research communications
II coordination polymer with a dipyridyl ligand: catena-poly[[bis(nitrato-κ2O,O′)cobalt(II)]-μ-N-(pyridin-2-ylmethyl)pyridine-3-amine-κ3N,N′:N′′]
of a CoaDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea, and cResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr, kmpark@gnu.ac.kr
The 3)2L]n, L = N-(pyridine-2-ylmethyl)pyridine-3-amine (C11H11N3), contains one CoII centre, two nitrate anions and one L ligand in which the Cpy—C—N—Cpy moiety adopts a trans conformation with a torsion angle of −173.1 (3) Å. The coordination geometry of the CoII atom is a distorted pentagonal bipyramid. One amine N atom from the L ligand and four O atoms from two η2-nitrato ligands form the basal plane and two pyridyl N atoms from two symmetry-related L ligands occupy the apical positions [N—Co—N = 171.86 (11)°]. The displacement of the central CoII atom from the basal plane (r.m.s. deviation = 0.085 Å) is 0.1491 (12) Å. Each bidentate nitrate group is bonded asymmetrically to the cobalt atom in an chelating fashion. The CoII ions are linked by the L ligands to form a zigzag chain propagating along the c-axis direction. Within the zigzag chain, C—H⋯O hydrogen bonds between the ligands and the nitrate anions are observed. Adjacent zigzag chains are connected via intermolecular π–π stacking interactions [centroid-to-centroid distance = 3.844 (2) Å] between the pyridine rings together with N/C—H⋯O hydrogen bonds.
of the title compound, [Co(NOKeywords: crystal structure; dipyridyl-type ligand; cobalt(II); zigzag chain; metal-organic framework.
CCDC reference: 1579473
1. Chemical context
Over the past few decades, the continuous efforts have been devoted to the design and development of metal–organic frameworks (MOFs) obtained by linking transition metal centers with several organic bridging ligands. In particular, rigid or flexible dipyridyl-type ligands have been widely used to construct MOFs with attractive structures and potential applications in materials chemistry (Silva et al., 2015; Furukawa et al., 2014; Wang et al., 2012; Leong & Vittal, 2011). Our group has also tried to develop diverse dipyridyl-type MOFs with intriguing topologies including a cyclic dimer (Moon et al., 2011), zigzag chain (Moon et al., 2016), double helical chain (Lee et al., 2015), helical looped-chain (Ju et al., 2014) and two-dimensional pseudo-polyrotaxane network (Im et al., 2017), and reported their crystal structures. As a part of our ongoing efforts to develop dipyridyl-type MOFs with different structural motifs, we prepared the title compound obtained by the reaction of cobalt(II) nitrate with a dipyridyl ligand, namely N-(pyridine-2-ylmethyl)pyridine-3-amine. Herein, we report its which is the first example of a CoII complex with an N-(pyridine-2-ylmethyl)pyridine-3-amine ligand.
2. Structural commentary
The II atom, one L ligand and two nitrate anions, which coordinate the cobalt ion in a bidentate chelating fashion. The coordination geometry of the CoII atom is distorted pentagonal bipyramidal with the five basal sites being occupied by one amine N atom from the L ligand and four O atoms from two η2-nitrato ligands and the two apical positions occupied by two pyridyl N atoms from two symmetry-related L ligands [N1—Co1—N3i = 171.86 (11)°; symmetry code: (i) x, −y + , z − ] (Fig. 1). The central CoII atom is displaced by 0.1491 (12) Å from the basal plane (r.m.s. deviation = 0.085 Å). The Co—N distances in apical positions [Co1—N1 = 2.120 (3), Co1—N3i = 2.125 (3) Å] are slightly shorter than that of the basal [Co1—N2 = 2.191 (3) Å]. The largest deviations from the NO4 basal plane around the cobalt center involve the angles O2—Co1—O3 [55.81 (11)°] and N2—Co1—O5 [84.19 (9)°]. This distortion may reflect the narrow bite angles of the bidentate nitrate ions.
of the title compound comprises one CoThe L ligand adopts a stretched trans conformation with the C5—C6—N2—C7 torsion angle being −173.1 (3) Å. The terminal pyridine rings of the L ligand are nearly perpendicular to each other, with the dihedral angle between their mean planes being 76.74 (12)°. Each bidentate nitrate group is bonded asymmetrically to the cobalt atom [Co1—O2 = 2.139 (3), Co1—O3 = 2.327 (3), Co1—O5 = 2.365 (2) and Co1—O6 = 2.167 (2) Å]. Each L ligand is bridged by the CoII ions, forming –(Co-L)n– zigzag chains propagating along the c-axis direction (Figs. 2 and 3). The zigzag chain is reinforced by several C—H⋯O hydrogen bonds (Table 2; green dashed lines in Fig. 2) between the L ligands and the nitrate O atoms.
3. Supramolecular features
In the crystal of the title compound, adjacent zigzag chains are linked by intermolecular π–π stacking interactions [black dashed lines in Fig. 3; Cg1⋯Cg1ii = 3.844 (2) Å; Cg1 is the centroid of the N1/C1–C5 ring; symmetry code: (ii) −x, −y + 1, −z + 1] between the pyridine rings and C—H⋯O hydrogen bonds between pyridyl H atoms and nitrate O atoms (Table 1; green dashed lines in Fig. 3), forming layers extending parallel to the (100) plane. The layers are further connected by intermolecular N—H⋯O hydrogen bonds (Table 2; green dashed lines in Fig. 3) between amine H atoms and nitrate O atoms.
4. Database survey
A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016) for the compounds obtained by the reaction of transition metal ions and the L ligand gave 11 hits. Three (AQEGAG, AQEGEK, AQEGIO) are HgII complexes and seven (CEZPAA, DURFON, POFKUS, PONTUJ, VIPTOF, WIHWUH, WIHXOC) of them are AgI complexes. The remaining one is a ZnII complex (DUVPER). There are no metal complexes that are similar to the structure of the CoII complex described above. Therefore, the title compound is the first example of a CoII complex with an L ligand.
5. Synthesis and crystallization
The L ligand was synthesized according to a literature method (Lee et al., 2013). X-ray-quality single crystals of the title compound were obtained by slow evaporation of an acetonitrile solution of the L ligand with Co(NO3)2·6H2O in the molar ratio 1:1.
6. Refinement
Crystal data, data collection and structure . The amine H atom was located from a difference-Fourier map and refined with riding constraints [d(N—H) = 0.96 Å]. All other H atoms were positioned geometrically and refined as riding, with d(C—H) = 0.93 Å for Csp2—H and 0.97 Å for methylene C—H. For all H atoms, Uiso(H) = 1.2Ueq of the parent atom.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1579473
https://doi.org/10.1107/S205698901701475X/nk2241sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901701475X/nk2241Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[Co(NO3)2(C11H11N3)] | F(000) = 748 |
Mr = 368.18 | Dx = 1.750 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.4550 (13) Å | Cell parameters from 2739 reflections |
b = 17.662 (2) Å | θ = 2.1–26.0° |
c = 7.9653 (10) Å | µ = 1.27 mm−1 |
β = 108.160 (3)° | T = 298 K |
V = 1397.6 (3) Å3 | Block, violet |
Z = 4 | 0.32 × 0.27 × 0.23 mm |
Bruker APEXII CCD diffractometer | 1695 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.070 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 26.0°, θmin = 2.4° |
Tmin = 0.644, Tmax = 0.725 | h = −8→12 |
7841 measured reflections | k = −21→18 |
2737 independent reflections | l = −9→9 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0331P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.96 | (Δ/σ)max < 0.001 |
2737 reflections | Δρmax = 0.26 e Å−3 |
208 parameters | Δρmin = −0.31 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.27153 (4) | 0.39860 (2) | 0.26458 (6) | 0.03391 (16) | |
N1 | 0.1788 (3) | 0.48757 (15) | 0.3629 (3) | 0.0358 (7) | |
N2 | 0.3601 (3) | 0.38625 (14) | 0.5512 (3) | 0.0326 (7) | |
H2N | 0.4398 | 0.4164 | 0.5764 | 0.039* | |
N3 | 0.3901 (3) | 0.18597 (14) | 0.6941 (3) | 0.0343 (7) | |
C1 | 0.1212 (4) | 0.54840 (19) | 0.2707 (5) | 0.0431 (9) | |
H1 | 0.1017 | 0.5474 | 0.1486 | 0.052* | |
C2 | 0.0893 (4) | 0.6122 (2) | 0.3468 (5) | 0.0471 (10) | |
H2 | 0.0516 | 0.6541 | 0.2786 | 0.057* | |
C3 | 0.1144 (4) | 0.6125 (2) | 0.5272 (5) | 0.0471 (10) | |
H3 | 0.0940 | 0.6550 | 0.5829 | 0.056* | |
C4 | 0.1700 (3) | 0.5495 (2) | 0.6242 (5) | 0.0398 (9) | |
H4 | 0.1869 | 0.5488 | 0.7459 | 0.048* | |
C5 | 0.2005 (3) | 0.48701 (18) | 0.5379 (4) | 0.0330 (8) | |
C6 | 0.2606 (4) | 0.41626 (18) | 0.6310 (4) | 0.0383 (9) | |
H6A | 0.3042 | 0.4268 | 0.7552 | 0.046* | |
H6B | 0.1905 | 0.3790 | 0.6213 | 0.046* | |
C7 | 0.4171 (3) | 0.31400 (18) | 0.6103 (4) | 0.0303 (8) | |
C8 | 0.3417 (3) | 0.25586 (18) | 0.6498 (4) | 0.0345 (8) | |
H8 | 0.2533 | 0.2660 | 0.6453 | 0.041* | |
C9 | 0.5162 (4) | 0.1726 (2) | 0.6967 (5) | 0.0453 (9) | |
H9 | 0.5501 | 0.1238 | 0.7224 | 0.054* | |
C10 | 0.5989 (4) | 0.2273 (2) | 0.6632 (5) | 0.0489 (10) | |
H10 | 0.6870 | 0.2160 | 0.6689 | 0.059* | |
C11 | 0.5489 (4) | 0.2985 (2) | 0.6216 (5) | 0.0427 (9) | |
H11 | 0.6035 | 0.3366 | 0.6008 | 0.051* | |
N4 | 0.0418 (3) | 0.32781 (17) | 0.1539 (4) | 0.0423 (8) | |
O1 | −0.0745 (3) | 0.30287 (19) | 0.0943 (4) | 0.0832 (10) | |
O2 | 0.0852 (3) | 0.37335 (16) | 0.0660 (4) | 0.0661 (8) | |
O3 | 0.1166 (3) | 0.30993 (15) | 0.2978 (4) | 0.0628 (8) | |
N5 | 0.3877 (3) | 0.50903 (17) | 0.1413 (4) | 0.0412 (8) | |
O4 | 0.4248 (3) | 0.56412 (17) | 0.0738 (4) | 0.0752 (9) | |
O5 | 0.4407 (3) | 0.49125 (14) | 0.2962 (3) | 0.0500 (7) | |
O6 | 0.2877 (3) | 0.47059 (14) | 0.0518 (3) | 0.0517 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0436 (3) | 0.0265 (2) | 0.0319 (3) | 0.0006 (2) | 0.0121 (2) | −0.0005 (2) |
N1 | 0.0423 (18) | 0.0294 (16) | 0.0357 (18) | 0.0051 (13) | 0.0120 (14) | −0.0007 (14) |
N2 | 0.0346 (16) | 0.0276 (16) | 0.0370 (16) | 0.0011 (12) | 0.0132 (13) | 0.0031 (13) |
N3 | 0.044 (2) | 0.0293 (16) | 0.0318 (17) | 0.0018 (13) | 0.0147 (14) | 0.0016 (13) |
C1 | 0.052 (2) | 0.039 (2) | 0.040 (2) | 0.0139 (17) | 0.0157 (18) | 0.0057 (18) |
C2 | 0.054 (2) | 0.033 (2) | 0.053 (3) | 0.0097 (17) | 0.015 (2) | 0.0066 (18) |
C3 | 0.049 (2) | 0.037 (2) | 0.056 (3) | 0.0076 (17) | 0.019 (2) | −0.0097 (19) |
C4 | 0.042 (2) | 0.042 (2) | 0.037 (2) | 0.0042 (16) | 0.0146 (18) | −0.0065 (17) |
C5 | 0.034 (2) | 0.0311 (19) | 0.036 (2) | 0.0020 (14) | 0.0133 (16) | 0.0005 (16) |
C6 | 0.047 (2) | 0.035 (2) | 0.035 (2) | 0.0059 (16) | 0.0164 (17) | 0.0011 (16) |
C7 | 0.034 (2) | 0.0294 (19) | 0.0264 (18) | −0.0007 (15) | 0.0080 (15) | −0.0005 (15) |
C8 | 0.034 (2) | 0.032 (2) | 0.040 (2) | 0.0017 (15) | 0.0142 (17) | 0.0049 (16) |
C9 | 0.058 (3) | 0.031 (2) | 0.049 (2) | 0.0120 (18) | 0.020 (2) | 0.0066 (17) |
C10 | 0.041 (2) | 0.043 (2) | 0.070 (3) | 0.0103 (18) | 0.028 (2) | 0.013 (2) |
C11 | 0.044 (3) | 0.036 (2) | 0.053 (2) | −0.0016 (17) | 0.0217 (19) | 0.0038 (18) |
N4 | 0.047 (2) | 0.0347 (19) | 0.047 (2) | −0.0007 (15) | 0.0167 (18) | −0.0056 (16) |
O1 | 0.057 (2) | 0.088 (3) | 0.096 (3) | −0.0211 (18) | 0.0120 (18) | −0.014 (2) |
O2 | 0.065 (2) | 0.067 (2) | 0.0587 (19) | −0.0084 (15) | 0.0074 (15) | 0.0029 (16) |
O3 | 0.064 (2) | 0.061 (2) | 0.061 (2) | 0.0070 (15) | 0.0166 (17) | −0.0011 (16) |
N5 | 0.057 (2) | 0.0290 (18) | 0.043 (2) | −0.0088 (15) | 0.0227 (17) | −0.0023 (15) |
O4 | 0.102 (3) | 0.059 (2) | 0.066 (2) | −0.0244 (17) | 0.0285 (18) | 0.0130 (16) |
O5 | 0.0670 (19) | 0.0443 (16) | 0.0382 (16) | −0.0091 (12) | 0.0155 (14) | 0.0042 (13) |
O6 | 0.0631 (19) | 0.0502 (17) | 0.0423 (16) | −0.0101 (14) | 0.0173 (14) | −0.0049 (13) |
Co1—N1 | 2.120 (3) | C3—H3 | 0.9300 |
Co1—N3i | 2.125 (3) | C4—C5 | 1.389 (4) |
Co1—O2 | 2.139 (3) | C4—H4 | 0.9300 |
Co1—O6 | 2.167 (2) | C5—C6 | 1.488 (4) |
Co1—N2 | 2.191 (3) | C6—H6A | 0.9700 |
Co1—O3 | 2.327 (3) | C6—H6B | 0.9700 |
Co1—O5 | 2.365 (2) | C7—C11 | 1.381 (4) |
N1—C1 | 1.334 (4) | C7—C8 | 1.389 (4) |
N1—C5 | 1.341 (4) | C8—H8 | 0.9300 |
N2—C7 | 1.425 (4) | C9—C10 | 1.378 (5) |
N2—C6 | 1.475 (4) | C9—H9 | 0.9300 |
N2—H2N | 0.9565 | C10—C11 | 1.362 (5) |
N3—C9 | 1.334 (4) | C10—H10 | 0.9300 |
N3—C8 | 1.339 (4) | C11—H11 | 0.9300 |
N3—Co1ii | 2.125 (3) | N4—O3 | 1.211 (4) |
C1—C2 | 1.368 (4) | N4—O1 | 1.240 (4) |
C1—H1 | 0.9300 | N4—O2 | 1.241 (4) |
C2—C3 | 1.378 (5) | N5—O5 | 1.226 (3) |
C2—H2 | 0.9300 | N5—O4 | 1.232 (3) |
C3—C4 | 1.376 (5) | N5—O6 | 1.263 (4) |
N1—Co1—N3i | 171.86 (11) | C4—C3—H3 | 120.2 |
N1—Co1—O2 | 90.67 (11) | C2—C3—H3 | 120.2 |
N3i—Co1—O2 | 97.46 (11) | C3—C4—C5 | 119.1 (3) |
N1—Co1—O6 | 90.57 (10) | C3—C4—H4 | 120.4 |
N3i—Co1—O6 | 90.67 (10) | C5—C4—H4 | 120.4 |
O2—Co1—O6 | 79.58 (11) | N1—C5—C4 | 121.2 (3) |
N1—Co1—N2 | 77.43 (10) | N1—C5—C6 | 115.6 (3) |
N3i—Co1—N2 | 96.52 (10) | C4—C5—C6 | 123.2 (3) |
O2—Co1—N2 | 137.86 (11) | N2—C6—C5 | 109.4 (3) |
O6—Co1—N2 | 139.71 (10) | N2—C6—H6A | 109.8 |
N1—Co1—O3 | 92.42 (10) | C5—C6—H6A | 109.8 |
N3i—Co1—O3 | 92.35 (10) | N2—C6—H6B | 109.8 |
O2—Co1—O3 | 55.81 (11) | C5—C6—H6B | 109.8 |
O6—Co1—O3 | 135.30 (10) | H6A—C6—H6B | 108.2 |
N2—Co1—O3 | 84.11 (10) | C11—C7—C8 | 117.7 (3) |
N1—Co1—O5 | 81.99 (10) | C11—C7—N2 | 120.4 (3) |
N3i—Co1—O5 | 92.07 (10) | C8—C7—N2 | 121.9 (3) |
O2—Co1—O5 | 134.56 (10) | N3—C8—C7 | 123.1 (3) |
O6—Co1—O5 | 55.89 (9) | N3—C8—H8 | 118.4 |
N2—Co1—O5 | 84.19 (9) | C7—C8—H8 | 118.4 |
O3—Co1—O5 | 167.89 (10) | N3—C9—C10 | 123.3 (3) |
C1—N1—C5 | 118.6 (3) | N3—C9—H9 | 118.3 |
C1—N1—Co1 | 125.0 (2) | C10—C9—H9 | 118.3 |
C5—N1—Co1 | 115.4 (2) | C11—C10—C9 | 118.6 (3) |
C7—N2—C6 | 117.2 (2) | C11—C10—H10 | 120.7 |
C7—N2—Co1 | 115.52 (19) | C9—C10—H10 | 120.7 |
C6—N2—Co1 | 106.71 (19) | C10—C11—C7 | 119.9 (3) |
C7—N2—H2N | 100.5 | C10—C11—H11 | 120.0 |
C6—N2—H2N | 113.2 | C7—C11—H11 | 120.0 |
Co1—N2—H2N | 102.7 | O3—N4—O1 | 122.4 (3) |
C9—N3—C8 | 117.3 (3) | O3—N4—O2 | 117.5 (3) |
C9—N3—Co1ii | 121.8 (2) | O1—N4—O2 | 120.1 (4) |
C8—N3—Co1ii | 120.9 (2) | N4—O2—Co1 | 97.3 (2) |
N1—C1—C2 | 123.4 (3) | N4—O3—Co1 | 89.1 (2) |
N1—C1—H1 | 118.3 | O5—N5—O4 | 122.4 (3) |
C2—C1—H1 | 118.3 | O5—N5—O6 | 117.7 (3) |
C1—C2—C3 | 118.1 (3) | O4—N5—O6 | 119.7 (3) |
C1—C2—H2 | 120.9 | N5—O5—Co1 | 88.92 (19) |
C3—C2—H2 | 120.9 | N5—O6—Co1 | 97.3 (2) |
C4—C3—C2 | 119.5 (3) | ||
C5—N1—C1—C2 | 3.5 (5) | C9—N3—C8—C7 | −1.1 (5) |
Co1—N1—C1—C2 | −165.0 (3) | Co1ii—N3—C8—C7 | 177.1 (2) |
N1—C1—C2—C3 | −2.0 (5) | C11—C7—C8—N3 | −1.4 (5) |
C1—C2—C3—C4 | −0.1 (5) | N2—C7—C8—N3 | 175.4 (3) |
C2—C3—C4—C5 | 0.5 (5) | C8—N3—C9—C10 | 2.6 (5) |
C1—N1—C5—C4 | −3.0 (5) | Co1ii—N3—C9—C10 | −175.6 (3) |
Co1—N1—C5—C4 | 166.5 (2) | N3—C9—C10—C11 | −1.5 (6) |
C1—N1—C5—C6 | 177.9 (3) | C9—C10—C11—C7 | −1.3 (5) |
Co1—N1—C5—C6 | −12.5 (4) | C8—C7—C11—C10 | 2.6 (5) |
C3—C4—C5—N1 | 1.1 (5) | N2—C7—C11—C10 | −174.2 (3) |
C3—C4—C5—C6 | −179.9 (3) | O3—N4—O2—Co1 | −6.4 (3) |
C7—N2—C6—C5 | −173.1 (3) | O1—N4—O2—Co1 | 173.0 (3) |
Co1—N2—C6—C5 | −41.8 (3) | O1—N4—O3—Co1 | −173.5 (3) |
N1—C5—C6—N2 | 37.5 (4) | O2—N4—O3—Co1 | 5.8 (3) |
C4—C5—C6—N2 | −141.5 (3) | O4—N5—O5—Co1 | 173.0 (3) |
C6—N2—C7—C11 | −145.9 (3) | O6—N5—O5—Co1 | −4.0 (3) |
Co1—N2—C7—C11 | 87.0 (3) | O5—N5—O6—Co1 | 4.4 (3) |
C6—N2—C7—C8 | 37.4 (4) | O4—N5—O6—Co1 | −172.7 (3) |
Co1—N2—C7—C8 | −89.8 (3) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O5iii | 0.96 | 2.11 | 2.987 (4) | 151 |
C1—H1···O2iv | 0.93 | 2.57 | 3.186 (5) | 124 |
C6—H6A···O6v | 0.97 | 2.54 | 3.413 (4) | 149 |
C8—H8···O3ii | 0.93 | 2.53 | 3.163 (4) | 126 |
C9—H9···O5ii | 0.93 | 2.49 | 3.164 (4) | 130 |
Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z; (v) x, y, z+1. |
Funding information
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020410 and NRF-2016R1D1A1B01012630).
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700–5734. Web of Science CrossRef CAS PubMed
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Im, H., Lee, E., Moon, S.-H., Lee, S. S., Kim, T. H. & Park, K.-M. (2017). Bull. Korean Chem. Soc. 38, 127–129. CSD CrossRef CAS
Ju, H., Lee, E., Moon, S.-H., Lee, S. S. & Park, K.-M. (2014). Bull. Korean Chem. Soc. 35, 3658–3660. Web of Science CSD CrossRef CAS
Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532–1535. Web of Science CrossRef CAS
Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477–3480. Web of Science CSD CrossRef CAS
Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764. Web of Science CrossRef CAS PubMed
Moon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513–1516. Web of Science CSD CrossRef IUCr Journals
Moon, S.-H., Kim, T. H. & Park, K.-M. (2011). Acta Cryst. E67, m1769–m1770. CSD CrossRef IUCr Journals
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Silva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774–6803. Web of Science CrossRef CAS PubMed
Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104. Web of Science CrossRef CAS PubMed
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.