research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­(μ2-4-bromo-2-[({2-[({2-[(5-bromo-2-oxido­benzyl­idene)amino]ethyl}sulfanyl)sulfonyl]ethyl}imino)methyl]phenolato)dicopper(II) di­methylformamide disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine
*Correspondence e-mail: rusanova.j@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 20 September 2017; accepted 25 October 2017; online 31 October 2017)

The title dinuclear copper(II) complex [Cu2(C18H16Br2N2O4S2)2] was prepared by direct synthesis of a dianionic Schiff base derived from 5-bromo­salicyl­aldehyde and cyste­amine. The discrete mol­ecules lie across inversion centers and crystallize with two di­methyl­formamide (DMF) mol­ecules of crystallization. The unique CuII ion is four-coordinated by two tetra­dentate Schiff base ligands in a distorted square-planar N2O2 environment. In the crystal, short inter­molecular S⋯Br contacts, weak C—H⋯O hydrogen bonds and intra- and inter­molecular ππ stacking inter­actions between rings of the ligand link the components into a two-dimensional network parallel to (010).

1. Chemical context

Schiff bases and their metal complexes have been studied extensively over the past few decades and represent one of the most widely used organic compounds due to their synthetic flexibility and wide range of applications (Mitra et al.,1997[Mitra, A., Banerjee, T., Roychowdhury, P., Chaudhuri, S., Bera, P. & Saha, N. (1997). Polyhedron, 16, 3735-3742.]; Bera et al.,1998[Bera, P., Butcher, R. J. & Saha, N. (1998). Chem. Lett. 27, 559-560.]; Prabhakaran et al., 2004[Prabhakaran, R., Geetha, A., Thilagavathi, M., Karvembu, R., Krishnan, V., Bertagnolli, H. & Natarajan, K. (2004). J. Inorg. Biochem. 98, 2131-2140.]). Spontaneous self-assembly of Schiff base ligands appears to be an extremely powerful tool for the construction of novel polynuclear compounds. Such complexes having sulfur-containing ligands are of considerable inter­est because of their diverse coordination modes and bridging ability. The formation and cleavage of di­sulfide bonds are known to be important for the biological activity of several sulfur-containing peptides and proteins (Gilbert et al.,1999[Gilbert, B. C., Silvester, S., Walton, P. H. & Whitwood, A. C. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1891-1895.]; Jacob et al., 2003[Jacob, C., Giles, G. L., Giles, N. M. & Sies, H. (2003). Angew. Chem. Int. Ed. 42, 4742-4758.]). It has been shown earlier that copper(II) complexes containing ligands having thio­alkyl moieties are efficient DNA-cleaving agents on treatment with either a reducing agent or on photo-irradiation (Dhar et al., 2005[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 344-348.]). In these studies, we continued our investigations in the field of direct synthesis – an efficient method to obtain novel mixed-valence (Kovbasyuk et al., 1997[Kovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161-163.]) and heterometallic complexes with polynuclear (Vassilyeva et al., 1997[Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263-266.]; Kovbasyuk et al., 1998[Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735-2738.]; Semenaka et al., 2010[Semenaka, V. V., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Zubatyuk, R. I., Shishkin, O. V., Boča, R., Jezierska, J. & Ozarowski, A. (2010). Inorg. Chem. 49, 5460-5471.]) and polymeric [Nesterova (Pryma) et al., 2004[Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450-454.], Nesterova et al., 2005[Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425-1434.], 2008[Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431-1436.]] structures. The conditions of direct synthesis influence the spontaneous self-assembly process enabling preparation of coordination compounds with commonly simple ligands e.g. amino­alcohols (Vassilyeva et al., 1997[Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263-266.]; Kovbasyuk et al.,1998[Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735-2738.]; Semenaka et al., 2010[Semenaka, V. V., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Zubatyuk, R. I., Shishkin, O. V., Boča, R., Jezierska, J. & Ozarowski, A. (2010). Inorg. Chem. 49, 5460-5471.]), ethyl­enedi­amine or related compounds [Kokozay & Sienkiewicz, 1995[Kokozay, V. N. & Sienkiewicz, A. V. (1995). Polyhedron, 14, 1547-1551.]; Nesterova (Pryma) et al., 2004[Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450-454.], Nesterova et al., 2005[Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425-1434.], 2008[Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431-1436.]]. The title compound was isolated in an attempt to prepare a heterometallic Cu/Mn complex with a Schiff base ligand, a product of condensation between 5-bromsalicyl­aldehyde and cyste­amine, formed in situ in a methanol/di­methyl­formamide (DMF) mixture starting from zero-valent Cu and MnCl2. We were unable to obtain the heterometallic complex, nevertheless we suppose that in this system MnCl2 catalysed conversion of di­sulfides to thio­sulfonates. Synthesis from the same starting materials with the same conditions without MnCl2 leads to a CuII complex whose structure is very similar to that of the already published compound (CSD refcode FEDCIB; Dhar et al., 2005[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 344-348.]).

[Scheme 1]

2. Structural commentary

The title compound is a discrete dinuclear complex that lies across an inversion center (Fig. 1[link]). The formula unit also contains two DMF mol­ecules of crystallization. The Schiff base acts as a tetra­dentate bridging ligand with each CuII ion bonded to four donor sites of the ligand. Each CuII ion in the complex has a distorted square-planar CuN2O2 environment. The ligand fragments coordinated to CuII ions are twisted, as defined by the dihedral angle of 22.6 (2)° between the mean planes of atoms O1/N1/C1/C7 and O2/N2/C8/C14. The thio­sulfonate moiety is not involved in a metal–ligand inter­action. The coordination geometry around the CuII ion is comparable to that found in the aforementioned CuII complex with a very similar ligand that results from the condensation between salicyl­aldehyde and cyste­amine hydro­chloride (CSD refcode FEDCIB; Dhar et al., 2005[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 344-348.]). The separation between the two symmetry-related CuII ions in the title complex is 4.6533 (15) Å. In general, all bonding parameters and the dimensions of the angles in the title complex are in good agreement with those encountered in related complexes (Dhar et al., 2005[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 344-348.]; Zhang et al., 2010[Zhang, S.-H., Wang, Y., Feng, C. & Li, G. Z. (2010). J. Coord. Chem. 63, 3697-3705.]). A fairly short intra­molecular C—H⋯O hydrogen bond is observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O5 0.95 2.32 3.257 (7) 167
C18—H18A⋯O5i 0.99 2.39 3.201 (7) 138
Symmetry code: (i) -x, -y+2, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with ellipsoids drawn at the 50% probability level. Cu1A and unlabelled atoms are generated by the symmetry code (−x + 1, −y + 2, −z + 1). For the sake of clarity, the DMF solvent mol­ecules are not shown.

3. Supra­molecular features

In the crystal, weak C—H⋯O hydrogen bonds (Table 1[link]) connect the solvent DMF mol­ecules to the complex mol­ecules. In addition, short S⋯Br(x, y, −1 + x) contacts [3.4551 (18) Å] connect the complex mol­ecules into chains along [001] (Fig. 2[link]). Furthermore, ππ stacking inter­actions with a centroid–centroid distance of 3.513 (4) Å for Cg1⋯Cg3(−x, −y + 2, −z + 1) connect the chains into a two-dimensional network parallel to (010) (Fig. 3[link]). There is an intra­molecular ππ stacking inter­action between the symmetry-related parts of the complex with a centroid–centroid distance of 3.774 (3) Å for Cg1⋯Cg2(−x + 1, −y + 2, −z + 1). Cg1, Cg2 and Cg3 are the centroids of the Cu1/O2/C8/C9/C14/N2, C1–C6 and C8–C13 rings, respectively.

[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the c axis. Short S⋯Br contacts and weak C–H⋯O hydrogen bonds are shown as dashed lines. Only selected H atoms are shown.
[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the b axis. Short S⋯Br contacts and weak C–H⋯O hydrogen bonds are shown as dashed lines. Only selected H atoms are shown.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38; last update November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related complexes with an amino­ethane­thiol group gave 165 hits, including two closely related structures {bis­[(μ2-sulfato)(6-salicyl­idene­amino-3,4-di­thia­hexyl­ammonium)­copper(II)] and bis­[μ2-N,N′-(3,4-di­thia­hexane-1,6-di­yl)bis­(salicylideneimin­ato)-N,N′,O,O′]dicopper(II)} with a di­sulfide moiety (Dhar et al., 2004[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2004). Dalton Trans. pp. 4180-4184.], 2005[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 344-348.]) and similar weak inter­molecular ππ stacking inter­actions (Dhar et al., 2005[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 344-348.]). The value of the the S⋯Br contact in the title compound is in good agreement with those in related complexes (CSD refcodes WEMCAT and QELVIN; Salivon et al., 2006[Salivon, N. F., Filinchuk, Y. E. & Olijnyk, V. V. (2006). Z. Anorg. Allg. Chem. 632, 1610-1613.], 2007[Salivon, N. F., Olijnik, V. V. & Shkurenko, A. A. (2007). Russ. J. Coord. Chem. 33, 908-913.]; CSD refcode PODDAO; Xia et al., 2008[Xia, J.-H., Liu, Z. & Jin, L.-X. (2008). Chin. J. Inorg. Chem. 5, 823-826.])

5. Synthesis and crystallization

A solution of KOH (0.12 g, 2 mmol) in minimum amount of methanol was added to a solution of amino­ethane­thiol hydro­chloride (0.23g, 2 mmol) in methanol (5 ml) and stirred in an ice bath for 10 min. The white precipitate of solid KCl was removed by filtration and 5-bromo­salicyl­aldehyde (0.402 g, 2 mmol) in di­methyl­formamide (10 ml) were added to the filtrate and stirred magnetically for 40 min. Copper powder (0.064 g, 1 mmol) and MnCl2·4H2O (0.198 g, 1 mmol) were added to the yellow solution of the Schiff base formed in situ, and the resulting deep green–brown solution was stirred magnetically and heated in air at 323–333 K for 2 h, resulting in a deep-brown precipitate. Crystals suitable for crystallographic study were grown from a saturated solution in DMF after successive addition of CH2Cl2. The crystals were filtered off, washed with dry i-PrOH and finally dried at room temperature (yield: 18%). The IR spectrum of the title compound (as KBr pellets) is consistent with the structural data. It shows all the characteristic functional group peaks in the range 4000–400 cm−1: ν(CH) due to aromatic =C—H stretching at 3000–3100 cm−1, the aromatic ring vibrations in the 1600–1400 cm−1 region, weak S—S absorptions at 500–540 cm−1 as well as absorbance at 1630 cm−1 assigned to the azomethine ν(C=N) group and ν(SO) at 1330cm−1. Analysis calculated for C42H46Br4Cu2N6O10S4: C 36.83, H 3.38, N 6.14, S 9.36%; found: C 37.1, H 3.4, N 6.0, S 9.4%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were placed in calculated positions and refined in a riding-model approximation.: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and = 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(C18H16Br2N2O4S2)2]·2C3H7NO
Mr 1369.81
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 10.9140 (4), 12.1104 (5), 12.2394 (5)
α, β, γ (°) 95.620 (2), 116.098 (2), 114.545 (2)
V3) 1241.05 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 4.31
Crystal size (mm) 0.25 × 0.12 × 0.04
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SMART, SAINT, and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.68, 0.85
No. of measured, independent and observed [I > 2σ(I)] reflections 16963, 6224, 3363
Rint 0.094
(sin θ/λ)max−1) 0.671
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.135, 0.97
No. of reflections 6224
No. of parameters 309
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.68, −0.77
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). APEX2, SMART, SAINT, and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(µ2-4-bromo-2-[({2-[({2-[(5-bromo-2-oxidobenzylidene)amino]ethyl}sulfanyl)sulfonyl]ethyl}imino)methyl]phenolato)dicopper(II) dimethylformamide disolvate top
Crystal data top
[Cu2(C18H16Br2N2O4S2)2]·2C3H7NOZ = 1
Mr = 1369.81F(000) = 682
Triclinic, P1Dx = 1.833 Mg m3
a = 10.9140 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.1104 (5) ÅCell parameters from 1470 reflections
c = 12.2394 (5) Åθ = 2.3–20.6°
α = 95.620 (2)°µ = 4.31 mm1
β = 116.098 (2)°T = 173 K
γ = 114.545 (2)°Plate, brown
V = 1241.05 (9) Å30.25 × 0.12 × 0.04 mm
Data collection top
Bruker SMART APEXII
diffractometer
6224 independent reflections
Radiation source: sealed tube3363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
φ and ω scansθmax = 28.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.68, Tmax = 0.85k = 1616
16963 measured reflectionsl = 1615
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.032P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.006
6224 reflectionsΔρmax = 0.68 e Å3
309 parametersΔρmin = 0.77 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
BR10.45806 (7)0.76624 (6)0.04584 (6)0.03464 (19)
BR20.14178 (8)1.24956 (7)0.90146 (7)0.0395 (2)
CU10.25760 (8)0.99181 (7)0.40372 (7)0.02356 (19)
S10.30738 (18)0.61966 (14)0.56704 (15)0.0279 (4)
S20.51135 (18)0.64464 (15)0.72196 (16)0.0301 (4)
O10.3216 (5)0.8784 (4)0.3645 (4)0.0286 (10)
O20.2484 (5)1.1322 (4)0.4727 (4)0.0298 (10)
O30.2979 (5)0.5785 (4)0.4494 (4)0.0412 (12)
O40.1851 (5)0.5389 (4)0.5884 (4)0.0423 (12)
O50.0481 (6)0.7837 (5)0.7614 (5)0.0486 (13)
N10.2568 (5)1.0581 (4)0.2600 (4)0.0231 (11)
N20.1960 (5)0.8973 (4)0.5109 (4)0.0206 (11)
N30.0268 (6)0.6113 (5)0.8280 (5)0.0268 (12)
C10.3470 (6)0.8562 (5)0.2717 (5)0.0241 (14)
C20.3903 (6)0.7617 (5)0.2610 (5)0.0250 (14)
H20.3982680.7153020.3196660.030*
C30.4202 (7)0.7372 (6)0.1676 (6)0.0291 (15)
H30.4491610.6738890.1622590.035*
C40.4097 (7)0.8017 (6)0.0809 (5)0.0270 (15)
C50.3633 (6)0.8916 (5)0.0840 (5)0.0255 (14)
H50.3529380.9340010.0218990.031*
C60.3312 (6)0.9203 (5)0.1798 (5)0.0203 (13)
C70.2823 (6)1.0132 (5)0.1779 (6)0.0278 (14)
H70.2671121.0453520.1080750.033*
C80.2247 (7)1.1539 (6)0.5672 (6)0.0255 (14)
C90.1854 (6)1.0633 (5)0.6268 (5)0.0216 (13)
C100.1596 (6)1.0929 (5)0.7270 (5)0.0227 (13)
H100.1307671.0313980.7668080.027*
C110.1767 (7)1.2110 (6)0.7658 (6)0.0279 (15)
C120.2151 (7)1.3013 (5)0.7078 (6)0.0277 (14)
H120.2258371.3824930.7361100.033*
C130.2379 (7)1.2733 (6)0.6090 (6)0.0298 (15)
H130.2627271.3350490.5684790.036*
C140.1674 (6)0.9392 (5)0.5925 (5)0.0200 (13)
H140.1309120.8822460.6335660.024*
C150.1701 (6)0.7651 (5)0.4940 (5)0.0220 (13)
H15A0.1351560.7220380.4041240.026*
H15B0.0864430.7132210.5104960.026*
C160.3263 (7)0.7752 (5)0.5895 (5)0.0261 (14)
H16A0.3570010.8135450.6792090.031*
H16B0.4112040.8327820.5768740.031*
C170.6560 (7)0.7086 (5)0.6740 (6)0.0287 (15)
H17A0.7007490.6520700.6756390.034*
H17B0.6016200.7075330.5840970.034*
C180.2096 (7)1.1545 (6)0.2377 (6)0.0297 (15)
H18A0.1206331.1335320.2512670.036*
H18B0.1706711.1496700.1464720.036*
C210.0446 (7)0.5001 (5)0.8217 (6)0.0374 (17)
H21A0.0556790.4232000.7965060.056*
H21B0.1288270.5130380.9067550.056*
H21C0.0727700.4882930.7574290.056*
C230.0558 (7)0.6851 (6)0.7593 (6)0.0289 (15)
H230.0851710.6596350.7033060.035*
C240.0258 (7)0.6383 (6)0.9115 (6)0.0345 (16)
H24A0.0436060.6426010.9987190.052*
H24B0.1352780.5694010.8770220.052*
H24C0.0214860.7211540.9155360.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
BR10.0377 (4)0.0455 (4)0.0301 (4)0.0223 (3)0.0243 (3)0.0116 (3)
BR20.0575 (5)0.0446 (4)0.0420 (4)0.0336 (4)0.0378 (4)0.0178 (3)
CU10.0301 (4)0.0239 (4)0.0229 (4)0.0149 (3)0.0173 (3)0.0104 (3)
S10.0320 (9)0.0245 (8)0.0316 (9)0.0159 (7)0.0186 (8)0.0102 (7)
S20.0337 (9)0.0331 (9)0.0356 (9)0.0204 (8)0.0225 (8)0.0212 (8)
O10.046 (3)0.032 (2)0.027 (2)0.025 (2)0.027 (2)0.018 (2)
O20.043 (3)0.026 (2)0.033 (2)0.020 (2)0.027 (2)0.014 (2)
O30.048 (3)0.043 (3)0.041 (3)0.030 (2)0.024 (2)0.013 (2)
O40.039 (3)0.032 (3)0.063 (3)0.019 (2)0.029 (3)0.023 (2)
O50.071 (3)0.058 (3)0.075 (4)0.052 (3)0.058 (3)0.053 (3)
N10.029 (3)0.022 (3)0.023 (3)0.012 (2)0.018 (2)0.007 (2)
N20.023 (3)0.022 (3)0.020 (2)0.013 (2)0.011 (2)0.012 (2)
N30.032 (3)0.025 (3)0.029 (3)0.015 (2)0.019 (2)0.011 (2)
C10.024 (3)0.026 (3)0.022 (3)0.011 (3)0.014 (3)0.005 (3)
C20.034 (3)0.025 (3)0.022 (3)0.020 (3)0.015 (3)0.012 (3)
C30.030 (3)0.034 (4)0.026 (3)0.019 (3)0.015 (3)0.007 (3)
C40.025 (3)0.039 (4)0.020 (3)0.012 (3)0.019 (3)0.006 (3)
C50.026 (3)0.026 (3)0.023 (3)0.010 (3)0.015 (3)0.008 (3)
C60.021 (3)0.023 (3)0.018 (3)0.011 (3)0.012 (3)0.008 (3)
C70.027 (3)0.027 (3)0.029 (3)0.010 (3)0.017 (3)0.014 (3)
C80.025 (3)0.027 (3)0.028 (3)0.012 (3)0.018 (3)0.009 (3)
C90.023 (3)0.019 (3)0.025 (3)0.011 (3)0.014 (3)0.008 (3)
C100.024 (3)0.023 (3)0.023 (3)0.011 (3)0.015 (3)0.011 (3)
C110.033 (3)0.034 (4)0.024 (3)0.019 (3)0.018 (3)0.007 (3)
C120.036 (4)0.018 (3)0.032 (4)0.015 (3)0.019 (3)0.008 (3)
C130.035 (4)0.025 (3)0.029 (3)0.015 (3)0.017 (3)0.007 (3)
C140.019 (3)0.024 (3)0.023 (3)0.010 (3)0.015 (3)0.012 (3)
C150.023 (3)0.014 (3)0.030 (3)0.010 (3)0.015 (3)0.008 (3)
C160.030 (3)0.023 (3)0.025 (3)0.015 (3)0.014 (3)0.010 (3)
C170.032 (3)0.024 (3)0.037 (4)0.016 (3)0.021 (3)0.012 (3)
C180.034 (4)0.036 (4)0.033 (4)0.023 (3)0.022 (3)0.019 (3)
C210.046 (4)0.020 (3)0.043 (4)0.014 (3)0.024 (4)0.010 (3)
C230.033 (4)0.039 (4)0.033 (4)0.023 (3)0.025 (3)0.019 (3)
C240.040 (4)0.046 (4)0.034 (4)0.028 (3)0.026 (3)0.012 (3)
Geometric parameters (Å, º) top
BR1—C41.910 (5)C7—H70.9500
BR2—C111.916 (6)C8—C91.400 (8)
CU1—O21.883 (4)C8—C131.411 (7)
CU1—O11.888 (4)C9—C101.419 (7)
CU1—N21.979 (5)C9—C141.424 (7)
CU1—N12.002 (5)C10—C111.369 (8)
S1—O31.421 (4)C10—H100.9500
S1—O41.442 (4)C11—C121.381 (8)
S1—C161.786 (6)C12—C131.376 (8)
S1—S22.063 (2)C12—H120.9500
S2—C171.823 (6)C13—H130.9500
O1—C11.311 (6)C14—H140.9500
O2—C81.317 (6)C15—C161.528 (7)
O5—C231.229 (7)C15—H15A0.9900
N1—C71.284 (7)C15—H15B0.9900
N1—C181.463 (7)C16—H16A0.9900
N2—C141.288 (6)C16—H16B0.9900
N2—C151.481 (6)C17—C18i1.517 (7)
N3—C231.324 (7)C17—H17A0.9900
N3—C211.438 (7)C17—H17B0.9900
N3—C241.445 (7)C18—C17i1.517 (7)
C1—C21.423 (8)C18—H18A0.9900
C1—C61.418 (8)C18—H18B0.9900
C2—C31.358 (7)C21—H21A0.9800
C2—H20.9500C21—H21B0.9800
C3—C41.371 (9)C21—H21C0.9800
C3—H30.9500C23—H230.9500
C4—C51.382 (8)C24—H24A0.9800
C5—C61.415 (7)C24—H24B0.9800
C5—H50.9500C24—H24C0.9800
C6—C71.429 (8)
O2—CU1—O1165.71 (17)C9—C10—H10120.3
O2—CU1—N292.47 (18)C10—C11—C12121.6 (5)
O1—CU1—N290.01 (18)C10—C11—BR2118.8 (5)
O2—CU1—N188.89 (18)C12—C11—BR2119.6 (4)
O1—CU1—N192.47 (17)C13—C12—C11119.8 (6)
N2—CU1—N1164.48 (18)C13—C12—H12120.1
O3—S1—O4120.1 (3)C11—C12—H12120.1
O3—S1—C16108.6 (3)C12—C13—C8120.8 (6)
O4—S1—C16108.1 (3)C12—C13—H13119.6
O3—S1—S2110.1 (2)C8—C13—H13119.6
O4—S1—S2103.0 (2)N2—C14—C9125.9 (5)
C16—S1—S2106.0 (2)N2—C14—H14117.0
C17—S2—S1103.1 (2)C9—C14—H14117.0
C1—O1—CU1129.9 (4)N2—C15—C16108.4 (4)
C8—O2—CU1129.4 (4)N2—C15—H15A110.0
C7—N1—C18116.9 (5)C16—C15—H15A110.0
C7—N1—CU1123.8 (4)N2—C15—H15B110.0
C18—N1—CU1119.0 (4)C16—C15—H15B110.0
C14—N2—C15115.4 (5)H15A—C15—H15B108.4
C14—N2—CU1124.8 (4)C15—C16—S1110.9 (4)
C15—N2—CU1119.7 (3)C15—C16—H16A109.5
C23—N3—C21121.5 (5)S1—C16—H16A109.5
C23—N3—C24121.4 (5)C15—C16—H16B109.5
C21—N3—C24117.1 (5)S1—C16—H16B109.5
O1—C1—C2118.7 (6)H16A—C16—H16B108.1
O1—C1—C6123.2 (5)C18i—C17—S2112.3 (4)
C2—C1—C6118.1 (5)C18i—C17—H17A109.1
C3—C2—C1120.5 (6)S2—C17—H17A109.1
C3—C2—H2119.7C18i—C17—H17B109.1
C1—C2—H2119.7S2—C17—H17B109.1
C2—C3—C4121.6 (6)H17A—C17—H17B107.9
C2—C3—H3119.2N1—C18—C17i113.1 (5)
C4—C3—H3119.2N1—C18—H18A109.0
C3—C4—C5120.5 (5)C17i—C18—H18A109.0
C3—C4—BR1119.8 (5)N1—C18—H18B109.0
C5—C4—BR1119.8 (5)C17i—C18—H18B109.0
C4—C5—C6119.8 (6)H18A—C18—H18B107.8
C4—C5—H5120.1N3—C21—H21A109.5
C6—C5—H5120.1N3—C21—H21B109.5
C5—C6—C1119.4 (5)H21A—C21—H21B109.5
C5—C6—C7117.5 (5)N3—C21—H21C109.5
C1—C6—C7123.1 (5)H21A—C21—H21C109.5
N1—C7—C6127.2 (6)H21B—C21—H21C109.5
N1—C7—H7116.4O5—C23—N3125.9 (6)
C6—C7—H7116.4O5—C23—H23117.0
O2—C8—C9122.9 (5)N3—C23—H23117.0
O2—C8—C13118.3 (6)N3—C24—H24A109.5
C9—C8—C13118.7 (5)N3—C24—H24B109.5
C8—C9—C10119.7 (5)H24A—C24—H24B109.5
C8—C9—C14124.0 (5)N3—C24—H24C109.5
C10—C9—C14116.3 (5)H24A—C24—H24C109.5
C11—C10—C9119.4 (6)H24B—C24—H24C109.5
C11—C10—H10120.3
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O50.952.323.257 (7)167
C18—H18A···O5ii0.992.393.201 (7)138
Symmetry code: (ii) x, y+2, z+1.
 

References

First citationBera, P., Butcher, R. J. & Saha, N. (1998). Chem. Lett. 27, 559–560.  CrossRef
First citationBruker (2008). APEX2, SMART, SAINT, and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
First citationDhar, S., Nethaji, M. & Chakravarty, A. R. (2004). Dalton Trans. pp. 4180–4184.  CrossRef
First citationDhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 344–348.  CrossRef
First citationGilbert, B. C., Silvester, S., Walton, P. H. & Whitwood, A. C. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1891–1895.  CrossRef
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationJacob, C., Giles, G. L., Giles, N. M. & Sies, H. (2003). Angew. Chem. Int. Ed. 42, 4742–4758.  Web of Science CrossRef CAS
First citationKokozay, V. N. & Sienkiewicz, A. V. (1995). Polyhedron, 14, 1547–1551.  CSD CrossRef CAS Web of Science
First citationKovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161–163.  CSD CrossRef CAS Web of Science
First citationKovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735–2738.  Web of Science CSD CrossRef
First citationMitra, A., Banerjee, T., Roychowdhury, P., Chaudhuri, S., Bera, P. & Saha, N. (1997). Polyhedron, 16, 3735–3742.  CrossRef CAS
First citationNesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434.  Web of Science CSD CrossRef CAS
First citationNesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431–1436.  Web of Science CSD CrossRef PubMed
First citationNesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454.
First citationPrabhakaran, R., Geetha, A., Thilagavathi, M., Karvembu, R., Krishnan, V., Bertagnolli, H. & Natarajan, K. (2004). J. Inorg. Biochem. 98, 2131–2140.  Web of Science CrossRef PubMed CAS
First citationSalivon, N. F., Filinchuk, Y. E. & Olijnyk, V. V. (2006). Z. Anorg. Allg. Chem. 632, 1610–1613.  CrossRef CAS
First citationSalivon, N. F., Olijnik, V. V. & Shkurenko, A. A. (2007). Russ. J. Coord. Chem. 33, 908–913.  CrossRef CAS
First citationSemenaka, V. V., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Zubatyuk, R. I., Shishkin, O. V., Boča, R., Jezierska, J. & Ozarowski, A. (2010). Inorg. Chem. 49, 5460–5471.  Web of Science CSD CrossRef CAS PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationVassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263–266.  CSD CrossRef CAS Web of Science
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationXia, J.-H., Liu, Z. & Jin, L.-X. (2008). Chin. J. Inorg. Chem. 5, 823–826.
First citationZhang, S.-H., Wang, Y., Feng, C. & Li, G. Z. (2010). J. Coord. Chem. 63, 3697–3705.  CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds