research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[di­aqua­bis­­(μ5-benzene-1,3-di­carboxyl­ato)(N,N-di­methyl­formamide)­cadmium(II)disodium(I)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Khlong Laung, Pathumthani 12121, Thailand, and bMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Laung, Pathumthani 12121, Thailand
*Correspondence e-mail: nwan0110@tu.ac.th

Edited by T. J. Prior, University of Hull, England (Received 2 September 2017; accepted 26 September 2017; online 3 October 2017)

The title compound, [CdNa2(C8H4O4)2(C3H7NO)(H2O)2]n or [CdNa2(1,3-bdc)2(DMF)(H2O)2]n, is a new CdII–NaI heterobimetallic coordination polymer. The asymmetric unit consists of one CdII atom, two NaI atoms, two 1,3-bdc ligands, two coordinated water mol­ecules and one coordinated DMF mol­ecule. The CdII atom exhibits a seven-coordinate geometry, while the NaI atoms can be considered to be penta­coordinate. The metal ions and their symmetry-related equivalents are connected via chelating–bridging carboxyl­ate groups of the 1,3-bdc ligands to generate a three-dimensional framework. In the crystal, there are classical O—H⋯O hydrogen bonds involving the coordinated water mol­ecules and the 1,3-bdc carboxyl­ate groups and ππ stacking between the benzene rings of the 1,3-bdc ligands present within the frameworks.

1. Chemical context

Porous coordination polymers or metal–organic frameworks (MOFs) constructed from d10 transition metals and benzene polycarboxyl­ate bridging ligands have been widely studied (Yaghi et al., 1999[Yaghi, O. M., Li, H., Eddaoudi, M. & O'Keeffe, M. (1999). Nature, 402, 276-279.]; Lin et al., 2008[Lin, J.-D., Cheng, J.-W. & Du, S.-W. (2008). Cryst. Growth Des. 8, 3345-3353.]; Seco et al., 2017[Seco, J. M., Pérez-Yáñez, S., Briones, D., García, J.Á., Cepeda, J. & Rodríguez-Diéguez, A. (2017). Cryst. Growth Des. 17, 3893-3906.]) due to the varieties of coordination framework topologies and also potential applications in gas adsorption (Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782-835.]), photoluminescence (Wang et al., 2012[Wang, X.-L., Mu, B., Lin, H.-Y., Yang, S., Liu, G.-C., Tian, A.-X. & Zhang, J.-W. (2012). Dalton Trans. 41, 11074-11084.]) and photocatalysis (Wu et al., 2017[Wu, Z., Yuan, X., Zhang, J., Wang, H., Jiang, L. & Zeng, G. (2017). ChemCatChem, 9, 41-64.]). Among the most common ligands in this class, the rigid and planar backbone of benzene di­carboxyl­ates such as benzene-1,3-di­carb­oxy­lic acid (1,3-H2bdc) and benzene-1,4-di­carb­oxy­lic acid (1,4-H2bdc) are widely employed in the construction of these solids owing to their rich coordination modes. Studies incorporating alkaline metal ions into d10-MOFs with one type of bridging ligand to construct novel heterobimetallic d10-alkaline metal ion MOFs have been undertaken (Lin et al., 2010a[Lin, J.-D., Long, X. F., Lin, P. & Du, S.-W. (2010). Cryst. Growth Des. 10, 146-157.],b[Lin, J.-D., Wu, S. T., Li, Z. H. & Du, S.-W. (2010). Dalton Trans. 39, 10719-10728.]). The alkali metal ions could provide an unpredictable coordination number and pH-dependent self-assembly in the construction of coordination frameworks with various types of topology and dimensionality (Borah et al., 2011[Borah, B. M., Dey, S. K. & Das, G. (2011). Cryst. Growth Des. 11, 2773-2779.]; Chen et al., 2011[Chen, Y., Zheng, L., She, S., Chen, Z., Hu, B. & Li, Y. (2011). Dalton Trans. 40, 4970-4975.]). However, the members of three-dimensional coordination framework heterobi­metallic ZnII or CdII /NaI MOFs with benzene­polycarboxyl­ate ligands are still limited; previous reports include [ZnNa(1,2,4-btc)] where 1,2,4-btc = benzene-1,2,4-tri­carboxyl­ate (Wang et al., 2004[Wang, L., Shi, Z., Li, G., Fan, Y., Fu, W. & Feng, S. (2004). Solid State Sci. 6, 85-90.]), [Zn2Na2(1,4-bdc)3·(DMF)2·(m-H2O)2] where 1,4-bdcH2 = benzene-1,4-di­carb­oxy­lic acid (Xu et al., 2004[Xu, H., Wang, R. & Li, Y. (2004). J. Mol. Struct. 688, 1-3.]), {[CdNa(1,3-bdc)2]·[NH2(CH3)2]} where 1,3-bdcH2 = benzene-1,3-di­carb­oxy­lic acid (Che et al., 2007[Che, G.-B., Liu, C.-B., Wang, L. & Cui, Y.-C. (2007). J. Coord. Chem. 60, 1997-2007.]), [CdNa(OH-1,3-bdc)2(H2O)2]·2H2O where OH-1,3-bdcH2 = 5-hy­droxy­benzene-1,3-di­carb­oxy­lic acid (Du et al., 2013[Du, F., Zhang, H., Tian, C. & Du, S. (2013). Cryst. Growth Des. 13, 1736-1742.]) and [Cd8Na(ntc)6(H2O)8] where ntcH3 = 5-nitro­benzene-1,2,3-tri­carb­oxy­lic acid (Yang et al., 2014[Yang, Y.-T., Zhao, Q., Tu, C.-Z., Cheng, F. X. & Wang, F. (2014). Inorg. Chem. Commun. 40, 43-46.]). With the aim of searching for new members of this heterobimetallic MOFs system containing benzene-1,3-di­carb­oxy­lic acid (1,3-bdcH2), we explored mixed sources of ZnII/CdII–NaI with this ligand. The expected products are prepared by using a direct synthetic method, mixing metal nitrate salts, 1,3-bdcH2 and NaOH (mole ratio 1:1:2) in water, methanol and DMF solvents. However, only the CdII–NaI MOF product has been successfully synthesized. As part of our ongoing studies on this complex, we describe here the synthesis and crystal structure of a novel three-dimensional heterobimetallic CdII–NaI MOF, [CdNa2(1,3-bdc)2(DMF)(H2O)2]n (I).

[Scheme 1]

2. Structural commentary

The title compound (I) crystallizes in the tetra­gonal crystal system with polar P43 space group. The asymmetric unit of (I) consists of one CdII ion, two crystallographically independent Na(I) ions, two 1,3-bdc ligands, two coordinated water mol­ecules and one DMF mol­ecules, as shown in Fig. 1[link]. Each CdII ion is coordinated by seven carboxyl­ate oxygen atoms from four different 1,3-bdc ligands with the Cd—O bond distances range between 2.301 (3) and 2.555 (3) Å (Table 1[link]). The Na1 ion is surrounded by three carboxyl­ate oxygen atoms of three different 1,3-bdc ligands, one oxygen atom from a water mol­ecule, and one DMF mol­ecule with the Na—O bond distances ranging between 2.304 (7) and 2.498 (11) Å, while the Na2 ion adopts a five-coordinate [4 + 1] coordination with four oxygen atoms from three different 1,3-bdc ligands and one oxygen atom from a water mol­ecule. The Na—O bond distances are in the range 2.275 (5) to 2.354 (8) Å. Fig. 2[link] shows the coordination modes of the 1,3-bdc ligand in compound (I). The 1,3-bdc mol­ecule is fully deprotonated and coordinated to the CdII and NaI ions in a μ5-coordination mode, creating a one-dimensional heterobimetallic chain running parallel to the c axis, Fig. 3[link]. Adjacent chains are further connected through the 1,3-bdc ligands in the a- and b-axis directions, generating a three-dimensional framework structure as shown in Fig. 4[link]. The coordinated water and DMF mol­ecules adopt a monodentate coordination mode and serve as a terminal pendant ligand pointing inside the channels.

Table 1
Selected geometric parameters (Å, °)

Cd1—O1 2.301 (3) Na1—O4i 2.441 (5)
Cd1—O2 2.555 (3) Na1—O9 2.304 (7)
Cd1—O3i 2.496 (3) Na1—O11B 2.498 (11)
Cd1—O4i 2.385 (3) Na1—O11A 2.475 (18)
Cd1—O5 2.284 (4) Na2—O4iv 2.655 (5)
Cd1—O7ii 2.396 (3) Na2—O5 2.277 (5)
Cd1—O8ii 2.472 (3) Na2—O7ii 2.282 (4)
Na1—O1 2.368 (5) Na2—O8v 2.275 (5)
Na1—O3iii 2.339 (5) Na2—O10 2.354 (8)
       
O1—Cd1—O2 53.12 (15) O1—Na1—O4i 77.84 (17)
O1—Cd1—O3i 131.59 (15) O1—Na1—O11B 104.1 (3)
O1—Cd1—O4i 80.31 (12) O3iii—Na1—O1 151.1 (2)
O1—Cd1—O7ii 125.91 (12) O3iii—Na1—O4i 94.59 (15)
O1—Cd1—O8ii 92.04 (13) O3iii—Na1—O11B 82.9 (3)
O3i—Cd1—O2 173.00 (16) O4i—Na1—O11B 177.4 (3)
O4i—Cd1—O2 132.60 (15) O9—Na1—O1 95.8 (2)
O4i—Cd1—O3i 53.37 (13) O9—Na1—O3iii 112.0 (2)
O4i—Cd1—O7ii 122.40 (12) O9—Na1—O4i 88.3 (2)
O4i—Cd1—O8ii 78.81 (13) O9—Na1—O11B 93.2 (4)
O5—Cd1—O1 125.67 (14) O5—Na2—O4iv 95.45 (19)
O5—Cd1—O2 90.36 (16) O5—Na2—O7ii 83.03 (18)
O5—Cd1—O3i 82.65 (15) O5—Na2—O10 104.5 (2)
O5—Cd1—O4i 128.83 (14) O7ii—Na2—O4iv 94.98 (14)
O5—Cd1—O7ii 80.41 (12) O7ii—Na2—O10 80.5 (2)
O5—Cd1—O8ii 133.24 (16) O8v—Na2—O4iv 77.02 (13)
O7ii—Cd1—O2 85.03 (15) O8v—Na2—O5 110.18 (16)
O7ii—Cd1—O3i 94.01 (14) O8v—Na2—O7ii 164.93 (18)
O7ii—Cd1—O8ii 53.55 (14) O8v—Na2—O10 102.3 (2)
O8ii—Cd1—O2 93.07 (11) O10—Na2—O4iv 158.8 (2)
O8ii—Cd1—O3i 91.92 (10)    
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) [-y+1, x, z-{\script{1\over 4}}]; (iv) [y-1, -x, z+{\script{1\over 4}}]; (v) [y, -x+1, z+{\script{1\over 4}}].
[Figure 1]
Figure 1
Asymmetric unit of (I) with the atomic-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Coordination mode of the μ5-1,3-bdc bridging ligands found in (I). All hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Perspective view along the crystallographic c axis of (a) the three-dimensional framework of (I) (the coordination polyhedra for CdII and NaI are pink and green, respectively) and (b) helical chain-like structure of the Cd—Na clusters (dark blue = Cd, blue = Na and red = O).
[Figure 4]
Figure 4
Perspective view of the three-dimensional framework of (I) (the coordination polyhedra for CdII and NaI are pink and green, respectively). All hydrogen atoms are omitted for clarity.

3. Supra­molecular features

In the crystal of (I), classical O—H⋯O hydrogen bonds and aromatic ππ stacking inter­actions are observed and these inter­actions presumably help to stabilize the frameworks. All water mol­ecules are shown to act as O—H⋯O hydrogen-bond donors towards the carboxyl­ate groups of the 1,3-bdc ligands (Table 2[link]). The ππ stacking inter­actions are between symmetry-related aromatic rings of the 1,3-bdc ligands with a Cg1⋯Cg2i distance of 3.588 (3) Å and a dihedral angle of 3.8 (4)° [Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively; symmetry code: (i) –y, x, z – 1/4].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9B⋯O6 0.90 2.22 3.074 (8) 159
O10—H10B⋯O6v 0.86 2.29 3.073 (8) 152
Symmetry code: (v) [y, -x+1, z+{\script{1\over 4}}].

4. Database survey

To the best of our knowledge of structures closely related to (I), only the three-dimensional coordination framework {[CdNa(1,3-bdc)2]·[NH2(CH3)2]} has been reported (Che et al., 2007[Che, G.-B., Liu, C.-B., Wang, L. & Cui, Y.-C. (2007). J. Coord. Chem. 60, 1997-2007.]). This compound crystallized in the centrosymmetric space group C2/c. The CdII and NaI centers are linked by a 1,3-bdc ligand in a μ4-coordination mode. The DMF solvent decomposes under solvothermal synthesis, with the construction of a 3D coordination framework with open channels containing NH2(CH3)2 mol­ecules. In comparison, compound (I) contains coordinated H2O and DMF mol­ecules projecting into the framework channels. Other related three-dimensional heterobimetallic d10–NaI coordination frameworks containing benzene­polycarboxyl­ate ligands have been published, such as [CdNa(OH-1,3-bdc)2(H2O)2]·2H2O where OH-1,3-bdcH2 = 5-hy­droxy-benzene-1,3-di­carb­oxy­lic acid (Du et al., 2013[Du, F., Zhang, H., Tian, C. & Du, S. (2013). Cryst. Growth Des. 13, 1736-1742.]), [Zn2Na2(1,4-bdc)3·(DMF)2·(m-H2O)2] where 1,4-bdcH2 = benzene-1,4-di­carb­oxy­lic acid (Xu et al., 2004[Xu, H., Wang, R. & Li, Y. (2004). J. Mol. Struct. 688, 1-3.]), [ZnNa(1,2,4-btc)] where 1,2,4-btc = 1,2,4-benzene­tri­carboxyl­ate (Wang et al., 2004[Wang, L., Shi, Z., Li, G., Fan, Y., Fu, W. & Feng, S. (2004). Solid State Sci. 6, 85-90.]), and [Cd8Na(ntc)6(H2O)8] where ntcH3 = 5-nitro­benzene-1,2,3-tri­carb­oxy­lic acid (Yang et al., 2014[Yang, Y.-T., Zhao, Q., Tu, C.-Z., Cheng, F. X. & Wang, F. (2014). Inorg. Chem. Commun. 40, 43-46.]). The three-dimensional coordination framework topologies of these compounds are the result of the construction of different types of metal centers, geometries and carboxyl­ate ligand derivatives. It is found that the carboxyl­ate ligand derivatives in the structure of these related compounds exhibit a μ4-coordination mode.

5. Synthesis and crystallization

A mixture solution of 1,3-bdcH2 (1.0 mmol) and NaOH (2.0 mmol) in 10 mL of distilled water was slowly dropped to a methano­lic solution (10 ml) of Cd(NO3)2·4H2O (1.0 mmol). The reaction mixture was stirred at 333 K for 30 min and allowed to cool to room temperature and then filtered. The filtrate was allowed to stand to slowly evaporate at ambient temperature. Colorless block-shaped crystals suitable for single crystal X-ray diffraction were obtained after three days (76% yield based on Cd).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms except those of water mol­ecules were generated geometrically and refined isotropically using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The coordinated DMF mol­ecule was found to be disordered with two sets of sites with a refined occupancy ratio of 0.382 (10) and 0.618 (10).

Table 3
Experimental details

Crystal data
Chemical formula [CdNa2(C8H4O4)2(C3H7NO)(H2O)2]
Mr 595.73
Crystal system, space group Tetragonal, P43
Temperature (K) 296
a, c (Å) 10.1437 (8), 21.4664 (15)
V3) 2208.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.09
Crystal size (mm) 0.35 × 0.21 × 0.16
 
Data collection
Diffractometer Bruker APEXII D8 QUEST CMOS
Absorption correction Multi-scan (SADABS, Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.647, 0.704
No. of measured, independent and observed [I > 2σ(I)] reflections 56814, 5708, 5301
Rint 0.074
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.03
No. of reflections 5708
No. of parameters 351
No. of restraints 160
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.45
Absolute structure Flack x determined using 2427 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.081 (13)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[diaquabis(µ5-benzene-1,3-dicarboxylato)(N,N-dimethylformamide)cadmium(II)disodium(I)] top
Crystal data top
[CdNa2(C8H4O4)2(C3H7NO)(H2O)2]Dx = 1.791 Mg m3
Mr = 595.73Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43Cell parameters from 9769 reflections
a = 10.1437 (8) Åθ = 2.7–28.3°
c = 21.4664 (15) ŵ = 1.09 mm1
V = 2208.8 (4) Å3T = 296 K
Z = 4Block, colourless
F(000) = 11920.35 × 0.21 × 0.16 mm
Data collection top
Bruker APEXII D8 QUEST CMOS
diffractometer
5301 reflections with I > 2σ(I)
Detector resolution: 10.5 pixels mm-1Rint = 0.074
ω and φ scansθmax = 28.7°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS, Bruker, 2013)
h = 1313
Tmin = 0.647, Tmax = 0.704k = 1213
56814 measured reflectionsl = 2829
5708 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0375P)2 + 0.6193P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max < 0.001
wR(F2) = 0.068Δρmax = 0.52 e Å3
S = 1.03Δρmin = 0.45 e Å3
5708 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
351 parametersExtinction coefficient: 0.0050 (7)
160 restraintsAbsolute structure: Flack x determined using 2427 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: mixedAbsolute structure parameter: 0.081 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.08591 (2)0.23028 (2)0.49814 (3)0.02155 (9)
Na10.1091 (4)0.2329 (2)0.33008 (17)0.0575 (9)
Na20.1037 (2)0.2125 (3)0.66027 (15)0.0510 (8)
O10.0894 (3)0.3769 (3)0.41640 (17)0.0357 (8)
O20.0886 (4)0.4817 (3)0.5052 (3)0.0458 (10)
O30.1045 (3)0.9851 (3)0.5013 (2)0.0349 (6)
O40.0482 (4)1.0819 (3)0.41384 (15)0.0354 (8)
O50.2394 (3)0.2174 (5)0.57576 (19)0.0502 (10)
O60.3488 (3)0.2217 (4)0.4890 (2)0.0490 (10)
O70.9433 (3)0.2411 (4)0.58696 (16)0.0337 (7)
O80.8424 (3)0.2200 (3)0.4971 (2)0.0319 (6)
O90.3263 (6)0.1781 (9)0.3477 (3)0.111 (2)
H9A0.33810.09060.34500.166*
H9B0.35400.20250.38570.166*
O100.0517 (7)0.4353 (7)0.6789 (3)0.118 (2)
H10A0.01820.46940.64610.178*
H10B0.12180.47730.68850.178*
C10.0879 (4)0.6114 (4)0.4125 (2)0.0251 (8)
C20.0830 (4)0.7316 (4)0.4438 (2)0.0236 (8)
H20.07980.73280.48710.028*
C30.0829 (4)0.8496 (4)0.4111 (2)0.0225 (8)
C40.0860 (5)0.8478 (4)0.3463 (2)0.0312 (10)
H40.08470.92670.32420.037*
C50.0909 (5)0.7295 (4)0.3148 (2)0.0364 (12)
H50.09350.72840.27150.044*
C60.0918 (5)0.6114 (4)0.3481 (2)0.0335 (10)
H60.09510.53170.32680.040*
C70.0881 (4)0.4829 (4)0.4476 (3)0.0314 (10)
C80.0788 (4)0.9796 (4)0.4444 (2)0.0249 (8)
C90.4717 (4)0.2316 (4)0.5837 (2)0.0257 (8)
C100.5928 (4)0.2363 (4)0.5534 (2)0.0245 (9)
H100.59620.23770.51010.029*
C110.7089 (4)0.2390 (4)0.58795 (19)0.0220 (8)
C120.7034 (4)0.2399 (5)0.6526 (2)0.0286 (9)
H120.78090.24240.67580.034*
C130.5834 (4)0.2370 (4)0.6825 (2)0.0327 (10)
H130.58020.23890.72580.039*
C140.4674 (4)0.2313 (4)0.6486 (2)0.0285 (9)
H140.38670.22730.66910.034*
C150.3461 (4)0.2229 (4)0.5460 (2)0.0300 (9)
C160.8396 (4)0.2330 (4)0.5549 (2)0.0227 (8)
O11B0.1647 (14)0.3817 (14)0.2412 (5)0.082 (3)0.618 (10)
N10.3469 (8)0.4165 (5)0.1823 (3)0.0859 (17)
C17B0.2980 (15)0.3983 (11)0.2335 (6)0.088 (3)0.618 (10)
H17B0.35260.39570.26830.106*0.618 (10)
C18B0.2609 (14)0.4209 (11)0.1244 (7)0.093 (3)0.618 (10)
H18A0.23690.33280.11270.140*0.618 (10)
H18B0.30880.46170.09100.140*0.618 (10)
H18C0.18280.47110.13300.140*0.618 (10)
C19B0.4849 (13)0.4221 (13)0.1669 (8)0.099 (3)0.618 (10)
H19A0.53540.43460.20430.149*0.618 (10)
H19B0.50050.49430.13900.149*0.618 (10)
H19C0.51090.34110.14730.149*0.618 (10)
C18A0.439 (2)0.424 (2)0.2384 (9)0.105 (5)0.382 (10)
H18D0.38840.41640.27600.157*0.382 (10)
H18E0.48510.50630.23800.157*0.382 (10)
H18F0.50150.35270.23640.157*0.382 (10)
C19A0.433 (3)0.417 (3)0.1269 (10)0.110 (6)0.382 (10)
H19D0.45650.50630.11690.165*0.382 (10)
H19E0.38650.37860.09230.165*0.382 (10)
H19F0.51090.36700.13530.165*0.382 (10)
C17A0.2249 (19)0.401 (2)0.1936 (11)0.098 (4)0.382 (10)
H17A0.16100.39260.16280.117*0.382 (10)
O11A0.198 (3)0.396 (2)0.2554 (10)0.102 (5)0.382 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02087 (14)0.02266 (15)0.02112 (12)0.00064 (10)0.00023 (11)0.00002 (11)
Na10.096 (2)0.0428 (14)0.0337 (16)0.0075 (12)0.0048 (15)0.0055 (8)
Na20.0289 (10)0.0944 (19)0.0298 (14)0.0066 (10)0.0059 (9)0.0114 (12)
O10.0375 (18)0.0144 (13)0.055 (2)0.0009 (11)0.0018 (15)0.0020 (13)
O20.062 (2)0.0262 (15)0.049 (3)0.0022 (14)0.001 (2)0.0105 (18)
O30.0471 (16)0.0271 (13)0.0305 (15)0.0009 (12)0.0002 (19)0.0023 (17)
O40.055 (2)0.0144 (13)0.0365 (18)0.0024 (13)0.0009 (15)0.0005 (12)
O50.0156 (15)0.083 (3)0.052 (2)0.0012 (16)0.0008 (14)0.005 (2)
O60.0319 (17)0.079 (3)0.036 (3)0.0123 (16)0.0103 (17)0.007 (2)
O70.0159 (13)0.048 (2)0.0369 (17)0.0016 (13)0.0045 (12)0.0016 (15)
O80.0263 (13)0.0429 (15)0.0265 (13)0.0009 (11)0.0044 (17)0.0006 (18)
O90.087 (4)0.193 (8)0.052 (3)0.004 (5)0.013 (3)0.003 (4)
O100.113 (5)0.122 (5)0.120 (6)0.002 (4)0.047 (4)0.049 (4)
C10.025 (2)0.0149 (17)0.035 (2)0.0004 (15)0.0015 (16)0.0031 (16)
C20.025 (2)0.0183 (19)0.027 (2)0.0009 (15)0.0013 (15)0.0021 (14)
C30.026 (2)0.0151 (18)0.026 (2)0.0021 (14)0.0009 (16)0.0006 (15)
C40.041 (3)0.022 (2)0.030 (2)0.0029 (18)0.0003 (19)0.0024 (17)
C50.055 (3)0.028 (2)0.027 (2)0.002 (2)0.0015 (19)0.0009 (16)
C60.038 (3)0.020 (2)0.042 (3)0.0019 (18)0.001 (2)0.0050 (18)
C70.022 (2)0.0180 (19)0.054 (3)0.0016 (15)0.0008 (19)0.0063 (19)
C80.0244 (19)0.0190 (19)0.031 (2)0.0021 (15)0.0077 (16)0.0011 (16)
C90.0167 (18)0.027 (2)0.033 (2)0.0001 (15)0.0045 (16)0.0025 (17)
C100.0184 (19)0.030 (2)0.026 (2)0.0022 (16)0.0008 (14)0.0035 (15)
C110.0165 (17)0.0230 (19)0.0265 (19)0.0025 (14)0.0009 (15)0.0003 (15)
C120.023 (2)0.039 (2)0.024 (2)0.0001 (17)0.0057 (16)0.0027 (18)
C130.032 (2)0.041 (3)0.024 (2)0.002 (2)0.0034 (16)0.0011 (17)
C140.019 (2)0.034 (2)0.032 (2)0.0019 (17)0.0061 (16)0.0008 (18)
C150.0143 (18)0.029 (2)0.046 (3)0.0017 (15)0.0069 (18)0.0079 (19)
C160.0159 (17)0.0210 (18)0.031 (2)0.0006 (14)0.0001 (15)0.0015 (15)
O11B0.125 (6)0.051 (6)0.068 (6)0.015 (4)0.025 (4)0.027 (5)
N10.135 (5)0.030 (2)0.093 (3)0.000 (3)0.035 (3)0.001 (2)
C17B0.127 (6)0.047 (5)0.091 (4)0.012 (4)0.028 (3)0.004 (3)
C18B0.143 (6)0.041 (6)0.095 (5)0.012 (5)0.029 (4)0.008 (4)
C19B0.135 (5)0.048 (6)0.115 (7)0.001 (4)0.036 (4)0.017 (6)
C18A0.144 (7)0.073 (12)0.098 (5)0.018 (7)0.030 (5)0.008 (6)
C19A0.136 (8)0.099 (18)0.095 (5)0.006 (9)0.035 (5)0.005 (7)
C17A0.137 (5)0.057 (10)0.100 (6)0.008 (4)0.040 (4)0.029 (6)
O11A0.155 (10)0.052 (9)0.100 (6)0.039 (9)0.046 (6)0.037 (7)
Geometric parameters (Å, º) top
Cd1—O12.301 (3)C1—C71.505 (6)
Cd1—O22.555 (3)C2—H20.9300
Cd1—O3i2.496 (3)C2—C31.388 (5)
Cd1—O4i2.385 (3)C3—C41.391 (6)
Cd1—O52.284 (4)C3—C81.501 (5)
Cd1—O7ii2.396 (3)C4—H40.9300
Cd1—O8ii2.472 (3)C4—C51.379 (6)
Na1—Na2iii3.914 (6)C5—H50.9300
Na1—O12.368 (5)C5—C61.395 (7)
Na1—O3iv2.339 (5)C6—H60.9300
Na1—O4i2.441 (5)C9—C101.390 (6)
Na1—O92.304 (7)C9—C141.395 (6)
Na1—O11B2.498 (11)C9—C151.511 (6)
Na1—O11A2.475 (18)C10—H100.9300
Na2—Cd1v3.791 (3)C10—C111.392 (5)
Na2—Na1v3.914 (6)C11—C121.390 (6)
Na2—O4vi2.655 (5)C11—C161.505 (5)
Na2—O52.277 (5)C12—H120.9300
Na2—O7ii2.282 (4)C12—C131.376 (6)
Na2—O8vii2.275 (5)C13—H130.9300
Na2—O102.354 (8)C13—C141.385 (6)
O1—C71.266 (6)C14—H140.9300
O2—C71.237 (8)O11B—C17B1.373 (18)
O3—Cd1viii2.495 (3)N1—C17B1.221 (13)
O3—Na1vii2.339 (5)N1—C18B1.517 (15)
O3—C81.250 (6)N1—C19B1.439 (14)
O4—Cd1viii2.385 (3)N1—C18A1.526 (18)
O4—Na1viii2.442 (5)N1—C19A1.473 (17)
O4—Na2ix2.655 (5)N1—C17A1.271 (19)
O4—C81.266 (5)C17B—H17B0.9300
O5—C151.259 (6)C18B—H18A0.9600
O6—C151.224 (7)C18B—H18B0.9600
O7—Cd1x2.396 (3)C18B—H18C0.9600
O7—Na2x2.282 (4)C19B—H19A0.9600
O7—C161.259 (5)C19B—H19B0.9600
O8—Cd1x2.472 (3)C19B—H19C0.9600
O8—Na2iv2.275 (5)C18A—H18D0.9600
O8—C161.248 (6)C18A—H18E0.9600
O9—H9A0.8971C18A—H18F0.9600
O9—H9B0.8991C19A—H19D0.9600
O10—H10A0.8544C19A—H19E0.9600
O10—H10B0.8548C19A—H19F0.9600
C1—C21.393 (6)C17A—H17A0.9300
C1—C61.383 (7)C17A—O11A1.36 (2)
O1—Cd1—O253.12 (15)Na2—O10—H10B109.5
O1—Cd1—O3i131.59 (15)H10A—O10—H10B109.2
O1—Cd1—O4i80.31 (12)C2—C1—C7121.2 (4)
O1—Cd1—O7ii125.91 (12)C6—C1—C2118.9 (4)
O1—Cd1—O8ii92.04 (13)C6—C1—C7120.0 (4)
O3i—Cd1—O2173.00 (16)C1—C2—H2119.6
O4i—Cd1—O2132.60 (15)C3—C2—C1120.7 (4)
O4i—Cd1—O3i53.37 (13)C3—C2—H2119.6
O4i—Cd1—O7ii122.40 (12)C2—C3—C4119.7 (4)
O4i—Cd1—O8ii78.81 (13)C2—C3—C8121.1 (4)
O5—Cd1—O1125.67 (14)C4—C3—C8119.2 (3)
O5—Cd1—O290.36 (16)C3—C4—H4119.9
O5—Cd1—O3i82.65 (15)C5—C4—C3120.2 (4)
O5—Cd1—O4i128.83 (14)C5—C4—H4119.9
O5—Cd1—O7ii80.41 (12)C4—C5—H5120.1
O5—Cd1—O8ii133.24 (16)C4—C5—C6119.8 (5)
O7ii—Cd1—O285.03 (15)C6—C5—H5120.1
O7ii—Cd1—O3i94.01 (14)C1—C6—C5120.8 (4)
O7ii—Cd1—O8ii53.55 (14)C1—C6—H6119.6
O8ii—Cd1—O293.07 (11)C5—C6—H6119.6
O8ii—Cd1—O3i91.92 (10)O1—C7—C1118.1 (5)
O1—Na1—Na2iii77.99 (11)O2—C7—O1121.4 (4)
O1—Na1—O4i77.84 (17)O2—C7—C1120.5 (4)
O1—Na1—O11B104.1 (3)O3—C8—O4121.4 (4)
O1—Na1—O11A97.1 (6)O3—C8—C3119.9 (4)
O3iv—Na1—Na2iii77.96 (14)O4—C8—C3118.7 (4)
O3iv—Na1—O1151.1 (2)C10—C9—C14119.7 (4)
O3iv—Na1—O4i94.59 (15)C10—C9—C15119.8 (4)
O3iv—Na1—O11B82.9 (3)C14—C9—C15120.5 (4)
O3iv—Na1—O11A93.0 (6)C9—C10—H10120.0
O4i—Na1—Na2iii41.86 (11)C9—C10—C11120.0 (4)
O4i—Na1—O11B177.4 (3)C11—C10—H10120.0
O4i—Na1—O11A171.5 (7)C10—C11—C16119.6 (4)
O9—Na1—Na2iii130.1 (2)C12—C11—C10119.9 (4)
O9—Na1—O195.8 (2)C12—C11—C16120.4 (4)
O9—Na1—O3iv112.0 (2)C11—C12—H12120.0
O9—Na1—O4i88.3 (2)C13—C12—C11120.1 (4)
O9—Na1—O11B93.2 (4)C13—C12—H12120.0
O9—Na1—O11A85.4 (8)C12—C13—H13119.7
O11B—Na1—Na2iii136.6 (4)C12—C13—C14120.5 (4)
O11A—Na1—Na2iii144.3 (8)C14—C13—H13119.7
Cd1v—Na2—Na1v55.94 (8)C9—C14—H14120.1
O4vi—Na2—Cd1v38.59 (8)C13—C14—C9119.9 (4)
O4vi—Na2—Na1v37.86 (11)C13—C14—H14120.1
O5—Na2—Cd1v102.07 (15)O5—C15—C9117.2 (4)
O5—Na2—Na1v57.70 (14)O6—C15—O5121.7 (4)
O5—Na2—O4vi95.45 (19)O6—C15—C9121.1 (4)
O5—Na2—O7ii83.03 (18)O7—C16—C11118.4 (4)
O5—Na2—O10104.5 (2)O8—C16—O7122.1 (4)
O7ii—Na2—Cd1v133.31 (13)O8—C16—C11119.5 (3)
O7ii—Na2—Na1v92.36 (13)C17B—O11B—Na1112.8 (9)
O7ii—Na2—O4vi94.98 (14)C17B—N1—C18B120.6 (10)
O7ii—Na2—O1080.5 (2)C17B—N1—C19B127.4 (12)
O8vii—Na2—Cd1v38.84 (9)C19B—N1—C18B111.8 (9)
O8vii—Na2—Na1v89.00 (13)C19A—N1—C18A106.0 (13)
O8vii—Na2—O4vi77.02 (13)C17A—N1—C18A116.8 (12)
O8vii—Na2—O5110.18 (16)C17A—N1—C19A136.9 (17)
O8vii—Na2—O7ii164.93 (18)O11B—C17B—H17B119.1
O8vii—Na2—O10102.3 (2)N1—C17B—O11B121.8 (13)
O10—Na2—Cd1v139.3 (2)N1—C17B—H17B119.1
O10—Na2—Na1v161.7 (2)N1—C18B—H18A109.5
O10—Na2—O4vi158.8 (2)N1—C18B—H18B109.5
Cd1—O1—Na1101.49 (13)N1—C18B—H18C109.5
C7—O1—Cd198.4 (3)H18A—C18B—H18B109.5
C7—O1—Na1159.7 (3)H18A—C18B—H18C109.5
C7—O2—Cd187.1 (3)H18B—C18B—H18C109.5
Na1vii—O3—Cd1viii117.93 (19)N1—C19B—H19A109.5
C8—O3—Cd1viii90.1 (3)N1—C19B—H19B109.5
C8—O3—Na1vii143.6 (3)N1—C19B—H19C109.5
Cd1viii—O4—Na1viii97.02 (13)H19A—C19B—H19B109.5
Cd1viii—O4—Na2ix97.42 (13)H19A—C19B—H19C109.5
Na1viii—O4—Na2ix100.28 (18)H19B—C19B—H19C109.5
C8—O4—Cd1viii94.9 (3)N1—C18A—H18D109.5
C8—O4—Na1viii146.5 (3)N1—C18A—H18E109.5
C8—O4—Na2ix109.1 (3)N1—C18A—H18F109.5
Na2—O5—Cd199.83 (14)H18D—C18A—H18E109.5
C15—O5—Cd1102.4 (3)H18D—C18A—H18F109.5
C15—O5—Na2157.7 (3)H18E—C18A—H18F109.5
Na2x—O7—Cd1x96.46 (14)N1—C19A—H19D109.5
C16—O7—Cd1x93.8 (3)N1—C19A—H19E109.5
C16—O7—Na2x164.5 (3)N1—C19A—H19F109.5
Na2iv—O8—Cd1x105.91 (16)H19D—C19A—H19E109.5
C16—O8—Cd1x90.5 (2)H19D—C19A—H19F109.5
C16—O8—Na2iv149.8 (3)H19E—C19A—H19F109.5
Na1—O9—H9A110.8N1—C17A—H17A123.6
Na1—O9—H9B112.4N1—C17A—O11A113 (2)
H9A—O9—H9B106.7O11A—C17A—H17A123.6
Na2—O10—H10A109.8C17A—O11A—Na1136.8 (17)
Cd1—O1—C7—O21.6 (5)C4—C3—C8—O3164.6 (4)
Cd1—O1—C7—C1179.3 (3)C4—C3—C8—O415.9 (6)
Cd1—O2—C7—O11.5 (4)C4—C5—C6—C10.0 (7)
Cd1—O2—C7—C1179.5 (4)C6—C1—C2—C30.5 (6)
Cd1viii—O3—C8—O45.0 (4)C6—C1—C7—O11.3 (6)
Cd1viii—O3—C8—C3175.5 (3)C6—C1—C7—O2177.8 (5)
Cd1viii—O4—C8—O35.2 (4)C7—C1—C2—C3180.0 (4)
Cd1viii—O4—C8—C3175.2 (3)C7—C1—C6—C5179.6 (4)
Cd1—O5—C15—O66.1 (6)C8—C3—C4—C5179.5 (4)
Cd1—O5—C15—C9173.6 (3)C9—C10—C11—C121.4 (6)
Cd1x—O7—C16—O81.9 (4)C9—C10—C11—C16175.0 (4)
Cd1x—O7—C16—C11178.2 (3)C10—C9—C14—C130.6 (7)
Cd1x—O8—C16—O71.9 (4)C10—C9—C15—O5179.3 (4)
Cd1x—O8—C16—C11178.3 (3)C10—C9—C15—O61.0 (7)
Na1—O1—C7—O2166.8 (7)C10—C11—C12—C130.5 (7)
Na1—O1—C7—C112.2 (11)C10—C11—C16—O7177.1 (4)
Na1vii—O3—C8—O4147.3 (4)C10—C11—C16—O83.1 (6)
Na1vii—O3—C8—C333.1 (7)C11—C12—C13—C141.0 (7)
Na1viii—O4—C8—O3115.7 (5)C12—C11—C16—O76.5 (6)
Na1viii—O4—C8—C364.7 (7)C12—C11—C16—O8173.4 (4)
Na1—O11B—C17B—N1148.4 (9)C12—C13—C14—C91.5 (7)
Na2ix—O4—C8—O394.4 (4)C14—C9—C10—C110.8 (6)
Na2ix—O4—C8—C385.2 (4)C14—C9—C15—O51.0 (6)
Na2—O5—C15—O6179.4 (8)C14—C9—C15—O6179.2 (5)
Na2—O5—C15—C90.4 (13)C15—C9—C10—C11177.4 (4)
Na2x—O7—C16—O8129.6 (10)C15—C9—C14—C13178.9 (4)
Na2x—O7—C16—C1150.2 (13)C16—C11—C12—C13175.9 (4)
Na2iv—O8—C16—O7122.2 (5)N1—C17A—O11A—Na1116 (3)
Na2iv—O8—C16—C1157.7 (7)C17B—N1—C17A—O11A6.5 (16)
C1—C2—C3—C40.9 (6)C18B—N1—C17B—O11B0.2 (17)
C1—C2—C3—C8179.5 (4)C18B—N1—C17A—O11A174 (2)
C2—C1—C6—C50.0 (7)C19B—N1—C17B—O11B173.3 (11)
C2—C1—C7—O1178.3 (4)C18A—N1—C17B—O11B175.3 (18)
C2—C1—C7—O22.6 (6)C18A—N1—C17A—O11A2 (3)
C2—C3—C4—C50.9 (7)C19A—N1—C17B—O11B142 (6)
C2—C3—C8—O315.8 (6)C19A—N1—C17A—O11A174 (2)
C2—C3—C8—O4163.7 (4)C17A—N1—C17B—O11B0.1 (14)
C3—C4—C5—C60.5 (7)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) y, x, z1/4; (iv) y+1, x, z1/4; (v) y, x, z+1/4; (vi) y1, x, z+1/4; (vii) y, x+1, z+1/4; (viii) x, y+1, z; (ix) y, x+1, z1/4; (x) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9B···O60.902.223.074 (8)159
O10—H10B···O6vii0.862.293.073 (8)152
C4—H4···O3xi0.932.493.385 (6)161
C6—H6···O10.932.482.791 (5)100
C6—H6···O11B0.932.483.347 (14)155
C10—H10···O10iv0.932.593.277 (8)131
C14—H14···O8vii0.932.483.366 (5)159
C18B—H18A···Cg3iv-2.543.387 (11)148
C19B—H19B···Cg4xii-2.933.696 (15)138
C19A—H19D···Cg4xii-2.673.53 (4)151
Symmetry codes: (iv) y+1, x, z1/4; (vii) y, x+1, z+1/4; (xi) y+1, x+1, z1/4; (xii) x+1, y+1, z1/2.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, Faculty of Science and Technology, Thammasat University, Thailand, for financial support and the Central Scientific Instrument Center (CSIC) for funds to purchase the X-ray diffractometer at the Faculty of Science and Technology, Thammasat University, Thailand.

References

First citationBorah, B. M., Dey, S. K. & Das, G. (2011). Cryst. Growth Des. 11, 2773–2779.  Web of Science CSD CrossRef CAS
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChe, G.-B., Liu, C.-B., Wang, L. & Cui, Y.-C. (2007). J. Coord. Chem. 60, 1997–2007.  Web of Science CSD CrossRef CAS
First citationChen, Y., Zheng, L., She, S., Chen, Z., Hu, B. & Li, Y. (2011). Dalton Trans. 40, 4970–4975.  Web of Science CSD CrossRef CAS PubMed
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationDu, F., Zhang, H., Tian, C. & Du, S. (2013). Cryst. Growth Des. 13, 1736–1742.  Web of Science CSD CrossRef CAS
First citationLin, J.-D., Cheng, J.-W. & Du, S.-W. (2008). Cryst. Growth Des. 8, 3345–3353.  Web of Science CSD CrossRef CAS
First citationLin, J.-D., Long, X. F., Lin, P. & Du, S.-W. (2010). Cryst. Growth Des. 10, 146–157.  Web of Science CSD CrossRef CAS
First citationLin, J.-D., Wu, S. T., Li, Z. H. & Du, S.-W. (2010). Dalton Trans. 39, 10719–10728.  Web of Science CSD CrossRef CAS PubMed
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals
First citationSeco, J. M., Pérez-Yáñez, S., Briones, D., García, J.Á., Cepeda, J. & Rodríguez-Diéguez, A. (2017). Cryst. Growth Des. 17, 3893–3906.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed
First citationWang, X.-L., Mu, B., Lin, H.-Y., Yang, S., Liu, G.-C., Tian, A.-X. & Zhang, J.-W. (2012). Dalton Trans. 41, 11074–11084.  Web of Science CSD CrossRef CAS PubMed
First citationWang, L., Shi, Z., Li, G., Fan, Y., Fu, W. & Feng, S. (2004). Solid State Sci. 6, 85–90.  Web of Science CSD CrossRef CAS
First citationWu, Z., Yuan, X., Zhang, J., Wang, H., Jiang, L. & Zeng, G. (2017). ChemCatChem, 9, 41–64.  Web of Science CrossRef CAS
First citationXu, H., Wang, R. & Li, Y. (2004). J. Mol. Struct. 688, 1–3.  Web of Science CSD CrossRef CAS
First citationYaghi, O. M., Li, H., Eddaoudi, M. & O'Keeffe, M. (1999). Nature, 402, 276–279.  CSD CrossRef
First citationYang, Y.-T., Zhao, Q., Tu, C.-Z., Cheng, F. X. & Wang, F. (2014). Inorg. Chem. Commun. 40, 43–46.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds