research communications
μ5-benzene-1,3-dicarboxylato)(N,N-dimethylformamide)cadmium(II)disodium(I)]
of poly[diaquabis(aDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Khlong Laung, Pathumthani 12121, Thailand, and bMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Laung, Pathumthani 12121, Thailand
*Correspondence e-mail: nwan0110@tu.ac.th
The title compound, [CdNa2(C8H4O4)2(C3H7NO)(H2O)2]n or [CdNa2(1,3-bdc)2(DMF)(H2O)2]n, is a new CdII–NaI heterobimetallic coordination polymer. The consists of one CdII atom, two NaI atoms, two 1,3-bdc ligands, two coordinated water molecules and one coordinated DMF molecule. The CdII atom exhibits a seven-coordinate geometry, while the NaI atoms can be considered to be pentacoordinate. The metal ions and their symmetry-related equivalents are connected via chelating–bridging carboxylate groups of the 1,3-bdc ligands to generate a three-dimensional framework. In the crystal, there are classical O—H⋯O hydrogen bonds involving the coordinated water molecules and the 1,3-bdc carboxylate groups and π–π stacking between the benzene rings of the 1,3-bdc ligands present within the frameworks.
CCDC reference: 1576543
1. Chemical context
Porous coordination polymers or metal–organic frameworks (MOFs) constructed from d10 transition metals and benzene polycarboxylate bridging ligands have been widely studied (Yaghi et al., 1999; Lin et al., 2008; Seco et al., 2017) due to the varieties of coordination framework topologies and also potential applications in gas adsorption (Suh et al., 2012), (Wang et al., 2012) and (Wu et al., 2017). Among the most common ligands in this class, the rigid and planar backbone of benzene dicarboxylates such as benzene-1,3-dicarboxylic acid (1,3-H2bdc) and benzene-1,4-dicarboxylic acid (1,4-H2bdc) are widely employed in the construction of these solids owing to their rich coordination modes. Studies incorporating alkaline metal ions into d10-MOFs with one type of bridging ligand to construct novel heterobimetallic d10-alkaline metal ion MOFs have been undertaken (Lin et al., 2010a,b). The alkali metal ions could provide an unpredictable and pH-dependent self-assembly in the construction of coordination frameworks with various types of topology and dimensionality (Borah et al., 2011; Chen et al., 2011). However, the members of three-dimensional coordination framework heterobimetallic ZnII or CdII /NaI MOFs with benzenepolycarboxylate ligands are still limited; previous reports include [ZnNa(1,2,4-btc)] where 1,2,4-btc = benzene-1,2,4-tricarboxylate (Wang et al., 2004), [Zn2Na2(1,4-bdc)3·(DMF)2·(m-H2O)2] where 1,4-bdcH2 = benzene-1,4-dicarboxylic acid (Xu et al., 2004), {[CdNa(1,3-bdc)2]·[NH2(CH3)2]} where 1,3-bdcH2 = benzene-1,3-dicarboxylic acid (Che et al., 2007), [CdNa(OH-1,3-bdc)2(H2O)2]·2H2O where OH-1,3-bdcH2 = 5-hydroxybenzene-1,3-dicarboxylic acid (Du et al., 2013) and [Cd8Na(ntc)6(H2O)8] where ntcH3 = 5-nitrobenzene-1,2,3-tricarboxylic acid (Yang et al., 2014). With the aim of searching for new members of this heterobimetallic MOFs system containing benzene-1,3-dicarboxylic acid (1,3-bdcH2), we explored mixed sources of ZnII/CdII–NaI with this ligand. The expected products are prepared by using a direct synthetic method, mixing metal nitrate salts, 1,3-bdcH2 and NaOH (mole ratio 1:1:2) in water, methanol and DMF solvents. However, only the CdII–NaI MOF product has been successfully synthesized. As part of our ongoing studies on this complex, we describe here the synthesis and of a novel three-dimensional heterobimetallic CdII–NaI MOF, [CdNa2(1,3-bdc)2(DMF)(H2O)2]n (I).
2. Structural commentary
The title compound (I) crystallizes in the tetragonal with polar P43 The of (I) consists of one CdII ion, two crystallographically independent Na(I) ions, two 1,3-bdc ligands, two coordinated water molecules and one DMF molecules, as shown in Fig. 1. Each CdII ion is coordinated by seven carboxylate oxygen atoms from four different 1,3-bdc ligands with the Cd—O bond distances range between 2.301 (3) and 2.555 (3) Å (Table 1). The Na1 ion is surrounded by three carboxylate oxygen atoms of three different 1,3-bdc ligands, one oxygen atom from a water molecule, and one DMF molecule with the Na—O bond distances ranging between 2.304 (7) and 2.498 (11) Å, while the Na2 ion adopts a five-coordinate [4 + 1] coordination with four oxygen atoms from three different 1,3-bdc ligands and one oxygen atom from a water molecule. The Na—O bond distances are in the range 2.275 (5) to 2.354 (8) Å. Fig. 2 shows the coordination modes of the 1,3-bdc ligand in compound (I). The 1,3-bdc molecule is fully deprotonated and coordinated to the CdII and NaI ions in a μ5-coordination mode, creating a one-dimensional heterobimetallic chain running parallel to the c axis, Fig. 3. Adjacent chains are further connected through the 1,3-bdc ligands in the a- and b-axis directions, generating a three-dimensional framework structure as shown in Fig. 4. The coordinated water and DMF molecules adopt a monodentate coordination mode and serve as a terminal pendant ligand pointing inside the channels.
3. Supramolecular features
In the crystal of (I), classical O—H⋯O hydrogen bonds and aromatic π–π stacking interactions are observed and these interactions presumably help to stabilize the frameworks. All water molecules are shown to act as O—H⋯O hydrogen-bond donors towards the carboxylate groups of the 1,3-bdc ligands (Table 2). The π–π stacking interactions are between symmetry-related aromatic rings of the 1,3-bdc ligands with a Cg1⋯Cg2i distance of 3.588 (3) Å and a dihedral angle of 3.8 (4)° [Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively; symmetry code: (i) –y, x, z – 1/4].
4. Database survey
To the best of our knowledge of structures closely related to (I), only the three-dimensional coordination framework {[CdNa(1,3-bdc)2]·[NH2(CH3)2]} has been reported (Che et al., 2007). This compound crystallized in the centrosymmetric C2/c. The CdII and NaI centers are linked by a 1,3-bdc ligand in a μ4-coordination mode. The DMF solvent decomposes under solvothermal synthesis, with the construction of a 3D coordination framework with open channels containing NH2(CH3)2 molecules. In comparison, compound (I) contains coordinated H2O and DMF molecules projecting into the framework channels. Other related three-dimensional heterobimetallic d10–NaI coordination frameworks containing benzenepolycarboxylate ligands have been published, such as [CdNa(OH-1,3-bdc)2(H2O)2]·2H2O where OH-1,3-bdcH2 = 5-hydroxy-benzene-1,3-dicarboxylic acid (Du et al., 2013), [Zn2Na2(1,4-bdc)3·(DMF)2·(m-H2O)2] where 1,4-bdcH2 = benzene-1,4-dicarboxylic acid (Xu et al., 2004), [ZnNa(1,2,4-btc)] where 1,2,4-btc = 1,2,4-benzenetricarboxylate (Wang et al., 2004), and [Cd8Na(ntc)6(H2O)8] where ntcH3 = 5-nitrobenzene-1,2,3-tricarboxylic acid (Yang et al., 2014). The three-dimensional coordination framework topologies of these compounds are the result of the construction of different types of metal centers, geometries and carboxylate ligand derivatives. It is found that the carboxylate ligand derivatives in the structure of these related compounds exhibit a μ4-coordination mode.
5. Synthesis and crystallization
A mixture solution of 1,3-bdcH2 (1.0 mmol) and NaOH (2.0 mmol) in 10 mL of distilled water was slowly dropped to a methanolic solution (10 ml) of Cd(NO3)2·4H2O (1.0 mmol). The reaction mixture was stirred at 333 K for 30 min and allowed to cool to room temperature and then filtered. The filtrate was allowed to stand to slowly evaporate at ambient temperature. Colorless block-shaped crystals suitable for single crystal X-ray diffraction were obtained after three days (76% yield based on Cd).
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms except those of water molecules were generated geometrically and refined isotropically using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The coordinated DMF molecule was found to be disordered with two sets of sites with a refined occupancy ratio of 0.382 (10) and 0.618 (10).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1576543
https://doi.org/10.1107/S2056989017013871/pj2046sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017013871/pj2046Isup2.hkl
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[CdNa2(C8H4O4)2(C3H7NO)(H2O)2] | Dx = 1.791 Mg m−3 |
Mr = 595.73 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P43 | Cell parameters from 9769 reflections |
a = 10.1437 (8) Å | θ = 2.7–28.3° |
c = 21.4664 (15) Å | µ = 1.09 mm−1 |
V = 2208.8 (4) Å3 | T = 296 K |
Z = 4 | Block, colourless |
F(000) = 1192 | 0.35 × 0.21 × 0.16 mm |
Bruker APEXII D8 QUEST CMOS diffractometer | 5301 reflections with I > 2σ(I) |
Detector resolution: 10.5 pixels mm-1 | Rint = 0.074 |
ω and φ scans | θmax = 28.7°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS, Bruker, 2013) | h = −13→13 |
Tmin = 0.647, Tmax = 0.704 | k = −12→13 |
56814 measured reflections | l = −28→29 |
5708 independent reflections |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0375P)2 + 0.6193P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.028 | (Δ/σ)max < 0.001 |
wR(F2) = 0.068 | Δρmax = 0.52 e Å−3 |
S = 1.03 | Δρmin = −0.45 e Å−3 |
5708 reflections | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
351 parameters | Extinction coefficient: 0.0050 (7) |
160 restraints | Absolute structure: Flack x determined using 2427 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Hydrogen site location: mixed | Absolute structure parameter: 0.081 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cd1 | 0.08591 (2) | 0.23028 (2) | 0.49814 (3) | 0.02155 (9) | |
Na1 | 0.1091 (4) | 0.2329 (2) | 0.33008 (17) | 0.0575 (9) | |
Na2 | 0.1037 (2) | 0.2125 (3) | 0.66027 (15) | 0.0510 (8) | |
O1 | 0.0894 (3) | 0.3769 (3) | 0.41640 (17) | 0.0357 (8) | |
O2 | 0.0886 (4) | 0.4817 (3) | 0.5052 (3) | 0.0458 (10) | |
O3 | 0.1045 (3) | 0.9851 (3) | 0.5013 (2) | 0.0349 (6) | |
O4 | 0.0482 (4) | 1.0819 (3) | 0.41384 (15) | 0.0354 (8) | |
O5 | 0.2394 (3) | 0.2174 (5) | 0.57576 (19) | 0.0502 (10) | |
O6 | 0.3488 (3) | 0.2217 (4) | 0.4890 (2) | 0.0490 (10) | |
O7 | 0.9433 (3) | 0.2411 (4) | 0.58696 (16) | 0.0337 (7) | |
O8 | 0.8424 (3) | 0.2200 (3) | 0.4971 (2) | 0.0319 (6) | |
O9 | 0.3263 (6) | 0.1781 (9) | 0.3477 (3) | 0.111 (2) | |
H9A | 0.3381 | 0.0906 | 0.3450 | 0.166* | |
H9B | 0.3540 | 0.2025 | 0.3857 | 0.166* | |
O10 | 0.0517 (7) | 0.4353 (7) | 0.6789 (3) | 0.118 (2) | |
H10A | 0.0182 | 0.4694 | 0.6461 | 0.178* | |
H10B | 0.1218 | 0.4773 | 0.6885 | 0.178* | |
C1 | 0.0879 (4) | 0.6114 (4) | 0.4125 (2) | 0.0251 (8) | |
C2 | 0.0830 (4) | 0.7316 (4) | 0.4438 (2) | 0.0236 (8) | |
H2 | 0.0798 | 0.7328 | 0.4871 | 0.028* | |
C3 | 0.0829 (4) | 0.8496 (4) | 0.4111 (2) | 0.0225 (8) | |
C4 | 0.0860 (5) | 0.8478 (4) | 0.3463 (2) | 0.0312 (10) | |
H4 | 0.0847 | 0.9267 | 0.3242 | 0.037* | |
C5 | 0.0909 (5) | 0.7295 (4) | 0.3148 (2) | 0.0364 (12) | |
H5 | 0.0935 | 0.7284 | 0.2715 | 0.044* | |
C6 | 0.0918 (5) | 0.6114 (4) | 0.3481 (2) | 0.0335 (10) | |
H6 | 0.0951 | 0.5317 | 0.3268 | 0.040* | |
C7 | 0.0881 (4) | 0.4829 (4) | 0.4476 (3) | 0.0314 (10) | |
C8 | 0.0788 (4) | 0.9796 (4) | 0.4444 (2) | 0.0249 (8) | |
C9 | 0.4717 (4) | 0.2316 (4) | 0.5837 (2) | 0.0257 (8) | |
C10 | 0.5928 (4) | 0.2363 (4) | 0.5534 (2) | 0.0245 (9) | |
H10 | 0.5962 | 0.2377 | 0.5101 | 0.029* | |
C11 | 0.7089 (4) | 0.2390 (4) | 0.58795 (19) | 0.0220 (8) | |
C12 | 0.7034 (4) | 0.2399 (5) | 0.6526 (2) | 0.0286 (9) | |
H12 | 0.7809 | 0.2424 | 0.6758 | 0.034* | |
C13 | 0.5834 (4) | 0.2370 (4) | 0.6825 (2) | 0.0327 (10) | |
H13 | 0.5802 | 0.2389 | 0.7258 | 0.039* | |
C14 | 0.4674 (4) | 0.2313 (4) | 0.6486 (2) | 0.0285 (9) | |
H14 | 0.3867 | 0.2273 | 0.6691 | 0.034* | |
C15 | 0.3461 (4) | 0.2229 (4) | 0.5460 (2) | 0.0300 (9) | |
C16 | 0.8396 (4) | 0.2330 (4) | 0.5549 (2) | 0.0227 (8) | |
O11B | 0.1647 (14) | 0.3817 (14) | 0.2412 (5) | 0.082 (3) | 0.618 (10) |
N1 | 0.3469 (8) | 0.4165 (5) | 0.1823 (3) | 0.0859 (17) | |
C17B | 0.2980 (15) | 0.3983 (11) | 0.2335 (6) | 0.088 (3) | 0.618 (10) |
H17B | 0.3526 | 0.3957 | 0.2683 | 0.106* | 0.618 (10) |
C18B | 0.2609 (14) | 0.4209 (11) | 0.1244 (7) | 0.093 (3) | 0.618 (10) |
H18A | 0.2369 | 0.3328 | 0.1127 | 0.140* | 0.618 (10) |
H18B | 0.3088 | 0.4617 | 0.0910 | 0.140* | 0.618 (10) |
H18C | 0.1828 | 0.4711 | 0.1330 | 0.140* | 0.618 (10) |
C19B | 0.4849 (13) | 0.4221 (13) | 0.1669 (8) | 0.099 (3) | 0.618 (10) |
H19A | 0.5354 | 0.4346 | 0.2043 | 0.149* | 0.618 (10) |
H19B | 0.5005 | 0.4943 | 0.1390 | 0.149* | 0.618 (10) |
H19C | 0.5109 | 0.3411 | 0.1473 | 0.149* | 0.618 (10) |
C18A | 0.439 (2) | 0.424 (2) | 0.2384 (9) | 0.105 (5) | 0.382 (10) |
H18D | 0.3884 | 0.4164 | 0.2760 | 0.157* | 0.382 (10) |
H18E | 0.4851 | 0.5063 | 0.2380 | 0.157* | 0.382 (10) |
H18F | 0.5015 | 0.3527 | 0.2364 | 0.157* | 0.382 (10) |
C19A | 0.433 (3) | 0.417 (3) | 0.1269 (10) | 0.110 (6) | 0.382 (10) |
H19D | 0.4565 | 0.5063 | 0.1169 | 0.165* | 0.382 (10) |
H19E | 0.3865 | 0.3786 | 0.0923 | 0.165* | 0.382 (10) |
H19F | 0.5109 | 0.3670 | 0.1353 | 0.165* | 0.382 (10) |
C17A | 0.2249 (19) | 0.401 (2) | 0.1936 (11) | 0.098 (4) | 0.382 (10) |
H17A | 0.1610 | 0.3926 | 0.1628 | 0.117* | 0.382 (10) |
O11A | 0.198 (3) | 0.396 (2) | 0.2554 (10) | 0.102 (5) | 0.382 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.02087 (14) | 0.02266 (15) | 0.02112 (12) | 0.00064 (10) | −0.00023 (11) | −0.00002 (11) |
Na1 | 0.096 (2) | 0.0428 (14) | 0.0337 (16) | −0.0075 (12) | 0.0048 (15) | −0.0055 (8) |
Na2 | 0.0289 (10) | 0.0944 (19) | 0.0298 (14) | −0.0066 (10) | −0.0059 (9) | 0.0114 (12) |
O1 | 0.0375 (18) | 0.0144 (13) | 0.055 (2) | −0.0009 (11) | −0.0018 (15) | 0.0020 (13) |
O2 | 0.062 (2) | 0.0262 (15) | 0.049 (3) | −0.0022 (14) | −0.001 (2) | 0.0105 (18) |
O3 | 0.0471 (16) | 0.0271 (13) | 0.0305 (15) | 0.0009 (12) | −0.0002 (19) | −0.0023 (17) |
O4 | 0.055 (2) | 0.0144 (13) | 0.0365 (18) | 0.0024 (13) | 0.0009 (15) | 0.0005 (12) |
O5 | 0.0156 (15) | 0.083 (3) | 0.052 (2) | −0.0012 (16) | −0.0008 (14) | 0.005 (2) |
O6 | 0.0319 (17) | 0.079 (3) | 0.036 (3) | −0.0123 (16) | −0.0103 (17) | 0.007 (2) |
O7 | 0.0159 (13) | 0.048 (2) | 0.0369 (17) | −0.0016 (13) | −0.0045 (12) | 0.0016 (15) |
O8 | 0.0263 (13) | 0.0429 (15) | 0.0265 (13) | 0.0009 (11) | 0.0044 (17) | 0.0006 (18) |
O9 | 0.087 (4) | 0.193 (8) | 0.052 (3) | 0.004 (5) | −0.013 (3) | 0.003 (4) |
O10 | 0.113 (5) | 0.122 (5) | 0.120 (6) | −0.002 (4) | −0.047 (4) | 0.049 (4) |
C1 | 0.025 (2) | 0.0149 (17) | 0.035 (2) | −0.0004 (15) | 0.0015 (16) | 0.0031 (16) |
C2 | 0.025 (2) | 0.0183 (19) | 0.027 (2) | −0.0009 (15) | −0.0013 (15) | 0.0021 (14) |
C3 | 0.026 (2) | 0.0151 (18) | 0.026 (2) | −0.0021 (14) | −0.0009 (16) | 0.0006 (15) |
C4 | 0.041 (3) | 0.022 (2) | 0.030 (2) | 0.0029 (18) | 0.0003 (19) | 0.0024 (17) |
C5 | 0.055 (3) | 0.028 (2) | 0.027 (2) | 0.002 (2) | 0.0015 (19) | −0.0009 (16) |
C6 | 0.038 (3) | 0.020 (2) | 0.042 (3) | 0.0019 (18) | 0.001 (2) | −0.0050 (18) |
C7 | 0.022 (2) | 0.0180 (19) | 0.054 (3) | −0.0016 (15) | −0.0008 (19) | 0.0063 (19) |
C8 | 0.0244 (19) | 0.0190 (19) | 0.031 (2) | −0.0021 (15) | 0.0077 (16) | −0.0011 (16) |
C9 | 0.0167 (18) | 0.027 (2) | 0.033 (2) | −0.0001 (15) | −0.0045 (16) | 0.0025 (17) |
C10 | 0.0184 (19) | 0.030 (2) | 0.026 (2) | −0.0022 (16) | −0.0008 (14) | 0.0035 (15) |
C11 | 0.0165 (17) | 0.0230 (19) | 0.0265 (19) | −0.0025 (14) | −0.0009 (15) | 0.0003 (15) |
C12 | 0.023 (2) | 0.039 (2) | 0.024 (2) | −0.0001 (17) | −0.0057 (16) | −0.0027 (18) |
C13 | 0.032 (2) | 0.041 (3) | 0.024 (2) | −0.002 (2) | 0.0034 (16) | −0.0011 (17) |
C14 | 0.019 (2) | 0.034 (2) | 0.032 (2) | 0.0019 (17) | 0.0061 (16) | −0.0008 (18) |
C15 | 0.0143 (18) | 0.029 (2) | 0.046 (3) | −0.0017 (15) | −0.0069 (18) | 0.0079 (19) |
C16 | 0.0159 (17) | 0.0210 (18) | 0.031 (2) | −0.0006 (14) | 0.0001 (15) | 0.0015 (15) |
O11B | 0.125 (6) | 0.051 (6) | 0.068 (6) | −0.015 (4) | 0.025 (4) | −0.027 (5) |
N1 | 0.135 (5) | 0.030 (2) | 0.093 (3) | 0.000 (3) | 0.035 (3) | −0.001 (2) |
C17B | 0.127 (6) | 0.047 (5) | 0.091 (4) | −0.012 (4) | 0.028 (3) | −0.004 (3) |
C18B | 0.143 (6) | 0.041 (6) | 0.095 (5) | 0.012 (5) | 0.029 (4) | −0.008 (4) |
C19B | 0.135 (5) | 0.048 (6) | 0.115 (7) | 0.001 (4) | 0.036 (4) | 0.017 (6) |
C18A | 0.144 (7) | 0.073 (12) | 0.098 (5) | −0.018 (7) | 0.030 (5) | 0.008 (6) |
C19A | 0.136 (8) | 0.099 (18) | 0.095 (5) | 0.006 (9) | 0.035 (5) | 0.005 (7) |
C17A | 0.137 (5) | 0.057 (10) | 0.100 (6) | −0.008 (4) | 0.040 (4) | −0.029 (6) |
O11A | 0.155 (10) | 0.052 (9) | 0.100 (6) | −0.039 (9) | 0.046 (6) | −0.037 (7) |
Cd1—O1 | 2.301 (3) | C1—C7 | 1.505 (6) |
Cd1—O2 | 2.555 (3) | C2—H2 | 0.9300 |
Cd1—O3i | 2.496 (3) | C2—C3 | 1.388 (5) |
Cd1—O4i | 2.385 (3) | C3—C4 | 1.391 (6) |
Cd1—O5 | 2.284 (4) | C3—C8 | 1.501 (5) |
Cd1—O7ii | 2.396 (3) | C4—H4 | 0.9300 |
Cd1—O8ii | 2.472 (3) | C4—C5 | 1.379 (6) |
Na1—Na2iii | 3.914 (6) | C5—H5 | 0.9300 |
Na1—O1 | 2.368 (5) | C5—C6 | 1.395 (7) |
Na1—O3iv | 2.339 (5) | C6—H6 | 0.9300 |
Na1—O4i | 2.441 (5) | C9—C10 | 1.390 (6) |
Na1—O9 | 2.304 (7) | C9—C14 | 1.395 (6) |
Na1—O11B | 2.498 (11) | C9—C15 | 1.511 (6) |
Na1—O11A | 2.475 (18) | C10—H10 | 0.9300 |
Na2—Cd1v | 3.791 (3) | C10—C11 | 1.392 (5) |
Na2—Na1v | 3.914 (6) | C11—C12 | 1.390 (6) |
Na2—O4vi | 2.655 (5) | C11—C16 | 1.505 (5) |
Na2—O5 | 2.277 (5) | C12—H12 | 0.9300 |
Na2—O7ii | 2.282 (4) | C12—C13 | 1.376 (6) |
Na2—O8vii | 2.275 (5) | C13—H13 | 0.9300 |
Na2—O10 | 2.354 (8) | C13—C14 | 1.385 (6) |
O1—C7 | 1.266 (6) | C14—H14 | 0.9300 |
O2—C7 | 1.237 (8) | O11B—C17B | 1.373 (18) |
O3—Cd1viii | 2.495 (3) | N1—C17B | 1.221 (13) |
O3—Na1vii | 2.339 (5) | N1—C18B | 1.517 (15) |
O3—C8 | 1.250 (6) | N1—C19B | 1.439 (14) |
O4—Cd1viii | 2.385 (3) | N1—C18A | 1.526 (18) |
O4—Na1viii | 2.442 (5) | N1—C19A | 1.473 (17) |
O4—Na2ix | 2.655 (5) | N1—C17A | 1.271 (19) |
O4—C8 | 1.266 (5) | C17B—H17B | 0.9300 |
O5—C15 | 1.259 (6) | C18B—H18A | 0.9600 |
O6—C15 | 1.224 (7) | C18B—H18B | 0.9600 |
O7—Cd1x | 2.396 (3) | C18B—H18C | 0.9600 |
O7—Na2x | 2.282 (4) | C19B—H19A | 0.9600 |
O7—C16 | 1.259 (5) | C19B—H19B | 0.9600 |
O8—Cd1x | 2.472 (3) | C19B—H19C | 0.9600 |
O8—Na2iv | 2.275 (5) | C18A—H18D | 0.9600 |
O8—C16 | 1.248 (6) | C18A—H18E | 0.9600 |
O9—H9A | 0.8971 | C18A—H18F | 0.9600 |
O9—H9B | 0.8991 | C19A—H19D | 0.9600 |
O10—H10A | 0.8544 | C19A—H19E | 0.9600 |
O10—H10B | 0.8548 | C19A—H19F | 0.9600 |
C1—C2 | 1.393 (6) | C17A—H17A | 0.9300 |
C1—C6 | 1.383 (7) | C17A—O11A | 1.36 (2) |
O1—Cd1—O2 | 53.12 (15) | Na2—O10—H10B | 109.5 |
O1—Cd1—O3i | 131.59 (15) | H10A—O10—H10B | 109.2 |
O1—Cd1—O4i | 80.31 (12) | C2—C1—C7 | 121.2 (4) |
O1—Cd1—O7ii | 125.91 (12) | C6—C1—C2 | 118.9 (4) |
O1—Cd1—O8ii | 92.04 (13) | C6—C1—C7 | 120.0 (4) |
O3i—Cd1—O2 | 173.00 (16) | C1—C2—H2 | 119.6 |
O4i—Cd1—O2 | 132.60 (15) | C3—C2—C1 | 120.7 (4) |
O4i—Cd1—O3i | 53.37 (13) | C3—C2—H2 | 119.6 |
O4i—Cd1—O7ii | 122.40 (12) | C2—C3—C4 | 119.7 (4) |
O4i—Cd1—O8ii | 78.81 (13) | C2—C3—C8 | 121.1 (4) |
O5—Cd1—O1 | 125.67 (14) | C4—C3—C8 | 119.2 (3) |
O5—Cd1—O2 | 90.36 (16) | C3—C4—H4 | 119.9 |
O5—Cd1—O3i | 82.65 (15) | C5—C4—C3 | 120.2 (4) |
O5—Cd1—O4i | 128.83 (14) | C5—C4—H4 | 119.9 |
O5—Cd1—O7ii | 80.41 (12) | C4—C5—H5 | 120.1 |
O5—Cd1—O8ii | 133.24 (16) | C4—C5—C6 | 119.8 (5) |
O7ii—Cd1—O2 | 85.03 (15) | C6—C5—H5 | 120.1 |
O7ii—Cd1—O3i | 94.01 (14) | C1—C6—C5 | 120.8 (4) |
O7ii—Cd1—O8ii | 53.55 (14) | C1—C6—H6 | 119.6 |
O8ii—Cd1—O2 | 93.07 (11) | C5—C6—H6 | 119.6 |
O8ii—Cd1—O3i | 91.92 (10) | O1—C7—C1 | 118.1 (5) |
O1—Na1—Na2iii | 77.99 (11) | O2—C7—O1 | 121.4 (4) |
O1—Na1—O4i | 77.84 (17) | O2—C7—C1 | 120.5 (4) |
O1—Na1—O11B | 104.1 (3) | O3—C8—O4 | 121.4 (4) |
O1—Na1—O11A | 97.1 (6) | O3—C8—C3 | 119.9 (4) |
O3iv—Na1—Na2iii | 77.96 (14) | O4—C8—C3 | 118.7 (4) |
O3iv—Na1—O1 | 151.1 (2) | C10—C9—C14 | 119.7 (4) |
O3iv—Na1—O4i | 94.59 (15) | C10—C9—C15 | 119.8 (4) |
O3iv—Na1—O11B | 82.9 (3) | C14—C9—C15 | 120.5 (4) |
O3iv—Na1—O11A | 93.0 (6) | C9—C10—H10 | 120.0 |
O4i—Na1—Na2iii | 41.86 (11) | C9—C10—C11 | 120.0 (4) |
O4i—Na1—O11B | 177.4 (3) | C11—C10—H10 | 120.0 |
O4i—Na1—O11A | 171.5 (7) | C10—C11—C16 | 119.6 (4) |
O9—Na1—Na2iii | 130.1 (2) | C12—C11—C10 | 119.9 (4) |
O9—Na1—O1 | 95.8 (2) | C12—C11—C16 | 120.4 (4) |
O9—Na1—O3iv | 112.0 (2) | C11—C12—H12 | 120.0 |
O9—Na1—O4i | 88.3 (2) | C13—C12—C11 | 120.1 (4) |
O9—Na1—O11B | 93.2 (4) | C13—C12—H12 | 120.0 |
O9—Na1—O11A | 85.4 (8) | C12—C13—H13 | 119.7 |
O11B—Na1—Na2iii | 136.6 (4) | C12—C13—C14 | 120.5 (4) |
O11A—Na1—Na2iii | 144.3 (8) | C14—C13—H13 | 119.7 |
Cd1v—Na2—Na1v | 55.94 (8) | C9—C14—H14 | 120.1 |
O4vi—Na2—Cd1v | 38.59 (8) | C13—C14—C9 | 119.9 (4) |
O4vi—Na2—Na1v | 37.86 (11) | C13—C14—H14 | 120.1 |
O5—Na2—Cd1v | 102.07 (15) | O5—C15—C9 | 117.2 (4) |
O5—Na2—Na1v | 57.70 (14) | O6—C15—O5 | 121.7 (4) |
O5—Na2—O4vi | 95.45 (19) | O6—C15—C9 | 121.1 (4) |
O5—Na2—O7ii | 83.03 (18) | O7—C16—C11 | 118.4 (4) |
O5—Na2—O10 | 104.5 (2) | O8—C16—O7 | 122.1 (4) |
O7ii—Na2—Cd1v | 133.31 (13) | O8—C16—C11 | 119.5 (3) |
O7ii—Na2—Na1v | 92.36 (13) | C17B—O11B—Na1 | 112.8 (9) |
O7ii—Na2—O4vi | 94.98 (14) | C17B—N1—C18B | 120.6 (10) |
O7ii—Na2—O10 | 80.5 (2) | C17B—N1—C19B | 127.4 (12) |
O8vii—Na2—Cd1v | 38.84 (9) | C19B—N1—C18B | 111.8 (9) |
O8vii—Na2—Na1v | 89.00 (13) | C19A—N1—C18A | 106.0 (13) |
O8vii—Na2—O4vi | 77.02 (13) | C17A—N1—C18A | 116.8 (12) |
O8vii—Na2—O5 | 110.18 (16) | C17A—N1—C19A | 136.9 (17) |
O8vii—Na2—O7ii | 164.93 (18) | O11B—C17B—H17B | 119.1 |
O8vii—Na2—O10 | 102.3 (2) | N1—C17B—O11B | 121.8 (13) |
O10—Na2—Cd1v | 139.3 (2) | N1—C17B—H17B | 119.1 |
O10—Na2—Na1v | 161.7 (2) | N1—C18B—H18A | 109.5 |
O10—Na2—O4vi | 158.8 (2) | N1—C18B—H18B | 109.5 |
Cd1—O1—Na1 | 101.49 (13) | N1—C18B—H18C | 109.5 |
C7—O1—Cd1 | 98.4 (3) | H18A—C18B—H18B | 109.5 |
C7—O1—Na1 | 159.7 (3) | H18A—C18B—H18C | 109.5 |
C7—O2—Cd1 | 87.1 (3) | H18B—C18B—H18C | 109.5 |
Na1vii—O3—Cd1viii | 117.93 (19) | N1—C19B—H19A | 109.5 |
C8—O3—Cd1viii | 90.1 (3) | N1—C19B—H19B | 109.5 |
C8—O3—Na1vii | 143.6 (3) | N1—C19B—H19C | 109.5 |
Cd1viii—O4—Na1viii | 97.02 (13) | H19A—C19B—H19B | 109.5 |
Cd1viii—O4—Na2ix | 97.42 (13) | H19A—C19B—H19C | 109.5 |
Na1viii—O4—Na2ix | 100.28 (18) | H19B—C19B—H19C | 109.5 |
C8—O4—Cd1viii | 94.9 (3) | N1—C18A—H18D | 109.5 |
C8—O4—Na1viii | 146.5 (3) | N1—C18A—H18E | 109.5 |
C8—O4—Na2ix | 109.1 (3) | N1—C18A—H18F | 109.5 |
Na2—O5—Cd1 | 99.83 (14) | H18D—C18A—H18E | 109.5 |
C15—O5—Cd1 | 102.4 (3) | H18D—C18A—H18F | 109.5 |
C15—O5—Na2 | 157.7 (3) | H18E—C18A—H18F | 109.5 |
Na2x—O7—Cd1x | 96.46 (14) | N1—C19A—H19D | 109.5 |
C16—O7—Cd1x | 93.8 (3) | N1—C19A—H19E | 109.5 |
C16—O7—Na2x | 164.5 (3) | N1—C19A—H19F | 109.5 |
Na2iv—O8—Cd1x | 105.91 (16) | H19D—C19A—H19E | 109.5 |
C16—O8—Cd1x | 90.5 (2) | H19D—C19A—H19F | 109.5 |
C16—O8—Na2iv | 149.8 (3) | H19E—C19A—H19F | 109.5 |
Na1—O9—H9A | 110.8 | N1—C17A—H17A | 123.6 |
Na1—O9—H9B | 112.4 | N1—C17A—O11A | 113 (2) |
H9A—O9—H9B | 106.7 | O11A—C17A—H17A | 123.6 |
Na2—O10—H10A | 109.8 | C17A—O11A—Na1 | 136.8 (17) |
Cd1—O1—C7—O2 | 1.6 (5) | C4—C3—C8—O3 | −164.6 (4) |
Cd1—O1—C7—C1 | −179.3 (3) | C4—C3—C8—O4 | 15.9 (6) |
Cd1—O2—C7—O1 | −1.5 (4) | C4—C5—C6—C1 | 0.0 (7) |
Cd1—O2—C7—C1 | 179.5 (4) | C6—C1—C2—C3 | −0.5 (6) |
Cd1viii—O3—C8—O4 | −5.0 (4) | C6—C1—C7—O1 | −1.3 (6) |
Cd1viii—O3—C8—C3 | 175.5 (3) | C6—C1—C7—O2 | 177.8 (5) |
Cd1viii—O4—C8—O3 | 5.2 (4) | C7—C1—C2—C3 | 180.0 (4) |
Cd1viii—O4—C8—C3 | −175.2 (3) | C7—C1—C6—C5 | 179.6 (4) |
Cd1—O5—C15—O6 | −6.1 (6) | C8—C3—C4—C5 | 179.5 (4) |
Cd1—O5—C15—C9 | 173.6 (3) | C9—C10—C11—C12 | −1.4 (6) |
Cd1x—O7—C16—O8 | 1.9 (4) | C9—C10—C11—C16 | 175.0 (4) |
Cd1x—O7—C16—C11 | −178.2 (3) | C10—C9—C14—C13 | 0.6 (7) |
Cd1x—O8—C16—O7 | −1.9 (4) | C10—C9—C15—O5 | 179.3 (4) |
Cd1x—O8—C16—C11 | 178.3 (3) | C10—C9—C15—O6 | −1.0 (7) |
Na1—O1—C7—O2 | −166.8 (7) | C10—C11—C12—C13 | 0.5 (7) |
Na1—O1—C7—C1 | 12.2 (11) | C10—C11—C16—O7 | 177.1 (4) |
Na1vii—O3—C8—O4 | −147.3 (4) | C10—C11—C16—O8 | −3.1 (6) |
Na1vii—O3—C8—C3 | 33.1 (7) | C11—C12—C13—C14 | 1.0 (7) |
Na1viii—O4—C8—O3 | 115.7 (5) | C12—C11—C16—O7 | −6.5 (6) |
Na1viii—O4—C8—C3 | −64.7 (7) | C12—C11—C16—O8 | 173.4 (4) |
Na1—O11B—C17B—N1 | 148.4 (9) | C12—C13—C14—C9 | −1.5 (7) |
Na2ix—O4—C8—O3 | −94.4 (4) | C14—C9—C10—C11 | 0.8 (6) |
Na2ix—O4—C8—C3 | 85.2 (4) | C14—C9—C15—O5 | 1.0 (6) |
Na2—O5—C15—O6 | −179.4 (8) | C14—C9—C15—O6 | −179.2 (5) |
Na2—O5—C15—C9 | 0.4 (13) | C15—C9—C10—C11 | −177.4 (4) |
Na2x—O7—C16—O8 | −129.6 (10) | C15—C9—C14—C13 | 178.9 (4) |
Na2x—O7—C16—C11 | 50.2 (13) | C16—C11—C12—C13 | −175.9 (4) |
Na2iv—O8—C16—O7 | 122.2 (5) | N1—C17A—O11A—Na1 | −116 (3) |
Na2iv—O8—C16—C11 | −57.7 (7) | C17B—N1—C17A—O11A | 6.5 (16) |
C1—C2—C3—C4 | 0.9 (6) | C18B—N1—C17B—O11B | −0.2 (17) |
C1—C2—C3—C8 | −179.5 (4) | C18B—N1—C17A—O11A | −174 (2) |
C2—C1—C6—C5 | 0.0 (7) | C19B—N1—C17B—O11B | −173.3 (11) |
C2—C1—C7—O1 | 178.3 (4) | C18A—N1—C17B—O11B | 175.3 (18) |
C2—C1—C7—O2 | −2.6 (6) | C18A—N1—C17A—O11A | 2 (3) |
C2—C3—C4—C5 | −0.9 (7) | C19A—N1—C17B—O11B | −142 (6) |
C2—C3—C8—O3 | 15.8 (6) | C19A—N1—C17A—O11A | 174 (2) |
C2—C3—C8—O4 | −163.7 (4) | C17A—N1—C17B—O11B | 0.1 (14) |
C3—C4—C5—C6 | 0.5 (7) |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z; (iii) −y, x, z−1/4; (iv) −y+1, x, z−1/4; (v) y, −x, z+1/4; (vi) y−1, −x, z+1/4; (vii) y, −x+1, z+1/4; (viii) x, y+1, z; (ix) −y, x+1, z−1/4; (x) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9B···O6 | 0.90 | 2.22 | 3.074 (8) | 159 |
O10—H10B···O6vii | 0.86 | 2.29 | 3.073 (8) | 152 |
C4—H4···O3xi | 0.93 | 2.49 | 3.385 (6) | 161 |
C6—H6···O1 | 0.93 | 2.48 | 2.791 (5) | 100 |
C6—H6···O11B | 0.93 | 2.48 | 3.347 (14) | 155 |
C10—H10···O10iv | 0.93 | 2.59 | 3.277 (8) | 131 |
C14—H14···O8vii | 0.93 | 2.48 | 3.366 (5) | 159 |
C18B—H18A···Cg3iv | - | 2.54 | 3.387 (11) | 148 |
C19B—H19B···Cg4xii | - | 2.93 | 3.696 (15) | 138 |
C19A—H19D···Cg4xii | - | 2.67 | 3.53 (4) | 151 |
Symmetry codes: (iv) −y+1, x, z−1/4; (vii) y, −x+1, z+1/4; (xi) −y+1, x+1, z−1/4; (xii) −x+1, −y+1, z−1/2. |
Acknowledgements
The authors acknowledge the Department of Chemistry, Faculty of Science and Technology, Thammasat University, Thailand, for financial support and the Central Scientific Instrument Center (CSIC) for funds to purchase the X-ray diffractometer at the Faculty of Science and Technology, Thammasat University, Thailand.
References
Borah, B. M., Dey, S. K. & Das, G. (2011). Cryst. Growth Des. 11, 2773–2779. Web of Science CSD CrossRef CAS
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Che, G.-B., Liu, C.-B., Wang, L. & Cui, Y.-C. (2007). J. Coord. Chem. 60, 1997–2007. Web of Science CSD CrossRef CAS
Chen, Y., Zheng, L., She, S., Chen, Z., Hu, B. & Li, Y. (2011). Dalton Trans. 40, 4970–4975. Web of Science CSD CrossRef CAS PubMed
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals
Du, F., Zhang, H., Tian, C. & Du, S. (2013). Cryst. Growth Des. 13, 1736–1742. Web of Science CSD CrossRef CAS
Lin, J.-D., Cheng, J.-W. & Du, S.-W. (2008). Cryst. Growth Des. 8, 3345–3353. Web of Science CSD CrossRef CAS
Lin, J.-D., Long, X. F., Lin, P. & Du, S.-W. (2010). Cryst. Growth Des. 10, 146–157. Web of Science CSD CrossRef CAS
Lin, J.-D., Wu, S. T., Li, Z. H. & Du, S.-W. (2010). Dalton Trans. 39, 10719–10728. Web of Science CSD CrossRef CAS PubMed
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals
Seco, J. M., Pérez-Yáñez, S., Briones, D., García, J.Á., Cepeda, J. & Rodríguez-Diéguez, A. (2017). Cryst. Growth Des. 17, 3893–3906. Web of Science CSD CrossRef CAS
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835. Web of Science CrossRef CAS PubMed
Wang, X.-L., Mu, B., Lin, H.-Y., Yang, S., Liu, G.-C., Tian, A.-X. & Zhang, J.-W. (2012). Dalton Trans. 41, 11074–11084. Web of Science CSD CrossRef CAS PubMed
Wang, L., Shi, Z., Li, G., Fan, Y., Fu, W. & Feng, S. (2004). Solid State Sci. 6, 85–90. Web of Science CSD CrossRef CAS
Wu, Z., Yuan, X., Zhang, J., Wang, H., Jiang, L. & Zeng, G. (2017). ChemCatChem, 9, 41–64. Web of Science CrossRef CAS
Xu, H., Wang, R. & Li, Y. (2004). J. Mol. Struct. 688, 1–3. Web of Science CSD CrossRef CAS
Yaghi, O. M., Li, H., Eddaoudi, M. & O'Keeffe, M. (1999). Nature, 402, 276–279. CSD CrossRef
Yang, Y.-T., Zhao, Q., Tu, C.-Z., Cheng, F. X. & Wang, F. (2014). Inorg. Chem. Commun. 40, 43–46. Web of Science CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.