research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfield analysis of the 4-(di­methyl­amino)­pyridine adduct of 4-meth­­oxy­phenyl­borane

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Biochemistry, and Physics, Eastern Washington, University, Cheney, WA 99004, USA, and bDepartment of Chemistry and Biochemistry, CAMCOR, University of Oregon, Eugene, OR 97403, USA
*Correspondence e-mail: eabbey@ewu.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 9 September 2017; accepted 17 October 2017; online 20 October 2017)

The title compound [systematic name: 4-(di­methyl­amino)­pyridine–4-meth­oxy­phenyl­borane (1/1)], C14H19BN2O, contains two independent mol­ecules in the asymmetric unit. Both molecules exhibit coplanar, mostly sp2-hybridized meth­oxy and di­methyl­amino substituents on their respective aromatic rings, consistent with π-donation into the aromatic systems. The B—H groups exhibit an intra­molecular close contact with a C—H group of the pyridine ring, which may be evidence of electrostatic attraction between the hydridic B—H and the electropositive aromatic C—H. There appears to be weak C—H⋯π(arene) inter­actions between two of the H atoms of an amino­methyl group and the meth­oxy-substituted benzene ring of the other independent mol­ecule, and another C—H⋯π (arene) inter­action between one of the pyridine ring H atoms and the same benzene ring.

1. Chemical context

Monoorganoboranes (RBH2) have been the focus of chemical research for over fifty years, most notably for their use in the indispensable hydro­boration reaction, which permits reduction of olefins, carbonyl compounds and others (Brown & Krishnamurthy, 1979[Brown, H. C. & Krishnamurthy, S. (1979). Tetrahedron, 35, 567-607.]; Crudden & Edwards, 2003[Crudden, C. M. & Edwards, D. (2003). Eur. J. Org. Chem. pp. 4695-4712.].) Such boranes are often isolated as their Lewis base adducts, in which the base donates a lone pair into the vacant p orbital of the sp2 borane. Among the most common class of Lewis bases for the formation of borane adducts are amines. Amine boranes are widely used as hydro­boration reagents (Clay & Vedejs, 2005[Clay, J. M. & Vedejs, E. (2005). J. Am. Chem. Soc. 127, 5766-5767.]), precursors for borenium cation synthesis (De Vries et al., 2012[De Vries, T. S., Prokofjevs, A. & Vedejs, E. (2012). Chem. Rev. 112, 4246-4282.]), frustrated Lewis pairs (Stephan, 2015[Stephan, D. L. (2015). J. Am. Chem. Soc. 137, 10018-10032.]), and have been investigated as hydrogen-storage materials (Campbell et al., 2010[Campbell, P. G., Zakharov, L. N., Grant, D. J., Dixon, D. A. & Liu, S.-Y. (2010). J. Am. Chem. Soc. 132, 3289-3291.]). We have synthesized the zwitterionic title compound by hydride removal from sodium 4-meth­oxy­phenyl­borohydride with chloro­tri­methyl­silane in the presence of 4-di­methyl­amino­pyridine. This compound is slightly unusual, as examples of monoorganoboranes with hetero­atoms on the organic substitituent are limited.

2. Structural commentary

The asymmetric unit contains two independent mol­ecules (Figs. 1[link] and 2[link]) with only slightly different geometric features (Fig. 3[link]). In both mol­ecules, the boron atom appears to be sp3 hybridized [C1—B1—N1 = 110.8 (1) and C1′—B1′—N1′ = 111.0 (1)°] . The B1—C1 and B1′—C1′ distances [1.608 (2) and 1.611 (2) Å, respectively] are consistent with a formal C—B single bond. The oxygen atom of both meth­oxy groups appears to be mostly sp2 hybridized, [C7—O1—C4 = 117.3 (1) and C7′—O1′—C4′ = 117.4 (1)°] and is close to coplanar with the phenyl ring [torsion angles C7—O1—C4—C3 = −7.4 (2) and C7′—O1′—C4′—C3′ = −7.1 (2)°], consistent with π-donation into the phenyl ring.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of one of the independent mol­ecules of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of the other independent mol­ecule of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
An overlay of the two independent mol­ecules.

The geometries of the 4-(dimethylamino)pyridine (DMAP) fragment of both mol­ecules is similar to other structures of DMAP–borane adducts. The nitro­gen atom of the di­methyl­amino fragment appears to be sp2 hybridized [torsion angles C13—N2—C10 = 121.0 (1)° and C13′—N2′—C10′ = 122.2 (1)°] and is close to coplanar [torsion angles C13—N2—C10—C11 = 2.4 (2) and C13′—N2′—C10′—C11′ = 3.4 (1)°] consistent with π-donation into the pyridine ring.

The B1—N1 and B1′—N1′ distances [1.597 (2) and 1.595 (2) Å, respectively] are consistent with formal N—B single bonds, and are within the range observed for other DMAP–borane adducts (see Database survey). Inter­estingly, the B—H atoms exhibit intra­molecular close contacts with the C—H atoms of the pyridine ring [H12⋯H2B = 2.26 (3) and H12′⋯H2B′ = 2.27 (3) Å] and are close to coplanar [torsion angles H2B—B1—N1—C12 = 4(1) and H2B—B1—N1—C12 = 16 (1)°], which may be evidence of electrostatic inter­actions between the hydridic B—H atoms and electropositive aromatic C—H atoms, and is observed in other DMAP–borane adducts (see Database Survey). The planes of the pyridine rings and the benzene rings are almost normal to one another [the dihedral angle between the C1–C6 and C8–C12/N1 rings is 73.14 (7)° and that between the C1′–C6′ and C8′–C12′/N1′ rings is 74.15 (7)°]. Perhaps the most significant difference between the two mol­ecules is the 9.0° difference in the torsion angle about the B—N bond [C1—B1—N1—C8 = −63.9 (2) while C1′—B1′—N1′—C8′ = −72.9 (2)°] (Fig. 3[link]).

3. Supra­molecular features

The mol­ecules within the asymmetric unit exhibit weak C—H⋯π (arene) inter­actions between two of the hydrogen atoms of the amino­methyl group and the meth­oxy­phenyl group of a neighboring mol­ecule (see Table 1[link]) as well as a C—H⋯π(arene) inter­action between one of the pyridine hydrogen atoms and the same meth­oxy­phenyl ring (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1′–C6′ ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9ACg 0.95 3.12 4.069 (2) 178
C13—H13ACg 0.97 3.12 3.662 (2) 112
C13—H13CCg 0.97 3.23 3.662 (2) 109
[Figure 4]
Figure 4
Weak C—H⋯π (arene) inter­actions between the two independent mol­ecules in the unit cell shown as dashed lines. Cg is the centroid of the C1′–C6′ benzene ring. Only H atoms involved in the inter­actions are shown.

4. Hirshfield analysis

The weak inter­molecular inter­actions of the title compound were explored by Hirshfield analysis. Hirshfield surfaces were generated using Crystal Explorer 3.1 (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The space within a crystal is partitioned so that the ratio of promolecule to procrystal is equal to 0.5, generating continuous surfaces that permit the visualization of weak inter­actions. The dnorm values illustrate whether the inter­molecular contact is shorter or longer than the van der Waals radii. Red areas of the Hirshfield surface indicate negative dnorm values contacts closer than the van der Waals radii. This analysis lends further support to the weak C—Hπ (arene) inter­actions described in the previous section (Fig. 5[link].)

[Figure 5]
Figure 5
Hirshfield surface mapped over dnorm. Red areas highlight inter­molecular contacts shorter than the sum of the van der Waals radii.

5. Database survey

A search of the Cambridge Structural Database (Version 5.37, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for DMAP–borane adducts yielded only two structures: VOGJEI (Chu, et al., 2014[Chu, J., Han, X., Kefalidis, C. E., Zhou, J., Maron, L., Leng, X. & Chen, Y. (2014). J. Am. Chem. Soc. 136, 10894-10897.]) and JUDQAA (Lesley et al., 1998[Lesley, M. J. G., Woodward, A., Taylor, N. J., Marder, T. B., Cazenobe, I., Ledoux, I., Zyss, J., Thornton, A., Bruce, D. W. & Kakkar, A. K. (1998). Chem. Mater. 10, 1355-1365.]). A search for phenyl-based monoorganoborane–amine adducts (Ph–BH2–NR3) yielded four structures: UTOZEJ (Hubner et al., 2012[Jacobs, E. A., Fuller, A., Coles, S. J., Jones, G. A., Tizzard, G. J., Wright, J. A. & Lancaster, S. J. (2012). Chem. Eur. J. 18, 8647-8658.]), BEXQOM (Ménard & Stephan, 2013[Ménard, G. & Stephan, D. W. (2013). Dalton Trans. 42, 5447-5453.]), EPOYAK (Franz et al., 2011[Franz, D., Bolte, M., Lerner, H.-W. & Wagner, M. (2011). Dalton Trans. 40, 2433-2440.]), and GEBNAE (Jacobs et al., 2012[Jacobs, E. A., Fuller, A., Coles, S. J., Jones, G. A., Tizzard, G. J., Wright, J. A. & Lancaster, S. J. (2012). Chem. Eur. J. 18, 8647-8658.]). In all four of these structures, the B—N bonds are approximately perpendicular to the plane of the arene rings. In all six cases, the boron atom is tetra­hedral and displays structural features consistent with sp3 hybridization. Additionally, the C—B and B—N bonds are all within the range for formal C—B and C—N single bonds.

6. Synthesis and crystallization

In a nitro­gen-filled glove box, sodium 4-meth­oxy­phenyl­borohydride (97mg, 0.67 mmol) and 4-di­methyl­amino­pyridine (82 mg, 0.67 mmol) were combined in a 20 mL vial containing a stir bar and dissolved in anhydrous THF (4 mL). The solution was cooled to 247 K in the freezer and chloro­tri­methyl­silane (73 mg, 0.67 mmol) was added dropwise via syringe. The reaction was allowed to come to 295 K and was stirred for 1 h. The solvent was then removed in vacuo and the residue was washed with anhydrous diethyl ether (4 mL), followed by extraction with anhydrous di­chloro­methane (4 mL). The extract was filtered through a 0.45 µm PTFE syringe filter. The solvent was again removed in vacuo to afford a white solid (51 mg, 37%). Crystals suitable for X-ray diffraction were grown by diffusion of pentane into a concentrated solution of the title compound in anhydrous di­chloro­methane.

1H NMR (500 MHz, CDCl3) δ (ppm): 8.12 (d, 2H, J = 7 Hz), 7.23 (d, 2 H, J = 8 Hz), 6.80 (d, 2H, J = 8.5 Hz), 6.52 (d, 2H, J = 8 Hz), 3.78 (s, 3H), 3.11 (s, 6H). 13C NMR (126 MHz, CDCl3) δ (ppm): 157.3, 154.9, 146.7, 145.0 (br s), 134.5, 122.9, 106.5, 55.0, 39.5. 11B NMR (160 MHz, CDCl3) δ (ppm): −5.0 (br, s). FTIR (ATR, cm−1): 3012, 2952, 2923, 2853, 2610, 2346, 2288, 2227, 1634, 1548, 1442, 1418, 1392, 1237, 1223, 1161, 1076, 1031, 811, 797, 548, 515.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were refined in calculated positions (C—H = 0.95 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2eq(C) for other H atoms. The B-bound H atoms were located in a difference-Fourier map and freely refined. Methyl H atoms were refined without restrictions on rotation around the C—C bonds, HFIX 138 in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Table 2
Experimental details

Crystal data
Chemical formula C14H19BN2O
Mr 242.12
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 173
a, b, c (Å) 12.3538 (6), 18.7727 (10), 23.4056 (12)
V3) 5428.1 (5)
Z 16
Radiation type Cu Kα
μ (mm−1) 0.58
Crystal size (mm) 0.14 × 0.09 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.695, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 46022, 4800, 3948
Rint 0.063
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.144, 1.08
No. of reflections 4800
No. of parameters 353
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-(Dimethylamino)pyridine–4-methoxyphenylborane (1/1) top
Crystal data top
C14H19BN2ODx = 1.185 Mg m3
Mr = 242.12Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 6122 reflections
a = 12.3538 (6) Åθ = 3.8–66.5°
b = 18.7727 (10) ŵ = 0.58 mm1
c = 23.4056 (12) ÅT = 173 K
V = 5428.1 (5) Å3Cut-block, colorless
Z = 160.14 × 0.09 × 0.07 mm
F(000) = 2080
Data collection top
Bruker APEXII CCD
diffractometer
3948 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.063
φ and ω scansθmax = 66.6°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.695, Tmax = 0.753k = 2221
46022 measured reflectionsl = 2727
4800 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0934P)2 + 0.2472P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4800 reflectionsΔρmax = 0.22 e Å3
353 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B11.01984 (15)0.31745 (11)0.41477 (9)0.0427 (4)
O10.94372 (10)0.19525 (7)0.63937 (5)0.0486 (3)
N10.91495 (10)0.31876 (7)0.37491 (5)0.0350 (3)
N20.64797 (11)0.31846 (7)0.26602 (6)0.0409 (3)
C10.99199 (12)0.28402 (8)0.47629 (6)0.0336 (3)
C20.88854 (12)0.27979 (8)0.50007 (7)0.0349 (3)
H2A0.82900.29680.47830.042*
C30.86858 (12)0.25193 (8)0.55404 (7)0.0367 (3)
H3A0.79690.25040.56860.044*
C40.95416 (12)0.22634 (8)0.58646 (6)0.0365 (3)
C51.05847 (12)0.23022 (9)0.56465 (7)0.0386 (4)
H5A1.11780.21350.58670.046*
C61.07595 (12)0.25838 (8)0.51094 (7)0.0364 (3)
H6A1.14800.26050.49690.044*
C70.84022 (17)0.19686 (13)0.66503 (8)0.0623 (5)
H7A0.8163 (7)0.2472 (7)0.6695 (7)0.093*
H7B0.8437 (4)0.1737 (9)0.7032 (6)0.093*
H7C0.7877 (8)0.1708 (9)0.6404 (5)0.093*
C80.86637 (13)0.25774 (8)0.35835 (7)0.0384 (4)
H8A0.89520.21400.37200.046*
C90.77855 (12)0.25513 (8)0.32330 (7)0.0372 (3)
H9A0.74790.21040.31330.045*
C100.73265 (12)0.31892 (8)0.30166 (6)0.0331 (3)
C110.78395 (13)0.38231 (8)0.31977 (7)0.0365 (3)
H11A0.75720.42710.30720.044*
C120.87174 (13)0.37956 (8)0.35519 (6)0.0365 (3)
H12A0.90410.42320.36650.044*
C130.59485 (15)0.25190 (10)0.25018 (8)0.0502 (4)
H13A0.6465 (8)0.2208 (5)0.2318 (6)0.075*
H13B0.5359 (11)0.26183 (17)0.2242 (6)0.075*
H13C0.5669 (11)0.2290 (5)0.2841 (5)0.075*
C140.60151 (17)0.38459 (11)0.24483 (9)0.0582 (5)
H14A0.5688 (13)0.4106 (6)0.2764 (5)0.087*
H14B0.5465 (13)0.37391 (18)0.2163 (7)0.087*
H14C0.6582 (9)0.4135 (6)0.2276 (7)0.087*
B1'0.69503 (16)0.06081 (12)0.15670 (9)0.0453 (5)
O1'0.60935 (10)0.06495 (7)0.40101 (5)0.0465 (3)
N1'0.59005 (11)0.04914 (7)0.11816 (5)0.0376 (3)
N2'0.31932 (10)0.01508 (7)0.01478 (6)0.0381 (3)
C1'0.66395 (12)0.06221 (8)0.22354 (7)0.0353 (3)
C2'0.55974 (13)0.05774 (9)0.24570 (7)0.0390 (4)
H2'A0.50100.05330.21970.047*
C3'0.53692 (13)0.05950 (9)0.30416 (7)0.0391 (4)
H3'A0.46420.05670.31720.047*
C4'0.62082 (13)0.06528 (8)0.34280 (7)0.0355 (3)
C5'0.72647 (12)0.07031 (8)0.32248 (7)0.0375 (4)
H5'A0.78500.07470.34860.045*
C6'0.74621 (12)0.06892 (8)0.26434 (7)0.0365 (4)
H6'A0.81890.07270.25150.044*
C7'0.50222 (15)0.06648 (10)0.42327 (8)0.0505 (4)
H7'10.4633 (7)0.1089 (7)0.4080 (6)0.076*
H7'20.50509 (15)0.0693 (8)0.4658 (6)0.076*
H7'30.4632 (7)0.0223 (7)0.4117 (6)0.076*
C8'0.54070 (13)0.01494 (9)0.11568 (7)0.0389 (4)
H8'A0.57010.05280.13760.047*
C9'0.45100 (13)0.02840 (8)0.08343 (7)0.0370 (3)
H9'A0.41930.07450.08390.044*
C10'0.40477 (12)0.02603 (8)0.04920 (6)0.0335 (3)
C11'0.45656 (13)0.09326 (8)0.05317 (6)0.0360 (3)
H11B0.42900.13260.03220.043*
C12'0.54561 (13)0.10182 (8)0.08691 (7)0.0372 (3)
H12B0.57820.14760.08850.045*
C13'0.26225 (14)0.05283 (9)0.01282 (8)0.0450 (4)
H13D0.3125 (7)0.0908 (5)0.0187 (6)0.068*
H13E0.2285 (10)0.0583 (4)0.0236 (5)0.068*
H13F0.2083 (10)0.0539 (3)0.0421 (5)0.068*
C14'0.26866 (14)0.07399 (10)0.01557 (8)0.0459 (4)
H14D0.2354 (11)0.1068 (6)0.0122 (4)0.069*
H14E0.2125 (11)0.0554 (2)0.0414 (5)0.069*
H14F0.3238 (7)0.0996 (6)0.0380 (5)0.069*
H1'B0.7533 (16)0.0147 (10)0.1468 (8)0.048 (5)*
H1B1.0840 (16)0.2841 (11)0.3930 (8)0.051 (5)*
H2'B0.7314 (16)0.1141 (10)0.1398 (9)0.052 (5)*
H2B1.0475 (17)0.3752 (11)0.4179 (9)0.056 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0358 (9)0.0501 (11)0.0424 (10)0.0072 (8)0.0031 (8)0.0077 (8)
O10.0447 (7)0.0665 (8)0.0345 (6)0.0031 (6)0.0016 (5)0.0079 (5)
N10.0361 (7)0.0375 (7)0.0315 (7)0.0030 (5)0.0009 (5)0.0049 (5)
N20.0397 (7)0.0423 (8)0.0406 (7)0.0009 (6)0.0056 (6)0.0007 (6)
C10.0324 (7)0.0329 (7)0.0354 (8)0.0015 (6)0.0026 (6)0.0015 (6)
C20.0303 (7)0.0369 (8)0.0375 (8)0.0020 (6)0.0049 (6)0.0006 (6)
C30.0290 (7)0.0423 (8)0.0386 (8)0.0001 (6)0.0019 (6)0.0028 (6)
C40.0390 (8)0.0407 (8)0.0298 (7)0.0001 (6)0.0022 (6)0.0017 (6)
C50.0335 (8)0.0454 (9)0.0370 (8)0.0026 (6)0.0075 (6)0.0008 (7)
C60.0273 (7)0.0431 (8)0.0387 (8)0.0005 (6)0.0005 (6)0.0017 (6)
C70.0574 (12)0.0904 (15)0.0391 (10)0.0067 (10)0.0129 (8)0.0114 (10)
C80.0417 (8)0.0327 (8)0.0407 (8)0.0009 (6)0.0021 (7)0.0070 (6)
C90.0418 (8)0.0314 (7)0.0385 (8)0.0039 (6)0.0003 (7)0.0005 (6)
C100.0337 (7)0.0379 (8)0.0277 (7)0.0013 (6)0.0039 (6)0.0001 (6)
C110.0435 (8)0.0324 (8)0.0336 (8)0.0030 (6)0.0000 (6)0.0006 (6)
C120.0434 (8)0.0334 (8)0.0328 (8)0.0032 (6)0.0018 (6)0.0000 (6)
C130.0459 (9)0.0540 (10)0.0507 (10)0.0061 (8)0.0117 (8)0.0059 (8)
C140.0568 (12)0.0560 (11)0.0618 (12)0.0110 (9)0.0197 (9)0.0004 (9)
B1'0.0333 (9)0.0635 (12)0.0392 (10)0.0031 (8)0.0021 (8)0.0000 (8)
O1'0.0467 (7)0.0583 (7)0.0345 (6)0.0036 (5)0.0030 (5)0.0021 (5)
N1'0.0349 (7)0.0465 (8)0.0315 (7)0.0003 (5)0.0042 (5)0.0018 (5)
N2'0.0345 (7)0.0418 (7)0.0378 (7)0.0006 (5)0.0013 (5)0.0025 (5)
C1'0.0328 (8)0.0339 (7)0.0393 (8)0.0006 (6)0.0021 (6)0.0000 (6)
C2'0.0308 (8)0.0505 (9)0.0358 (8)0.0013 (6)0.0052 (6)0.0034 (7)
C3'0.0300 (8)0.0469 (9)0.0403 (9)0.0005 (6)0.0006 (6)0.0014 (7)
C4'0.0398 (8)0.0323 (7)0.0345 (8)0.0018 (6)0.0025 (6)0.0024 (6)
C5'0.0351 (8)0.0343 (8)0.0431 (9)0.0009 (6)0.0108 (7)0.0014 (6)
C6'0.0291 (7)0.0354 (8)0.0449 (9)0.0008 (6)0.0013 (6)0.0001 (6)
C7'0.0538 (11)0.0577 (11)0.0399 (9)0.0058 (8)0.0071 (8)0.0059 (8)
C8'0.0408 (8)0.0427 (8)0.0333 (8)0.0051 (7)0.0034 (6)0.0034 (6)
C9'0.0402 (8)0.0365 (8)0.0345 (8)0.0002 (6)0.0049 (6)0.0004 (6)
C10'0.0329 (7)0.0383 (8)0.0292 (7)0.0024 (6)0.0064 (6)0.0022 (6)
C11'0.0375 (8)0.0358 (8)0.0346 (8)0.0037 (6)0.0041 (6)0.0007 (6)
C12'0.0386 (8)0.0375 (8)0.0354 (8)0.0011 (6)0.0067 (6)0.0026 (6)
C13'0.0406 (9)0.0491 (9)0.0454 (9)0.0092 (7)0.0018 (7)0.0001 (7)
C14'0.0403 (9)0.0520 (10)0.0455 (10)0.0028 (7)0.0049 (7)0.0069 (7)
Geometric parameters (Å, º) top
B1—N11.597 (2)B1'—N1'1.595 (2)
B1—C11.608 (2)B1'—C1'1.611 (2)
B1—H1B1.13 (2)B1'—H1'B1.150 (19)
B1—H2B1.14 (2)B1'—H2'B1.166 (19)
O1—C41.3752 (19)O1'—C4'1.370 (2)
O1—C71.413 (2)O1'—C7'1.423 (2)
N1—C121.342 (2)N1'—C12'1.347 (2)
N1—C81.350 (2)N1'—C8'1.350 (2)
N2—C101.338 (2)N2'—C10'1.344 (2)
N2—C141.455 (2)N2'—C14'1.456 (2)
N2—C131.459 (2)N2'—C13'1.458 (2)
C1—C21.396 (2)C1'—C2'1.390 (2)
C1—C61.402 (2)C1'—C6'1.400 (2)
C2—C31.389 (2)C2'—C3'1.397 (2)
C2—H2A0.9500C2'—H2'A0.9500
C3—C41.387 (2)C3'—C4'1.380 (2)
C3—H3A0.9500C3'—H3'A0.9500
C4—C51.388 (2)C4'—C5'1.392 (2)
C5—C61.381 (2)C5'—C6'1.383 (2)
C5—H5A0.9500C5'—H5'A0.9500
C6—H6A0.9500C6'—H6'A0.9500
C7—H7A0.996 (14)C7'—H7'10.996 (14)
C7—H7B0.996 (14)C7'—H7'20.996 (14)
C7—H7C0.996 (14)C7'—H7'30.996 (14)
C8—C91.361 (2)C8'—C9'1.364 (2)
C8—H8A0.9500C8'—H8'A0.9500
C9—C101.419 (2)C9'—C10'1.419 (2)
C9—H9A0.9500C9'—H9'A0.9500
C10—C111.413 (2)C10'—C11'1.418 (2)
C11—C121.366 (2)C11'—C12'1.364 (2)
C11—H11A0.9500C11'—H11B0.9500
C12—H12A0.9500C12'—H12B0.9500
C13—H13A0.967 (13)C13'—H13D0.955 (12)
C13—H13B0.967 (13)C13'—H13E0.955 (12)
C13—H13C0.967 (13)C13'—H13F0.955 (12)
C14—H14A0.973 (15)C14'—H14D0.985 (12)
C14—H14B0.973 (15)C14'—H14E0.985 (12)
C14—H14C0.973 (15)C14'—H14F0.985 (12)
N1—B1—C1110.83 (13)N1'—B1'—C1'110.96 (13)
N1—B1—H1B108.2 (10)N1'—B1'—H1'B107.0 (10)
C1—B1—H1B109.7 (10)C1'—B1'—H1'B110.9 (10)
N1—B1—H2B105.5 (10)N1'—B1'—H2'B103.9 (10)
C1—B1—H2B112.2 (11)C1'—B1'—H2'B114.0 (10)
H1B—B1—H2B110.2 (14)H1'B—B1'—H2'B109.7 (14)
C4—O1—C7117.30 (14)C4'—O1'—C7'117.41 (13)
C12—N1—C8116.49 (13)C12'—N1'—C8'116.54 (13)
C12—N1—B1122.47 (13)C12'—N1'—B1'122.52 (14)
C8—N1—B1121.02 (13)C8'—N1'—B1'120.93 (14)
C10—N2—C14121.03 (14)C10'—N2'—C14'120.93 (13)
C10—N2—C13121.04 (13)C10'—N2'—C13'122.19 (13)
C14—N2—C13117.81 (14)C14'—N2'—C13'116.18 (14)
C2—C1—C6115.29 (14)C2'—C1'—C6'115.03 (14)
C2—C1—B1125.10 (13)C2'—C1'—B1'125.57 (14)
C6—C1—B1119.59 (14)C6'—C1'—B1'119.39 (14)
C3—C2—C1123.11 (14)C1'—C2'—C3'123.40 (15)
C3—C2—H2A118.4C1'—C2'—H2'A118.3
C1—C2—H2A118.4C3'—C2'—H2'A118.3
C4—C3—C2119.50 (14)C4'—C3'—C2'119.48 (15)
C4—C3—H3A120.2C4'—C3'—H3'A120.3
C2—C3—H3A120.2C2'—C3'—H3'A120.3
O1—C4—C3124.62 (14)O1'—C4'—C3'125.02 (15)
O1—C4—C5116.14 (14)O1'—C4'—C5'115.90 (14)
C3—C4—C5119.23 (14)C3'—C4'—C5'119.06 (15)
C6—C5—C4120.01 (14)C6'—C5'—C4'120.00 (14)
C6—C5—H5A120.0C6'—C5'—H5'A120.0
C4—C5—H5A120.0C4'—C5'—H5'A120.0
C5—C6—C1122.85 (14)C5'—C6'—C1'123.02 (14)
C5—C6—H6A118.6C5'—C6'—H6'A118.5
C1—C6—H6A118.6C1'—C6'—H6'A118.5
O1—C7—H7A109.5O1'—C7'—H7'1109.5
O1—C7—H7B109.5O1'—C7'—H7'2109.5
H7A—C7—H7B109.5H7'1—C7'—H7'2109.5
O1—C7—H7C109.5O1'—C7'—H7'3109.5
H7A—C7—H7C109.5H7'1—C7'—H7'3109.5
H7B—C7—H7C109.5H7'2—C7'—H7'3109.5
N1—C8—C9123.92 (14)N1'—C8'—C9'123.76 (14)
N1—C8—H8A118.0N1'—C8'—H8'A118.1
C9—C8—H8A118.0C9'—C8'—H8'A118.1
C8—C9—C10120.23 (14)C8'—C9'—C10'120.40 (14)
C8—C9—H9A119.9C8'—C9'—H9'A119.8
C10—C9—H9A119.9C10'—C9'—H9'A119.8
N2—C10—C11122.89 (14)N2'—C10'—C9'123.00 (14)
N2—C10—C9121.99 (14)N2'—C10'—C11'122.00 (14)
C11—C10—C9115.11 (14)C9'—C10'—C11'114.99 (14)
C12—C11—C10120.41 (14)C12'—C11'—C10'120.44 (14)
C12—C11—H11A119.8C12'—C11'—H11B119.8
C10—C11—H11A119.8C10'—C11'—H11B119.8
N1—C12—C11123.83 (14)N1'—C12'—C11'123.83 (14)
N1—C12—H12A118.1N1'—C12'—H12B118.1
C11—C12—H12A118.1C11'—C12'—H12B118.1
N2—C13—H13A109.5N2'—C13'—H13D109.5
N2—C13—H13B109.5N2'—C13'—H13E109.5
H13A—C13—H13B109.5H13D—C13'—H13E109.5
N2—C13—H13C109.5N2'—C13'—H13F109.5
H13A—C13—H13C109.5H13D—C13'—H13F109.5
H13B—C13—H13C109.5H13E—C13'—H13F109.5
N2—C14—H14A109.5N2'—C14'—H14D109.5
N2—C14—H14B109.5N2'—C14'—H14E109.5
H14A—C14—H14B109.5H14D—C14'—H14E109.5
N2—C14—H14C109.5N2'—C14'—H14F109.5
H14A—C14—H14C109.5H14D—C14'—H14F109.5
H14B—C14—H14C109.5H14E—C14'—H14F109.5
C1—B1—N1—C12117.49 (16)C1'—B1'—N1'—C12'106.68 (17)
C1—B1—N1—C863.9 (2)C1'—B1'—N1'—C8'72.92 (19)
N1—B1—C1—C221.1 (2)N1'—B1'—C1'—C2'3.2 (2)
N1—B1—C1—C6160.91 (14)N1'—B1'—C1'—C6'177.29 (14)
C6—C1—C2—C30.4 (2)C6'—C1'—C2'—C3'0.2 (2)
B1—C1—C2—C3178.43 (15)B1'—C1'—C2'—C3'179.71 (16)
C1—C2—C3—C40.5 (2)C1'—C2'—C3'—C4'0.6 (3)
C7—O1—C4—C37.4 (2)C7'—O1'—C4'—C3'7.1 (2)
C7—O1—C4—C5173.96 (17)C7'—O1'—C4'—C5'174.38 (14)
C2—C3—C4—O1177.46 (15)C2'—C3'—C4'—O1'177.51 (15)
C2—C3—C4—C51.1 (2)C2'—C3'—C4'—C5'1.0 (2)
O1—C4—C5—C6177.77 (14)O1'—C4'—C5'—C6'178.10 (13)
C3—C4—C5—C60.9 (2)C3'—C4'—C5'—C6'0.5 (2)
C4—C5—C6—C10.1 (2)C4'—C5'—C6'—C1'0.3 (2)
C2—C1—C6—C50.6 (2)C2'—C1'—C6'—C5'0.6 (2)
B1—C1—C6—C5178.75 (15)B1'—C1'—C6'—C5'179.77 (15)
C12—N1—C8—C90.4 (2)C12'—N1'—C8'—C9'0.6 (2)
B1—N1—C8—C9178.28 (15)B1'—N1'—C8'—C9'179.78 (14)
N1—C8—C9—C100.2 (2)N1'—C8'—C9'—C10'0.9 (2)
C14—N2—C10—C111.7 (2)C14'—N2'—C10'—C9'174.39 (14)
C13—N2—C10—C11177.60 (15)C13'—N2'—C10'—C9'4.4 (2)
C14—N2—C10—C9179.35 (16)C14'—N2'—C10'—C11'6.6 (2)
C13—N2—C10—C93.4 (2)C13'—N2'—C10'—C11'176.65 (14)
C8—C9—C10—N2178.37 (14)C8'—C9'—C10'—N2'177.12 (14)
C8—C9—C10—C110.7 (2)C8'—C9'—C10'—C11'1.9 (2)
N2—C10—C11—C12178.48 (14)N2'—C10'—C11'—C12'177.51 (14)
C9—C10—C11—C120.6 (2)C9'—C10'—C11'—C12'1.5 (2)
C8—N1—C12—C110.5 (2)C8'—N1'—C12'—C11'1.0 (2)
B1—N1—C12—C11178.13 (15)B1'—N1'—C12'—C11'179.36 (14)
C10—C11—C12—N10.1 (2)C10'—C11'—C12'—N1'0.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1'–C6' ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cg0.953.124.069 (2)178
C13—H13A···Cg0.973.123.662 (2)112
C13—H13C···Cg0.973.233.662 (2)109
 

Funding information

Funding for this research was provided by: Eastern Washington University Faculty Grants for Creative Works.

References

First citationBrown, H. C. & Krishnamurthy, S. (1979). Tetrahedron, 35, 567–607.  CAS
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCampbell, P. G., Zakharov, L. N., Grant, D. J., Dixon, D. A. & Liu, S.-Y. (2010). J. Am. Chem. Soc. 132, 3289–3291.  CAS PubMed
First citationChu, J., Han, X., Kefalidis, C. E., Zhou, J., Maron, L., Leng, X. & Chen, Y. (2014). J. Am. Chem. Soc. 136, 10894–10897.  CAS PubMed
First citationClay, J. M. & Vedejs, E. (2005). J. Am. Chem. Soc. 127, 5766–5767.  Web of Science CrossRef PubMed CAS
First citationCrudden, C. M. & Edwards, D. (2003). Eur. J. Org. Chem. pp. 4695–4712.
First citationDe Vries, T. S., Prokofjevs, A. & Vedejs, E. (2012). Chem. Rev. 112, 4246–4282.  CAS PubMed
First citationFranz, D., Bolte, M., Lerner, H.-W. & Wagner, M. (2011). Dalton Trans. 40, 2433–2440.  CAS PubMed
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationJacobs, E. A., Fuller, A., Coles, S. J., Jones, G. A., Tizzard, G. J., Wright, J. A. & Lancaster, S. J. (2012). Chem. Eur. J. 18, 8647–8658.  CSD CrossRef CAS PubMed
First citationLesley, M. J. G., Woodward, A., Taylor, N. J., Marder, T. B., Cazenobe, I., Ledoux, I., Zyss, J., Thornton, A., Bruce, D. W. & Kakkar, A. K. (1998). Chem. Mater. 10, 1355–1365.  CSD CrossRef CAS
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef
First citationMénard, G. & Stephan, D. W. (2013). Dalton Trans. 42, 5447–5453.  PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS
First citationStephan, D. L. (2015). J. Am. Chem. Soc. 137, 10018–10032.  CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds