetrathium disulfides that have been characterized structurally by X-ray diffraction (Fig. 3). For those which do not reside on an inversion center (Kumar et al., 1990; Sączewski et al., 2006) or have conformations obviously perturbed by intermolecular interactions involving the pendant groups on nitrogen (Srinivasan et al., 2012), the average of the absolute value of τ is 88.4°, and the range is 78.0–99.0°. Similarly, the average value of θ is 86.1°, with a range of 79.0–90.0°.
5. Synthesis and crystallization
The synthesis procedure employed was that described by Kapanda et al., 2009. Pale-yellow block-shaped crystals of tetraisobutylthiuram disulfide (m.p. 343 K) were obtained by slow evaporation of a CH2Cl2 solution. 1H NMR (δ, ppm in DMSO-d6): 3.83 [d, J = 12 Hz, 8H, –CH2CH(CH3)2], 2.39 [br m, 4H, –CH2CH(CH3)2], 0.98 [d, J = 8 Hz, 12H, –CH2CH(CH3)2], 0.87 [d, J = 8 Hz, 12H, –CH2CH(CH3)2].
6. details
Crystal data, data collection and structure . Hydrogen atoms were added in calculated positions and refined with isotropic displacement parameters that were approximately 1.2 times (for –CH– and –CH2) or 1.5 times (for –CH3) those of the carbon atoms to which they were attached. The C—H distances assumed were 1.00, 0.99, and 0.98 Å for the –CH–, –CH2, and –CH3 types of hydrogen atoms, respectively.
details are summarized in Table 2Supporting information
CCDC reference: 1580550
https://doi.org/10.1107/S2056989017015158/lh5851sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017015158/lh5851Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017015158/lh5851Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C18H36N2S4 | Z = 2 |
Mr = 408.73 | F(000) = 444 |
Triclinic, P1 | Dx = 1.187 Mg m−3 |
a = 7.2449 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.6102 (14) Å | Cell parameters from 4848 reflections |
c = 17.196 (3) Å | θ = 2.2–25.2° |
α = 98.580 (2)° | µ = 0.42 mm−1 |
β = 94.540 (2)° | T = 100 K |
γ = 103.409 (2)° | Block, pale yellow |
V = 1143.5 (3) Å3 | 0.17 × 0.12 × 0.06 mm |
Bruker APEXII CCD diffractometer | 4168 independent reflections |
Radiation source: fine-focus sealed tube | 3161 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 25.4°, θmin = 2.2° |
φ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −11→11 |
Tmin = 0.745, Tmax = 0.977 | l = −20→20 |
17180 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.146 | w = 1/[σ2(Fo2) + (0.0883P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
4168 reflections | Δρmax = 0.87 e Å−3 |
225 parameters | Δρmin = −0.35 e Å−3 |
0 restraints |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 60 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.11097 (10) | 0.22088 (8) | 0.72835 (4) | 0.0265 (2) | |
S2 | 0.35046 (10) | 0.62092 (8) | 0.68215 (4) | 0.0268 (2) | |
S3 | 0.37169 (10) | 0.47724 (7) | 0.84025 (4) | 0.0250 (2) | |
S4 | 0.13548 (10) | 0.54581 (8) | 0.82084 (4) | 0.0253 (2) | |
N1 | 0.4760 (3) | 0.2440 (2) | 0.77920 (12) | 0.0177 (5) | |
N2 | 0.0291 (3) | 0.6939 (2) | 0.71490 (12) | 0.0184 (5) | |
C1 | 0.3217 (4) | 0.2980 (3) | 0.77839 (15) | 0.0195 (6) | |
C2 | 0.1689 (4) | 0.6296 (3) | 0.73258 (16) | 0.0208 (6) | |
C3 | 0.6574 (4) | 0.3090 (3) | 0.83096 (15) | 0.0195 (6) | |
H3A | 0.6641 | 0.4125 | 0.8506 | 0.023* | |
H3B | 0.7650 | 0.3052 | 0.7993 | 0.023* | |
C4 | 0.6811 (4) | 0.2335 (3) | 0.90154 (15) | 0.0253 (6) | |
H4 | 0.6567 | 0.1270 | 0.8813 | 0.030* | |
C5 | 0.8874 (4) | 0.2875 (4) | 0.94048 (18) | 0.0375 (8) | |
H5A | 0.9155 | 0.3924 | 0.9597 | 0.056* | |
H5B | 0.9740 | 0.2674 | 0.9017 | 0.056* | |
H5C | 0.9052 | 0.2375 | 0.9851 | 0.056* | |
C6 | 0.5418 (5) | 0.2552 (4) | 0.96030 (17) | 0.0384 (8) | |
H6A | 0.5722 | 0.3576 | 0.9854 | 0.058* | |
H6B | 0.5511 | 0.1948 | 1.0009 | 0.058* | |
H6C | 0.4115 | 0.2273 | 0.9328 | 0.058* | |
C7 | 0.4768 (4) | 0.1089 (3) | 0.72601 (15) | 0.0215 (6) | |
H7A | 0.3433 | 0.0528 | 0.7085 | 0.026* | |
H7B | 0.5411 | 0.0491 | 0.7556 | 0.026* | |
C8 | 0.5774 (4) | 0.1370 (3) | 0.65392 (16) | 0.0295 (7) | |
H8 | 0.7063 | 0.2031 | 0.6734 | 0.035* | |
C9 | 0.6088 (4) | −0.0045 (3) | 0.61130 (17) | 0.0303 (7) | |
H9A | 0.6814 | −0.0465 | 0.6480 | 0.045* | |
H9B | 0.6803 | 0.0145 | 0.5664 | 0.045* | |
H9C | 0.4849 | −0.0727 | 0.5920 | 0.045* | |
C10 | 0.4765 (5) | 0.2120 (4) | 0.59941 (19) | 0.0437 (9) | |
H10A | 0.5528 | 0.2336 | 0.5562 | 0.066* | |
H10B | 0.4598 | 0.3026 | 0.6291 | 0.066* | |
H10C | 0.3510 | 0.1484 | 0.5775 | 0.066* | |
C11 | −0.1242 (4) | 0.7070 (3) | 0.76450 (15) | 0.0191 (6) | |
H11A | −0.1361 | 0.6320 | 0.7988 | 0.023* | |
H11B | −0.2462 | 0.6864 | 0.7296 | 0.023* | |
C12 | −0.0943 (4) | 0.8561 (3) | 0.81718 (16) | 0.0266 (7) | |
H12 | −0.1195 | 0.9262 | 0.7826 | 0.032* | |
C13 | 0.1058 (4) | 0.9157 (3) | 0.86038 (18) | 0.0337 (7) | |
H13A | 0.1164 | 1.0126 | 0.8906 | 0.051* | |
H13B | 0.1988 | 0.9220 | 0.8218 | 0.051* | |
H13C | 0.1316 | 0.8510 | 0.8966 | 0.051* | |
C14 | −0.2443 (5) | 0.8413 (3) | 0.87450 (18) | 0.0353 (7) | |
H14A | −0.2247 | 0.7710 | 0.9081 | 0.053* | |
H14B | −0.3719 | 0.8077 | 0.8446 | 0.053* | |
H14C | −0.2329 | 0.9358 | 0.9077 | 0.053* | |
C15 | 0.0346 (4) | 0.7671 (3) | 0.64587 (15) | 0.0209 (6) | |
H15A | 0.1683 | 0.8198 | 0.6436 | 0.025* | |
H15B | −0.0420 | 0.8400 | 0.6531 | 0.025* | |
C16 | −0.0405 (4) | 0.6652 (3) | 0.56672 (15) | 0.0232 (6) | |
H16 | 0.0321 | 0.5883 | 0.5614 | 0.028* | |
C17 | −0.2504 (4) | 0.5917 (4) | 0.56081 (18) | 0.0360 (8) | |
H17A | −0.3243 | 0.6653 | 0.5659 | 0.054* | |
H17B | −0.2725 | 0.5343 | 0.6033 | 0.054* | |
H17C | −0.2908 | 0.5276 | 0.5094 | 0.054* | |
C18 | 0.0007 (5) | 0.7523 (3) | 0.50071 (17) | 0.0385 (8) | |
H18A | −0.0641 | 0.8315 | 0.5064 | 0.058* | |
H18B | −0.0459 | 0.6888 | 0.4494 | 0.058* | |
H18C | 0.1388 | 0.7927 | 0.5036 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0192 (4) | 0.0294 (4) | 0.0315 (4) | 0.0091 (3) | 0.0001 (3) | 0.0041 (3) |
S2 | 0.0186 (4) | 0.0343 (4) | 0.0328 (4) | 0.0133 (3) | 0.0059 (3) | 0.0101 (3) |
S3 | 0.0285 (4) | 0.0215 (4) | 0.0278 (4) | 0.0155 (3) | −0.0030 (3) | 0.0013 (3) |
S4 | 0.0285 (4) | 0.0274 (4) | 0.0283 (4) | 0.0188 (3) | 0.0074 (3) | 0.0100 (3) |
N1 | 0.0191 (12) | 0.0171 (11) | 0.0176 (11) | 0.0076 (9) | −0.0006 (9) | 0.0013 (9) |
N2 | 0.0163 (11) | 0.0180 (11) | 0.0235 (12) | 0.0087 (9) | 0.0031 (9) | 0.0045 (9) |
C1 | 0.0240 (15) | 0.0182 (13) | 0.0206 (14) | 0.0106 (11) | 0.0053 (11) | 0.0070 (11) |
C2 | 0.0195 (14) | 0.0196 (14) | 0.0237 (14) | 0.0061 (11) | 0.0002 (11) | 0.0037 (11) |
C3 | 0.0184 (14) | 0.0165 (13) | 0.0243 (14) | 0.0066 (11) | −0.0010 (11) | 0.0039 (11) |
C4 | 0.0280 (16) | 0.0263 (15) | 0.0239 (15) | 0.0103 (12) | −0.0007 (12) | 0.0075 (12) |
C5 | 0.0311 (18) | 0.053 (2) | 0.0319 (17) | 0.0170 (15) | −0.0057 (13) | 0.0111 (15) |
C6 | 0.0363 (18) | 0.054 (2) | 0.0283 (17) | 0.0109 (16) | 0.0034 (14) | 0.0167 (15) |
C7 | 0.0260 (15) | 0.0158 (13) | 0.0255 (15) | 0.0111 (11) | 0.0052 (12) | 0.0020 (11) |
C8 | 0.0365 (18) | 0.0273 (16) | 0.0288 (16) | 0.0152 (14) | 0.0092 (13) | 0.0033 (13) |
C9 | 0.0390 (18) | 0.0301 (16) | 0.0289 (16) | 0.0204 (14) | 0.0079 (13) | 0.0068 (13) |
C10 | 0.059 (2) | 0.048 (2) | 0.0371 (19) | 0.0299 (18) | 0.0191 (17) | 0.0126 (16) |
C11 | 0.0152 (13) | 0.0184 (13) | 0.0267 (14) | 0.0088 (11) | 0.0041 (11) | 0.0047 (11) |
C12 | 0.0342 (17) | 0.0212 (14) | 0.0301 (16) | 0.0143 (13) | 0.0071 (13) | 0.0088 (12) |
C13 | 0.0413 (19) | 0.0250 (16) | 0.0339 (17) | 0.0071 (14) | 0.0042 (14) | 0.0040 (13) |
C14 | 0.0410 (19) | 0.0326 (17) | 0.0377 (18) | 0.0196 (15) | 0.0118 (15) | 0.0033 (14) |
C15 | 0.0216 (14) | 0.0179 (13) | 0.0258 (15) | 0.0101 (11) | 0.0001 (11) | 0.0050 (11) |
C16 | 0.0206 (14) | 0.0256 (14) | 0.0257 (15) | 0.0102 (12) | 0.0020 (11) | 0.0048 (12) |
C17 | 0.0275 (17) | 0.0418 (19) | 0.0328 (17) | 0.0045 (14) | 0.0003 (13) | −0.0043 (14) |
C18 | 0.0384 (19) | 0.045 (2) | 0.0327 (18) | 0.0081 (15) | 0.0006 (14) | 0.0130 (15) |
S1—C1 | 1.642 (3) | C9—H9B | 0.9800 |
S2—C2 | 1.643 (3) | C9—H9C | 0.9800 |
S3—C1 | 1.826 (3) | C10—H10A | 0.9800 |
S3—S4 | 1.9931 (10) | C10—H10B | 0.9800 |
S4—C2 | 1.828 (3) | C10—H10C | 0.9800 |
N1—C1 | 1.337 (3) | C11—C12 | 1.536 (4) |
N1—C7 | 1.474 (3) | C11—H11A | 0.9900 |
N1—C3 | 1.476 (3) | C11—H11B | 0.9900 |
N2—C2 | 1.341 (3) | C12—C13 | 1.516 (4) |
N2—C15 | 1.466 (3) | C12—C14 | 1.521 (4) |
N2—C11 | 1.469 (3) | C12—H12 | 1.0000 |
C3—C4 | 1.522 (4) | C13—H13A | 0.9800 |
C3—H3A | 0.9900 | C13—H13B | 0.9800 |
C3—H3B | 0.9900 | C13—H13C | 0.9800 |
C4—C6 | 1.510 (4) | C14—H14A | 0.9800 |
C4—C5 | 1.527 (4) | C14—H14B | 0.9800 |
C4—H4 | 1.0000 | C14—H14C | 0.9800 |
C5—H5A | 0.9800 | C15—C16 | 1.532 (4) |
C5—H5B | 0.9800 | C15—H15A | 0.9900 |
C5—H5C | 0.9800 | C15—H15B | 0.9900 |
C6—H6A | 0.9800 | C16—C17 | 1.510 (4) |
C6—H6B | 0.9800 | C16—C18 | 1.516 (4) |
C6—H6C | 0.9800 | C16—H16 | 1.0000 |
C7—C8 | 1.514 (4) | C17—H17A | 0.9800 |
C7—H7A | 0.9900 | C17—H17B | 0.9800 |
C7—H7B | 0.9900 | C17—H17C | 0.9800 |
C8—C10 | 1.506 (4) | C18—H18A | 0.9800 |
C8—C9 | 1.520 (4) | C18—H18B | 0.9800 |
C8—H8 | 1.0000 | C18—H18C | 0.9800 |
C9—H9A | 0.9800 | ||
C1—S3—S4 | 104.71 (9) | H9B—C9—H9C | 109.5 |
C2—S4—S3 | 104.22 (9) | C8—C10—H10A | 109.5 |
C1—N1—C7 | 121.1 (2) | C8—C10—H10B | 109.5 |
C1—N1—C3 | 125.3 (2) | H10A—C10—H10B | 109.5 |
C7—N1—C3 | 113.6 (2) | C8—C10—H10C | 109.5 |
C2—N2—C15 | 119.3 (2) | H10A—C10—H10C | 109.5 |
C2—N2—C11 | 123.9 (2) | H10B—C10—H10C | 109.5 |
C15—N2—C11 | 116.6 (2) | N2—C11—C12 | 114.6 (2) |
N1—C1—S1 | 126.7 (2) | N2—C11—H11A | 108.6 |
N1—C1—S3 | 111.45 (18) | C12—C11—H11A | 108.6 |
S1—C1—S3 | 121.80 (15) | N2—C11—H11B | 108.6 |
N2—C2—S2 | 125.8 (2) | C12—C11—H11B | 108.6 |
N2—C2—S4 | 112.26 (19) | H11A—C11—H11B | 107.6 |
S2—C2—S4 | 121.90 (16) | C13—C12—C14 | 111.6 (2) |
N1—C3—C4 | 113.4 (2) | C13—C12—C11 | 113.9 (2) |
N1—C3—H3A | 108.9 | C14—C12—C11 | 107.2 (2) |
C4—C3—H3A | 108.9 | C13—C12—H12 | 108.0 |
N1—C3—H3B | 108.9 | C14—C12—H12 | 108.0 |
C4—C3—H3B | 108.9 | C11—C12—H12 | 108.0 |
H3A—C3—H3B | 107.7 | C12—C13—H13A | 109.5 |
C6—C4—C3 | 112.5 (2) | C12—C13—H13B | 109.5 |
C6—C4—C5 | 111.4 (2) | H13A—C13—H13B | 109.5 |
C3—C4—C5 | 108.8 (2) | C12—C13—H13C | 109.5 |
C6—C4—H4 | 108.0 | H13A—C13—H13C | 109.5 |
C3—C4—H4 | 108.0 | H13B—C13—H13C | 109.5 |
C5—C4—H4 | 108.0 | C12—C14—H14A | 109.5 |
C4—C5—H5A | 109.5 | C12—C14—H14B | 109.5 |
C4—C5—H5B | 109.5 | H14A—C14—H14B | 109.5 |
H5A—C5—H5B | 109.5 | C12—C14—H14C | 109.5 |
C4—C5—H5C | 109.5 | H14A—C14—H14C | 109.5 |
H5A—C5—H5C | 109.5 | H14B—C14—H14C | 109.5 |
H5B—C5—H5C | 109.5 | N2—C15—C16 | 114.4 (2) |
C4—C6—H6A | 109.5 | N2—C15—H15A | 108.7 |
C4—C6—H6B | 109.5 | C16—C15—H15A | 108.7 |
H6A—C6—H6B | 109.5 | N2—C15—H15B | 108.7 |
C4—C6—H6C | 109.5 | C16—C15—H15B | 108.7 |
H6A—C6—H6C | 109.5 | H15A—C15—H15B | 107.6 |
H6B—C6—H6C | 109.5 | C17—C16—C18 | 111.2 (2) |
N1—C7—C8 | 112.5 (2) | C17—C16—C15 | 112.8 (2) |
N1—C7—H7A | 109.1 | C18—C16—C15 | 108.2 (2) |
C8—C7—H7A | 109.1 | C17—C16—H16 | 108.2 |
N1—C7—H7B | 109.1 | C18—C16—H16 | 108.2 |
C8—C7—H7B | 109.1 | C15—C16—H16 | 108.2 |
H7A—C7—H7B | 107.8 | C16—C17—H17A | 109.5 |
C10—C8—C7 | 113.3 (3) | C16—C17—H17B | 109.5 |
C10—C8—C9 | 112.2 (3) | H17A—C17—H17B | 109.5 |
C7—C8—C9 | 109.4 (2) | C16—C17—H17C | 109.5 |
C10—C8—H8 | 107.2 | H17A—C17—H17C | 109.5 |
C7—C8—H8 | 107.2 | H17B—C17—H17C | 109.5 |
C9—C8—H8 | 107.2 | C16—C18—H18A | 109.5 |
C8—C9—H9A | 109.5 | C16—C18—H18B | 109.5 |
C8—C9—H9B | 109.5 | H18A—C18—H18B | 109.5 |
H9A—C9—H9B | 109.5 | C16—C18—H18C | 109.5 |
C8—C9—H9C | 109.5 | H18A—C18—H18C | 109.5 |
H9A—C9—H9C | 109.5 | H18B—C18—H18C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···S3 | 0.99 | 2.34 | 2.907 (3) | 115 |
C7—H7A···S1 | 0.99 | 2.60 | 3.084 (3) | 110 |
C8—H8···S1i | 1.00 | 2.97 | 3.834 (3) | 146 |
C11—H11A···S4 | 0.99 | 2.33 | 2.896 (3) | 115 |
C11—H11B···S2ii | 0.99 | 2.87 | 3.810 (3) | 160 |
C16—H16···S2 | 1.00 | 2.91 | 3.473 (3) | 117 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z. |
Funding information
This work has been funded in part by support from the NSF (OIA 1539035 and DMR 1460637). The Louisiana Board of Regents is thanked for enhancement grant LEQSF–(2002–03)–ENH–TR–67 with which the Tulane X–ray diffractometer was purchased, and Tulane University is acknowledged for its ongoing support with operational costs for the diffraction facility.
References
Ajibade, P. A., Ejelonu, B. C. & Omondi, B. (2012). Acta Cryst. E68, o2182. CSD CrossRef IUCr Journals
Bai, F. Y., Li, X. T., Zhu, G. S. & Xing, Y. H. (2010). Spectrochim. Acta Part A, 75, 1388–1393. CSD CrossRef CAS
Bodige, S. G. & Watson, W. H. (2003). Private communication (refcode: ULOXIC). CCDC, Cambridge, England.
Bruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.
Chieh, C. (1977). Can. J. Chem. 55, 1115–1119. CSD CrossRef CAS
Chieh, C. (1978). Can. J. Chem. 56, 974–975. CSD CrossRef CAS
Datta, R. N. & Ingham, F. A. A. (2001). Rubber Additives – Compounding Ingredients. In Rubber Technologist's Handbook, edited by S. K. De & J. R. White, pp. 167–208. Shrewsbury, UK: Rapra Technology, Ltd.
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
Dix, M. F. & Rae, A. D. (1973). Cryst. Struct. Commun. 2, 159–162. CAS
Fun, H.-K., Chantrapromma, S., Razak, I. A., Bei, F.-L., Jian, F.-F., Yang, X.-J., Lu, L. & Wang, X. (2001). Acta Cryst. E57, o717–o718. Web of Science CSD CrossRef IUCr Journals
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Hall, V. J. & Tiekink, E. R. T. (1995). Z. Kristallogr. 210, 701–702. CAS
Heard, P. J. (2005). Prog. Inorg. Chem. 53, 1–70. CAS
Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71–561. Web of Science CrossRef CAS
Horita, Y., Takii, T., Yagi, T., Ogawa, K., Fujiwara, N., Inagaki, E., Kremer, L., Sato, Y., Kuroishi, R., Lee, Y., Makino, T., Mizukami, H., Hasegawa, T., Yamamoto, R. & Onozaki, K. (2012). Antimicrob. Agents Chemother. 56, 4140–4145. CrossRef CAS PubMed
Hu, S.-Z. (2000). Chin. J. Struct. Chem. 19, 234–238. CAS
Ignatz-Hoover, F. & To, B. H. (2016). Vulcanization. In Rubber Compounding: Chemistry and Applications, edited by B. Rodgers, ch. 11, pp. 461–522. Boca Raton, FL: CRC Press.
Ivanov, A. V., Zinkin, S. A., Forzling, W., Antzutkin, O. N. & Kritikos, M. (2003). Koord. Khim. 29, 151–160.
Jian, F., Jiang, L., Fun, H.-K., Chinnakali, K., Razak, I. A. & You, X. (1999). Acta Cryst. C55, 573–574. Web of Science CSD CrossRef CAS IUCr Journals
Jiao, Y., Hannafon, B. N. & Ding, W.-Q. (2016). Anticancer Agents Med. Chem. 16, 1378–1384. CrossRef CAS PubMed
Kapanda, C. N., Muccioli, C. G., Labar, G., Poupaert, J. H. & Lambert, D. M. (2009). J. Med. Chem. 52, 7310–7314. CrossRef PubMed CAS
Karim, Md. M., Abser, Md. M., Hassan, M. R., Ghosh, N., Alt, H. G., Richards, I. & Hogarth, G. (2012). Polyhedron, 42, 84–88. CSD CrossRef CAS
Karle, I. L., Estlin, J. A. & Britts, K. (1967). Acta Cryst. 22, 273–280. CSD CrossRef CAS IUCr Journals Web of Science
Kumar, V., Aravamudan, G. & Seshasayee, M. (1990). Acta Cryst. C46, 674–676. CSD CrossRef CAS Web of Science IUCr Journals
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals
Marøy, K. (1965). Acta Chem. Scand. 19, 1509.
Mutschler, J., Grosshans, M., Soyka, M. & Rösner, S. (2016). Pharmacopsychiatry, 49, 137–141. CAS PubMed
Nath, P., Bharty, M. K., Maiti, B., Bharti, B., Butcher, R. J., Wikaira, J. L. & Singh, N. K. (2016). RSC Adv. 6, 93867–93880. CSD CrossRef CAS
Polyakova, I. N. & Starikova, Z. A. (1990). Zh. Strukt. Khim. 31, 148–152. CAS
Prakasam, B. A., Ramalingam, K., Bocelli, G. & Cantoni, A. (2009). Phosphorus Sulfur Silicon, 184, 2020–2033. CSD CrossRef CAS
Quan, L., Yin, H., Zhai, J. & Wang, D. (2008). Acta Cryst. E64, m108. CSD CrossRef IUCr Journals
Radwan, M. A. (1969). Forest Sci. 15, 439–445. CAS
Raston, C. L. & White, A. H. (1976). Aust. J. Chem. 29, 523–529. CSD CrossRef CAS
Raya, I., Baba, I., Rosli, F. Z. & Yamin, B. M. (2005). Acta Cryst. E61, o3131–o3132. Web of Science CSD CrossRef IUCr Journals
Rout, G. C., Seshasayee, M. & Aravamudan, G. (1982). Cryst. Struct. Commun. 11, 1389–1393. CAS
Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391. CSD CrossRef CAS Web of Science
Sączewski, J., Frontera, A., Gdaniec, M., Brzozowski, Z., Sączewski, F., Tabin, P., Quiñonero, D. & Deyà, P. M. (2006). Chem. Phys. Lett. 422, 234–239.
Saravanan, M., Prakasam, B. A., Ramalingam, K., Bocelli, G. & Cantoni, A. (2005). Z. Anorg. Allg. Chem. 631, 1688–1692. CSD CrossRef CAS
Sharma, V. K., Aulakh, J. S. & Malik, A. K. (2003). J. Environ. Monit. 5, 717–723. CrossRef PubMed CAS
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Shi, B. & Wang, J. (1992). Xiamen Daxue Xuebao, Ziran Kexueban 31, 176-181.
Srinivasan, N., Thirumaran, S. & Selvanayagam, S. (2012). Acta Cryst. E68, o3446. CSD CrossRef IUCr Journals
Thirumaran, S., Ramalingam, K., Bocelli, G. & Cantoni, A. (2000). Polyhedron, 19, 1279–1282. CSD CrossRef CAS
Uludağ, N., Ateş, M., Çaylak Delibaş, N., Çelik, Ö. & Hökelek, T. (2013). Acta Cryst. E69, o771. CSD CrossRef IUCr Journals
Wang, Y. & Liao, J. H. (1989). Acta Cryst. B45, 65–69. CSD CrossRef CAS Web of Science IUCr Journals
Wang, Y., Liao, J.-H. & Ueng, C.-H. (1986). Acta Cryst. C42, 1420–1423. CSD CrossRef CAS IUCr Journals
Williams, G. A., Statham, J. R. & White, A. H. (1983). Aust. J. Chem. 36, 1371–1377. CSD CrossRef CAS
Yamin, B. M., Suwandi, S. A., Fun, H.-K., Sivakumar, K. & Shawkataly, O. B. (1996). Acta Cryst. C52, 951–953. CSD CrossRef CAS IUCr Journals
Ymén, I. (1983). Acta Chem. Scand. B, 37, 707–713.
Yu, B. & Wang, J.-L. (2003). Qingdao Keji Daxue Xuebao, Ziran Kexueban 24, 394-397.
Zhai, J., Yin, H.-D., Li, F., Chen, S.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, o1969–o1970. CSD CrossRef IUCr Journals
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.