research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of two purpurin derivatives: 1,4-dihy­dr­oxy-2-propoxyanthra­quinone and 2-but­­oxy-1,4-di­hy­droxy­anthra­quinone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Missouri State University, Springfield, MO 65897, USA
*Correspondence e-mail: ericbosch@missouristate.edu

Edited by S. Parkin, University of Kentucky, USA (Received 11 August 2017; accepted 11 October 2017; online 20 October 2017)

The title compounds were obtained by deprotonation of 1,2,4-tri­hydroxy­anthra­quinone (purpurin) using sodium hydride followed by reaction with either 1-bromo­propane or 1-bromo­butane. 1,4-Dihy­droxy-2-propoxyanthra­quinone crystallizes as a 1:1 solvate from aceto­nitrile, C17H14O5·CH3CN. The anthra­quinone core of the mol­ecule is essentially planar and both hy­droxy groups participate in intra­molecular O—H⋯O (carbon­yl) hydrogen bonds. The propyl chain is angled slightly above the plane of the anthra­quinone moiety with a maximum deviation of 0.247 (2) Å above the plane for the terminal carbon atom. In contrast, 2-but­oxy-1,4-di­hydroxy­anthra­quinone, C18H16O5, crystallizes from nitro­methane with two independent mol­ecules in the asymmetric unit. The anthra­quinone core of each independent mol­ecule is essentially planar and both hy­droxy groups on both mol­ecules participate in intra­molecular O—H⋯O(carbon­yl) hydrogen bonds. The butyl chain in one mol­ecule is also angled slightly above the plane of the anthra­quinone moiety, with a maximum deviation of 0.833 (5) Å above the plane for the terminal carbon atom. In contrast, the butyl group on the second mol­ecule is twisted out of the plane of the anthra­quinone core with a torsion angle of 65.1 (3)°, resulting in a maximum deviation of 1.631 (5) Å above the plane for the terminal carbon atom.

1. Chemical context

Purpurin, 1,2,4-trihy­droxy anthra­quinone, is a major component of the dye extracted from madder root (Schweppe & Winter, 1997[Schweppe, H. & Winter, J. (1997). Artists Pigments, 3, edited by E. W. Fitzhugh, pp. 109-142. New York: Oxford University Press.]). The extract from madder root has been used to dye wool and other fabrics since anti­quity. Purpurin is commercially available and we here report two derivatives, 1,4-dihy­droxy-2-prop­oxy anthra­quinone and 2-but­oxy-1,4-dihy­droxy anthra­quinone, prepared by selective deprotonation of purpurin followed by alkyl­ation with the either 1-bromo­propane or 1-bromo­butane.

[Scheme 1]

2. Structural commentary

The asymmetric unit of 1,4-dihy­droxy-2-prop­oxy anthra­quinone (1), crystallized from aceto­nitrile solvent, contains a single anthra­quinone mol­ecule and one aceto­nitrile solvate mol­ecule as shown in Fig. 1[link]. The two intra­molecular hydrogen bonds (Table 1[link]) are typical for the 1,4-dihy­droxy anthra­quinones and 1-hy­droxy­anthra­quinones. These hydrogen bonds are maintained in chloro­form solution, as shown by the chemical shift of 13.47 and 13.56 ppm for the two hydroxyl protons. The anthra­quinone moiety is planar, with an average root mean square (r.m.s.) deviation of atoms C1 to C14 of 0.021 Å, in which the maximum deviation from the plane defined by atoms C1 to C14 is 0.044 (1) Å for C9. The propyl chain is angled slightly above the plane of the anthra­quinone moiety, with deviations of 0.043 (2), 0.143 (2) and 0.247 (2) Å for atoms C15, C16 and C17, respectively, from the plane defined by atoms C1–C14. The aceto­nitrile is angled towards H10 with a N1⋯C10 distance of 3.401 (2) Å. The final difference map shows several peaks of 0.2 to 0.7 e Å−3 in the anthra­quinone plane that suggest the presence of minor whole-mol­ecule disorder in which the anthra­quinone is translated in the plane and/or flipped over.

Table 1
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O5 0.88 (1) 1.75 (1) 2.5537 (13) 152 (2)
O3—H3O⋯O4 0.87 (1) 1.75 (1) 2.5578 (13) 153 (2)
C10—H10⋯N1 0.95 2.73 3.4009 (19) 128
C15—H15A⋯O3i 0.99 2.57 3.2179 (16) 123
C11—H11⋯O5ii 0.95 2.47 3.2446 (17) 138
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y+2, -z+1.
[Figure 1]
Figure 1
Mol­ecular structure of (1) with the included aceto­nitrile. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size.

In contrast, the asymmetric unit of 2-but­oxy-1,4-dihy­droxy anthra­quinone (2) crystallized from nitro­methane solvent, contains two unique anthra­quinone mol­ecules as shown in Fig. 2[link]. Both mol­ecules feature two intra­molecular hydrogen bonds (Table 2[link]) similar to those observed in (1). These hydrogen bonds are also maintained in chloro­form solution, as shown by the chemical shift of 13.46 and 13.55 ppm for the two hydroxyl protons. The anthra­quinone moieties in both mol­ecules are planar. The r.m.s deviation of atoms C1 to C14 is 0.006 Å, with a maximum deviation from the plane defined by atoms C1 to C14 of 0.011 (2) Å for C13. The r.m.s. deviation from the plane defined by atoms C19 to C32 is 0.025 Å, with a maximum deviation of 0.048 (2) Å for C31. The butyl chain attached to O2 is twisted out of the C1–C14 anthra­quinone plane with a O2—C15—C16—C17 torsion angle of −65.1 (3)°. The butyl chain has an anti-conformation, the C15—C16—C17—C18 torsion angle being −173.1 (2)°. The deviations of the butyl carbon atoms from the anthra­quinone plane defined by atoms C1 to C14 are 0.101 (4), 0.194 (4), 1.467 (4) and 1.631 (5) Å for atoms C15, C16, C17 and C18, respectively. The butyl chain in the second unique mol­ecule, attached to O7, is tilted slightly out of the plane of the anthra­quinone with a C20—O7—C33—C34 torsion angle of −167.3 (2)°. This butyl chain also adopts an anti-conformation, the C33—C34—C35—C36 torsion angle being −175.2 (3)°. The resultant deviations of the butyl carbon atoms from the plane defined by atoms C19–C32 are 0.077 (4), 0.428 (4), 0.356 (4) and 0.833 (5) Å for atoms C33, C34, C35 and C36, respectively. There is a close inter­molecular contact between phenyl hydrogen atom H3 and carbonyl oxygen atom O10, with a C3⋯O10 distance of 3.494 (3) Å (labelled X in Fig. 2[link]). A second close inter­molecular contact, between phenyl hydrogen atom H29 and hydroxyl oxygen atom O3 gives a C29⋯O3 distance of 3.231 (4) Å (labelled Y in Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O5 0.85 (2) 1.78 (2) 2.564 (3) 153 (3)
O3—H3O⋯O4 0.87 (2) 1.74 (2) 2.536 (3) 151 (3)
O6—H6O⋯O10 0.86 (2) 1.72 (2) 2.542 (3) 158 (3)
O8—H8O⋯O9 0.87 (2) 1.73 (2) 2.554 (3) 155 (3)
C3—H3⋯O10 0.95 2.55 3.494 (3) 173
C29—H29⋯O3 0.95 2.41 3.231 (4) 144
C15—H15B⋯O6i 0.99 2.52 3.485 (3) 164
C21—H21⋯O8ii 0.95 2.55 3.502 (3) 180
C33—H33A⋯O9iii 0.99 2.56 3.547 (4) 172
Symmetry codes: (i) x-1, y, z; (ii) -x+3, -y+1, -z+1; (iii) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
Asymmetric unit of (2) showing the close inter­molecular C—H⋯O contacts X and Y (see text). Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size.

3. Supra­molecular features

In the crystal, mol­ecules of (1) form planes that incorporate the aceto­nitrile mol­ecule, as shown in Fig. 3[link]. The aceto­nitrile mol­ecule is almost coplanar with the anthra­quinone moiety, with deviations of 0.401 (2), 0.536 (2) and 0.722 (2) Å for atoms N1, C18, and C19, respectively, from the plane defined by atoms C1–C14. There is a close C—H⋯O inter­action (Table 1[link]) between a phenyl hydrogen atom and an adjacent carbonyl oxygen atom of an inversion-related mol­ecule of (1). The C11⋯O5#2 distance is 3.245 (2) Å [symmetry code: (#2) 2 − x, 2 − y, 1 − z] and the inter­action is labelled x in Fig. 3[link]. The methyl­ene hydrogen H15A is close to the carbonyl oxygen O3 of a second inversion-related mol­ecule of (1). The C15⋯O3#1 distance is 3.218 (2) Å [symmetry code: (#1) 1 − x, −y, 1 − z], and the inter­action is labelled y in Fig. 3[link]. The anthra­quinone units of (1) alternately π-stack in pairs as shown in Fig. 4[link]. Each π-stacked pair (A and B in Fig. 4[link]) has significant overlap of the anthra­quinone moiety with Cg1⋯Cg3#3, Cg2⋯Cg2#3 [symmetry code: (#3) 1 − x, 1 − y, 1 − z; Cg1, Cg2 and Cg3 are the centroids of the six-membered rings C1–C5/C14, C5–C7/C12–C14 and C7–C12, respectively] distances of 3.607 (1) and 3.569 (1) Å, respectively, with slippages of 1.304 and 1.331 Å, respectively. The pairs of π-stacked mol­ecules of (1) are offset π-stacked and the alkyl chain has a C—H⋯π inter­action with one end of the anthra­quinone unit, as shown in Fig. 4[link] (mol­ecules labelled A and C). The C16⋯Cg3#4 distance is 3.587 (2) Å [symmetry code: (#4) 2 − x, 1 − y, 1 − z].

[Figure 3]
Figure 3
Structure of (1) viewed along the [101] direction, with close C—H⋯O contacts labelled x and y (see text).
[Figure 4]
Figure 4
Repetitive π-stacking of (1). Displacement ellipsoids of non-H atoms are drawn at the 50% probability level [symmetry codes: (#1) − x, −y, 1 − z; (#2) 2 − x, 2 − y, 2 − z; (#3) 1 − x, 1 − y, 1 − z; (#4) 2 − x, 1 − y, 1 − z].

The two unique anthra­quinone mol­ecules in the asymmetric unit of (2) offset π-stack in individual columns. There are three close C—H⋯O contacts (Table 2[link]) between these offset π-stacked columns. The C⋯O distances are 3.485 (3), 3.502 (3) and 3.548 (4) Å for C15⋯O6#1, C21⋯O8#2, and C33⋯O9#3. respectively [symmetry codes: (#1) x − 1, y, z; (#2) 3 − x, 1 − y, 1 − z; (#3) 2 − x, 1 − y, 1 − z]. The inter­actions within each of the two unique sets of π-stacked mol­ecules are shown in Fig. 5[link]. For the anthra­quinone unit defined by C1–C14 (Fig. 5[link]a), the centroid-to-centroid distances Cg2⋯Cg1#1 and Cg3⋯Cg2#1 are 3.521 (2) and 3.517 (2) Å, with slippages of 0.960 and 0.948 Å, respectively, where Cg1, Cg2 and Cg3 are the centroids of the six-membered rings C1–C5/C14, C5–C7/C12–C14 and C7–C12, respectively. The methyl­ene hydrogen atom H15A#1 is positioned above centroid Cg1 with a C15⋯Cg1 distance of 3.690 (3) Å. For the anthra­quinone unit defined by C19–C32 (Fig. 5[link]b), the centroid-to-centroid distances Cg5⋯Cg4#4 and Cg6⋯Cg5#4 [symmetry code: (#4) 1 + x, y, z; Cg4, Cg5 and Cg6 are the centroids of the C19–C23/C32, C23—C25/C30-C32 and C25–C30 rings, respectively] are 3.520 (1) and 4.009 (1) Å with slippages of 0.960 and 2.145 Å, respectively.

[Figure 5]
Figure 5
π-Stacking of the two unique mol­ecules of (2) showing the C—H⋯π and ππ inter­actions as grey dashed lines. Part (a) shows the C1–C14 anthra­quinone unit and (b) the C19–C32 anthra­quinone unit. Displacement ellipsoids drawn at the 50% probability level [symmetry codes: (#1) x − 1, y z; (#2) 3 − x, 1 − y, 1 − z; (#3) 2 − x, 1 − y, 1 − z; (#4) 1 + x, y, z].

4. Database survey

A search of the Cambridge Crystallographic Database (Version 5.38, Nov. 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using Conquest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for the anthra­quinone ring system with oxygen atoms at positions 1, 2 and 4 without restriction on substitution of the other aromatic position, revealed 15 structures. Database entries not including atomic coordinates were excluded. The structure of the parent compound, 1,2,4-trihy­droxy anthra­quinone monohydrate has been reported (refcode QEGNEV; Yatsenko et al., 2000[Yatsenko, A. V., Chernyshev, V. V., Popov, S. I., Sonneveld, E. J. & Schenk, H. (2000). Dyes Pigments, 45, 169-176.]). In addition, structures have been determined for several organic derivatives that were isolated from natural sources. For example, the derivative most closely related to the structures reported here, 1,4-dihy­droxy-2-meth­oxy-7-methyl­anthracene-9,10-dione, has been isolated from two different fungi and the structure reported [refcodes GEPCOU (She et al., 2006[She, Z.-G., Huang, H.-R., Lin, Y.-C., Vrijmoed, L. L. P. & Jones, E. B. G. (2006). Acta Cryst. E62, o3737-o3738.]) and GEPCOU01 (Muangsin et al., 2008[Muangsin, N., Wisetsakdakorn, W., Chaichit, N., Sihanonth, P., Petsom, A. & Sangvanich, P. (2008). Dyes Pigments, 77, 653-656.])]. Complexes of purpurin with rhenium (refcodes CEVNIB, CEVNOH and AVABEF; Sathiyendiran, et al., 2006[Sathiyendiran, M., Liao, R. T., Thanasekaran, P., Luo, T. T., Venkataramanan, N. S., Lee, G. H., Peng, S. M. & Lu, K. L. (2006). Inorg. Chem. 45, 10052-10054.], 2011[Sathiyendiran, M., Tsai, C. C., Thanasekaran, P., Luo, T. T., Yang, C. I., Lee, G. H., Peng, S. M. & Lu, K. L. (2011). Chem. Eur. J. 17, 3343-3346.]), copper [refcode ZOMSEB; Das, et al., 2014[Das, P., Jain, C. K., Dey, S. K., Saha, R., Chowdhury, A. D., Roychoudhury, S., Kumar, S., Majumder, H. K. & Das, S. (2014). RSC Adv. 4, 59344-59357.]), tin (refcodes MOQTAO and MOQTES; de Sousa et al., 2009[Sousa, A. T. de, Bessler, K. E., Lemos, S. S., Ellena, J. & Gatto, C. C. (2009). Z. Anorg. Allg. Chem. 635, 106-111.]), calcium and aluminum (refcode LAYBAO; Bergerhoff & Wunderlich, 1993[Bergerhoff, G. & Wunderlich, C. H. (1993). Z. Kristallogr. 207, 189-192.]) have been reported. In each of the reported structures, those compounds with a free hydroxyl group flanking the anthra­quinone carbonyl also exhibit the intra­molecular hydrogen bond reported for (1) and (2).

5. Synthesis and crystallization

Synthesis of 1,4-dihy­droxy-2-prop­oxy anthra­quinone (1). In a flask under an atmosphere of argon, a dark red–orange solution of purpurin (0.26 g) in di­methyl­formamide (10 mL) and tetra­hydro­furan (20 mL) was cooled in an ice–salt bath. Sodium hydride (0.081 g, 1 eq.) was added and the resultant violet solution was stirred in the ice bath for 20 minutes. Excess 1-bromo­propane (1 mL) was added, a water condenser attached, and the flask was removed from the cooling bath and heated to 353 K for 24 h. The flask was cooled to room temperature and the solvents evaporated. The crude product was purified by column chromatography with silica gel (0.65–0.40 mm) and mixtures of hexane and ethyl acetate of increasing polarity. The eluant was monitored by TLC with a 5:1 mixture of hexane and ethyl acetate. The solvent was evaporated and the product obtained as a red–orange solid (0.15 g). 1H NMR: (400MHz, CDCl3) δ 13.56 (s, 1H), 13.47 (s, 1H), 8.33 (dd, J = 2.0, 7.0 Hz, 2H), 7.84–7.77 (m, 2H), 6.67 (s, 1H), 4.09 (t, J = 8.0 Hz, 2H), 1.97 (s, J = 7.0 Hz, 2H), 1.11 (t, J = 7.4 Hz, 3H). 13C NMR: 189.87, 186.98, 163.64, 159.97, 153.30, 137.17, 136.78, 136.41, 135.95, 129.63, 129.47, 115.07, 110.03, 108.64, 73.84, 24.68, 13.02. Compound (1) crystallized from aceto­nitrile as large dark-red blocks that included an aceto­nitrile molecule as a 1:1 solvate. When these blocks were cut to small individual pieces or ground with a mortar and pestle they appeared orange. The crystals lost luster after removal from the mother liquor, presumably due to loss of the aceto­nitrile.

Synthesis of 4-but­oxy-1,2-di­hydroxy­anthra­quinone (2). The same procedure was used with 1 mL of 1-bromo­butane. The compound was isolated as a dark red–purple solid. 1H NMR: (400MHz, CDCl3) δ 13.55 (s, 1H), 13.46 (s,1H), 8.33 (dd, J = 2.0, 7.0 Hz, 2H), 7.84–7.76 (m, 2H), 6.66 (s, 1H), 4.13 (t, J = 6.6 Hz, 2H), 1.92 (m, 2H), 1.56 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H). 13C NMR: 187.40, 184.50, 161.22, 157.56, 150.87, 134.72, 134.33, 133.96, 133.51, 107.57, 106.18, 69.73, 30.85, 19.37, 13.98. Compound (2) was recrystallized from nitro­methane as dark red–black blocks. When these blocks were cut to small individual pieces or ground with a mortar and pestle they appeared orange–red.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms potentially involved in hydrogen-bonding inter­actions were located by difference methods and initially restrained in the refinement with O—H = 0.84 (2) Å and with Uiso(H) = 1.2Ueq(O). Other H atoms were included in the refinement at calculated positions, C—H = 0.95 Å for aromatic, C—H = 0.99 Å for methyl­ene and C—H = 0.98 Å for methyl hydrogens with Uiso(H) = 1.2Ueq(C) for aromatic and methyl­ene H atoms and 1.5Ueq(C) for methyl H atoms.

Table 3
Experimental details

  (1) (2)
Crystal data
Chemical formula C17H14O5·C2H3N C18H16O5
Mr 339.33 312.31
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 8.2160 (11), 9.8605 (13), 10.7410 (14) 4.7730 (9), 44.272 (8), 13.807 (3)
α, β, γ (°) 95.999 (2), 90.181 (2), 113.774 (2) 90, 95.164 (2), 90
V3) 790.99 (18) 2905.8 (9)
Z 2 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 0.10
Crystal size (mm) 0.45 × 0.18 × 0.09 0.48 × 0.10 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.869, 1.000 0.854, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10216, 3548, 2718 36901, 6456, 3747
Rint 0.022 0.104
(sin θ/λ)max−1) 0.644 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.153, 1.06 0.063, 0.166, 1.04
No. of reflections 3548 6456
No. of parameters 234 429
No. of restraints 2 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.71, −0.27 0.26, −0.27
Computer programs: SMART and SAINT (Bruker, 2014[Bruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Computing details top

For both structures, data collection: SMART (Bruker, 2014); cell refinement: SMART (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

1,4-Dihydroxy-2-propoxyanthraquinone acetonitrile monosolvate (1) top
Crystal data top
C17H14O5·C2H3NZ = 2
Mr = 339.33F(000) = 356
Triclinic, P1Dx = 1.425 Mg m3
a = 8.2160 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8605 (13) ÅCell parameters from 3016 reflections
c = 10.7410 (14) Åθ = 2.7–27.2°
α = 95.999 (2)°µ = 0.10 mm1
β = 90.181 (2)°T = 100 K
γ = 113.774 (2)°Cut irregular block, orange
V = 790.99 (18) Å30.45 × 0.18 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
3548 independent reflections
Radiation source: fine-focus sealed tube2718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.3660 pixels mm-1θmax = 27.3°, θmin = 1.9°
phi and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1212
Tmin = 0.869, Tmax = 1.000l = 1313
10216 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0962P)2 + 0.0684P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3548 reflectionsΔρmax = 0.71 e Å3
234 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93351 (13)0.54640 (11)0.31245 (9)0.0224 (2)
H1O0.943 (2)0.6376 (15)0.3329 (15)0.027*
N10.69308 (19)1.25060 (16)0.93564 (13)0.0376 (4)
C10.83016 (17)0.46925 (15)0.39909 (12)0.0179 (3)
O20.85708 (12)0.26110 (10)0.29025 (9)0.0216 (2)
C20.78580 (17)0.31187 (15)0.38774 (12)0.0186 (3)
O30.50110 (13)0.19718 (10)0.64607 (9)0.0231 (3)
H3O0.471 (2)0.2555 (17)0.6993 (14)0.028*
C30.67840 (17)0.22550 (15)0.47188 (12)0.0190 (3)
H30.6504250.1215430.4640730.023*
O40.48044 (13)0.42907 (11)0.76272 (9)0.0236 (2)
C40.60915 (17)0.28978 (15)0.56995 (12)0.0184 (3)
O50.90743 (13)0.77360 (10)0.43289 (9)0.0237 (3)
C50.65148 (17)0.44303 (14)0.58446 (12)0.0168 (3)
C60.58069 (17)0.50732 (15)0.68671 (12)0.0186 (3)
C70.63155 (17)0.67078 (15)0.70039 (12)0.0182 (3)
C80.57026 (18)0.73660 (16)0.80017 (12)0.0215 (3)
H80.4963070.6765080.8584990.026*
C90.61668 (18)0.88946 (16)0.81480 (13)0.0230 (3)
H90.5772570.9341220.8842040.028*
C100.72114 (18)0.97713 (15)0.72752 (13)0.0232 (3)
H100.7504141.0813200.7364880.028*
C110.78274 (18)0.91324 (15)0.62752 (13)0.0211 (3)
H110.8542610.9736850.5684200.025*
C120.73939 (17)0.75953 (14)0.61376 (12)0.0175 (3)
C130.80994 (17)0.69324 (15)0.50858 (12)0.0185 (3)
C140.76399 (17)0.53320 (14)0.49710 (12)0.0171 (3)
C150.80376 (18)0.10079 (14)0.26995 (12)0.0197 (3)
H15A0.6722840.0489720.2626620.024*
H15B0.8477440.0669280.3414000.024*
C160.88231 (18)0.06548 (15)0.15066 (12)0.0216 (3)
H16A1.0137240.1176940.1585020.026*
H16B0.8390090.1007130.0797850.026*
C170.8285 (2)0.10258 (15)0.12525 (13)0.0259 (3)
H17A0.8644540.1381350.1980370.039*
H17B0.8875180.1242930.0514050.039*
H17C0.6991270.1532020.1100020.039*
C180.7439 (2)1.37684 (18)0.95263 (14)0.0300 (3)
C190.8085 (2)1.53842 (19)0.97699 (19)0.0451 (5)
H19A0.7076051.5673000.9743610.068*
H19B0.8912361.5846420.9130410.068*
H19C0.8700551.5721141.0599630.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0257 (5)0.0171 (5)0.0230 (5)0.0076 (4)0.0075 (4)0.0008 (4)
N10.0451 (8)0.0342 (8)0.0356 (8)0.0199 (7)0.0016 (6)0.0023 (6)
C10.0159 (6)0.0174 (6)0.0186 (6)0.0052 (5)0.0005 (5)0.0013 (5)
O20.0243 (5)0.0157 (5)0.0244 (5)0.0086 (4)0.0078 (4)0.0012 (4)
C20.0173 (6)0.0200 (7)0.0190 (6)0.0092 (5)0.0005 (5)0.0026 (5)
O30.0278 (5)0.0164 (5)0.0249 (5)0.0086 (4)0.0091 (4)0.0029 (4)
C30.0188 (6)0.0151 (6)0.0230 (7)0.0071 (5)0.0002 (5)0.0003 (5)
O40.0263 (5)0.0202 (5)0.0239 (5)0.0092 (4)0.0069 (4)0.0018 (4)
C40.0176 (6)0.0184 (6)0.0194 (6)0.0076 (5)0.0011 (5)0.0021 (5)
O50.0271 (5)0.0170 (5)0.0247 (5)0.0066 (4)0.0067 (4)0.0018 (4)
C50.0165 (6)0.0167 (6)0.0170 (6)0.0071 (5)0.0007 (5)0.0000 (5)
C60.0178 (6)0.0193 (7)0.0193 (6)0.0086 (5)0.0004 (5)0.0007 (5)
C70.0168 (6)0.0182 (7)0.0195 (6)0.0078 (5)0.0019 (5)0.0012 (5)
C80.0225 (7)0.0233 (7)0.0192 (6)0.0106 (6)0.0007 (5)0.0004 (5)
C90.0228 (7)0.0245 (7)0.0230 (7)0.0131 (6)0.0025 (5)0.0056 (5)
C100.0235 (7)0.0183 (7)0.0282 (7)0.0107 (6)0.0037 (6)0.0042 (5)
C110.0207 (7)0.0189 (6)0.0236 (7)0.0084 (5)0.0014 (5)0.0008 (5)
C120.0167 (6)0.0173 (7)0.0180 (6)0.0073 (5)0.0029 (5)0.0018 (5)
C130.0175 (6)0.0170 (7)0.0201 (6)0.0065 (5)0.0009 (5)0.0006 (5)
C140.0161 (6)0.0156 (7)0.0185 (6)0.0061 (5)0.0015 (5)0.0012 (5)
C150.0206 (7)0.0139 (6)0.0233 (7)0.0065 (5)0.0030 (5)0.0017 (5)
C160.0223 (7)0.0212 (7)0.0208 (7)0.0089 (5)0.0021 (5)0.0006 (5)
C170.0319 (8)0.0222 (7)0.0228 (7)0.0113 (6)0.0068 (6)0.0028 (5)
C180.0311 (8)0.0349 (9)0.0271 (7)0.0178 (7)0.0004 (6)0.0015 (6)
C190.0445 (10)0.0300 (9)0.0596 (11)0.0163 (8)0.0157 (9)0.0045 (8)
Geometric parameters (Å, º) top
O1—C11.3410 (15)C9—C101.392 (2)
O1—H1O0.875 (13)C9—H90.9500
N1—C181.136 (2)C10—C111.3877 (19)
C1—C141.3938 (19)C10—H100.9500
C1—C21.4353 (19)C11—C121.4013 (18)
O2—C21.3493 (16)C11—H110.9500
O2—C151.4516 (15)C12—C131.4814 (19)
C2—C31.3714 (19)C13—C141.4584 (19)
O3—C41.3407 (15)C15—C161.5075 (18)
O3—H3O0.874 (14)C15—H15A0.9900
C3—C41.4106 (18)C15—H15B0.9900
C3—H30.9500C16—C171.5265 (18)
O4—C61.2505 (16)C16—H16A0.9900
C4—C51.3983 (18)C16—H16B0.9900
O5—C131.2480 (16)C17—H17A0.9800
C5—C141.4292 (19)C17—H17B0.9800
C5—C61.4498 (18)C17—H17C0.9800
C6—C71.4836 (18)C18—C191.456 (2)
C7—C81.3947 (18)C19—H19A0.9800
C7—C121.4025 (18)C19—H19B0.9800
C8—C91.3887 (19)C19—H19C0.9800
C8—H80.9500
C1—O1—H1O104.0 (11)C12—C11—H11120.0
O1—C1—C14123.72 (12)C11—C12—C7119.64 (12)
O1—C1—C2117.06 (11)C11—C12—C13119.48 (12)
C14—C1—C2119.22 (12)C7—C12—C13120.88 (12)
C2—O2—C15116.12 (10)O5—C13—C14121.35 (12)
O2—C2—C3125.11 (12)O5—C13—C12120.31 (12)
O2—C2—C1114.62 (12)C14—C13—C12118.33 (12)
C3—C2—C1120.27 (12)C1—C14—C5120.48 (12)
C4—O3—H3O104.0 (11)C1—C14—C13119.04 (12)
C2—C3—C4120.53 (12)C5—C14—C13120.47 (12)
C2—C3—H3119.7O2—C15—C16107.99 (10)
C4—C3—H3119.7O2—C15—H15A110.1
O3—C4—C5122.48 (11)C16—C15—H15A110.1
O3—C4—C3116.90 (12)O2—C15—H15B110.1
C5—C4—C3120.61 (12)C16—C15—H15B110.1
C4—C5—C14118.88 (12)H15A—C15—H15B108.4
C4—C5—C6119.80 (12)C15—C16—C17109.75 (11)
C14—C5—C6121.32 (12)C15—C16—H16A109.7
O4—C6—C5121.78 (12)C17—C16—H16A109.7
O4—C6—C7120.05 (11)C15—C16—H16B109.7
C5—C6—C7118.17 (12)C17—C16—H16B109.7
C8—C7—C12119.70 (12)H16A—C16—H16B108.2
C8—C7—C6119.52 (12)C16—C17—H17A109.5
C12—C7—C6120.79 (12)C16—C17—H17B109.5
C9—C8—C7120.41 (13)H17A—C17—H17B109.5
C9—C8—H8119.8C16—C17—H17C109.5
C7—C8—H8119.8H17A—C17—H17C109.5
C8—C9—C10119.86 (12)H17B—C17—H17C109.5
C8—C9—H9120.1N1—C18—C19178.89 (17)
C10—C9—H9120.1C18—C19—H19A109.5
C11—C10—C9120.40 (12)C18—C19—H19B109.5
C11—C10—H10119.8H19A—C19—H19B109.5
C9—C10—H10119.8C18—C19—H19C109.5
C10—C11—C12119.97 (13)H19A—C19—H19C109.5
C10—C11—H11120.0H19B—C19—H19C109.5
C15—O2—C2—C34.50 (19)C9—C10—C11—C120.2 (2)
C15—O2—C2—C1175.30 (10)C10—C11—C12—C70.9 (2)
O1—C1—C2—O20.80 (18)C10—C11—C12—C13178.36 (11)
C14—C1—C2—O2179.69 (11)C8—C7—C12—C110.8 (2)
O1—C1—C2—C3179.01 (11)C6—C7—C12—C11178.81 (11)
C14—C1—C2—C30.5 (2)C8—C7—C12—C13178.54 (11)
O2—C2—C3—C4179.31 (12)C6—C7—C12—C131.9 (2)
C1—C2—C3—C40.5 (2)C11—C12—C13—O50.1 (2)
C2—C3—C4—O3178.11 (11)C7—C12—C13—O5179.19 (11)
C2—C3—C4—C51.2 (2)C11—C12—C13—C14179.48 (11)
O3—C4—C5—C14178.34 (11)C7—C12—C13—C140.19 (19)
C3—C4—C5—C140.9 (2)O1—C1—C14—C5178.71 (11)
O3—C4—C5—C61.4 (2)C2—C1—C14—C50.8 (2)
C3—C4—C5—C6179.28 (11)O1—C1—C14—C130.8 (2)
C4—C5—C6—O40.6 (2)C2—C1—C14—C13179.77 (11)
C14—C5—C6—O4179.13 (11)C4—C5—C14—C10.1 (2)
C4—C5—C6—C7178.82 (11)C6—C5—C14—C1179.73 (11)
C14—C5—C6—C71.4 (2)C4—C5—C14—C13179.51 (11)
O4—C6—C7—C81.5 (2)C6—C5—C14—C130.3 (2)
C5—C6—C7—C8177.94 (11)O5—C13—C14—C10.3 (2)
O4—C6—C7—C12178.03 (11)C12—C13—C14—C1179.62 (11)
C5—C6—C7—C122.49 (19)O5—C13—C14—C5179.72 (11)
C12—C7—C8—C90.6 (2)C12—C13—C14—C50.91 (19)
C6—C7—C8—C9179.85 (11)C2—O2—C15—C16174.51 (10)
C7—C8—C9—C101.7 (2)O2—C15—C16—C17179.69 (10)
C8—C9—C10—C111.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O50.88 (1)1.75 (1)2.5537 (13)152 (2)
O3—H3O···O40.87 (1)1.75 (1)2.5578 (13)153 (2)
C10—H10···N10.952.733.4009 (19)128
C15—H15A···O3i0.992.573.2179 (16)123
C11—H11···O5ii0.952.473.2446 (17)138
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+2, z+1.
2-Butoxy-1,4-dihydroxyanthraquinone (2) top
Crystal data top
C18H16O5F(000) = 1312
Mr = 312.31Dx = 1.428 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.7730 (9) ÅCell parameters from 2921 reflections
b = 44.272 (8) Åθ = 2.4–23.8°
c = 13.807 (3) ŵ = 0.10 mm1
β = 95.164 (2)°T = 100 K
V = 2905.8 (9) Å3Cut irregular block, orange-red
Z = 80.48 × 0.10 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
6456 independent reflections
Radiation source: fine-focus sealed tube3747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
Detector resolution: 8.3660 pixels mm-1θmax = 27.2°, θmin = 1.6°
phi and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 5656
Tmin = 0.854, Tmax = 1.000l = 1717
36901 measured reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.047P)2 + 2.0816P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6456 reflectionsΔρmax = 0.26 e Å3
429 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3186 (4)0.27290 (4)0.38526 (14)0.0341 (5)
H1O0.448 (5)0.2616 (6)0.359 (2)0.041*
C10.3234 (6)0.29688 (6)0.32535 (19)0.0272 (6)
O20.0428 (4)0.31529 (4)0.43337 (13)0.0312 (5)
C20.1245 (6)0.32043 (6)0.3504 (2)0.0275 (6)
O30.2823 (4)0.37359 (4)0.15477 (15)0.0350 (5)
H3O0.399 (6)0.3708 (7)0.1034 (17)0.042*
C30.1160 (6)0.34561 (6)0.2928 (2)0.0287 (6)
H30.0171520.3611030.3098210.034*
O40.6827 (4)0.35220 (4)0.04208 (14)0.0367 (5)
C40.3032 (6)0.34858 (6)0.2089 (2)0.0286 (6)
O50.7188 (4)0.25237 (4)0.26716 (15)0.0375 (5)
C50.5023 (5)0.32611 (6)0.18344 (19)0.0254 (6)
O60.7609 (4)0.39771 (4)0.48700 (15)0.0355 (5)
H6O0.636 (6)0.3937 (7)0.4395 (17)0.043*
C60.6920 (6)0.32954 (6)0.0958 (2)0.0293 (6)
O71.1866 (4)0.42067 (4)0.59154 (14)0.0367 (5)
C70.9003 (5)0.30521 (6)0.07061 (19)0.0266 (6)
O81.2269 (4)0.50371 (4)0.37289 (15)0.0341 (5)
H8O1.123 (6)0.5094 (7)0.3208 (16)0.041*
C81.0870 (6)0.30801 (6)0.0124 (2)0.0328 (7)
H81.0812360.3254120.0524550.039*
O90.8632 (4)0.50517 (4)0.22553 (14)0.0359 (5)
C91.2818 (6)0.28529 (7)0.0366 (2)0.0349 (7)
H91.4105990.2873310.0928400.042*
O100.4078 (4)0.40025 (4)0.33801 (14)0.0346 (5)
C101.2893 (6)0.25958 (6)0.0210 (2)0.0340 (7)
H101.4198750.2438970.0033680.041*
C111.1065 (6)0.25689 (6)0.1040 (2)0.0321 (7)
H111.1148210.2395640.1442440.038*
C120.9090 (6)0.27958 (6)0.12909 (19)0.0274 (6)
C130.7114 (6)0.27581 (6)0.2171 (2)0.0286 (6)
C140.5100 (5)0.29996 (6)0.2427 (2)0.0264 (6)
C150.2386 (6)0.33909 (6)0.4653 (2)0.0313 (6)
H15B0.1363130.3582440.4734260.038*
H15A0.3758760.3423030.4166020.038*
C160.3885 (6)0.32930 (6)0.5611 (2)0.0339 (7)
H16A0.5388500.3440650.5805700.041*
H16B0.4792150.3095040.5521610.041*
C170.1962 (7)0.32659 (7)0.6425 (2)0.0402 (7)
H17A0.0601550.3100460.6267680.048*
H17B0.0880940.3455720.6462330.048*
C180.3532 (8)0.32039 (7)0.7413 (2)0.0488 (9)
H18A0.4759300.3027970.7365480.073*
H18B0.2177160.3163300.7889120.073*
H18C0.4672880.3380360.7619340.073*
C190.8649 (6)0.42371 (6)0.4540 (2)0.0296 (6)
C201.0975 (6)0.43683 (6)0.5119 (2)0.0301 (6)
C211.2100 (6)0.46359 (6)0.4840 (2)0.0302 (6)
H211.3622420.4725010.5229920.036*
C221.1009 (6)0.47784 (6)0.3981 (2)0.0300 (6)
C230.8739 (6)0.46552 (6)0.3399 (2)0.0278 (6)
C240.7634 (6)0.48070 (6)0.2524 (2)0.0293 (6)
C250.5272 (6)0.46627 (6)0.1918 (2)0.0300 (6)
C260.4175 (6)0.48005 (7)0.1061 (2)0.0365 (7)
H260.4898500.4989710.0875510.044*
C270.2030 (7)0.46627 (7)0.0475 (2)0.0413 (8)
H270.1322250.4755450.0117610.050*
C280.0917 (6)0.43906 (7)0.0752 (2)0.0394 (7)
H280.0571040.4298410.0354220.047*
C290.1970 (6)0.42527 (6)0.1608 (2)0.0354 (7)
H290.1204150.4065800.1796320.042*
C300.4146 (6)0.43869 (6)0.2195 (2)0.0305 (6)
C310.5203 (6)0.42406 (6)0.3111 (2)0.0296 (6)
C320.7571 (6)0.43774 (6)0.3698 (2)0.0290 (6)
C331.4201 (6)0.43232 (6)0.6555 (2)0.0354 (7)
H33A1.3590020.4498530.6928610.042*
H33B1.5753490.4388160.6173350.042*
C341.5157 (7)0.40682 (7)0.7235 (2)0.0392 (7)
H34A1.5893490.3901760.6851540.047*
H34B1.3517320.3989950.7547800.047*
C351.7415 (7)0.41641 (7)0.8018 (2)0.0449 (8)
H35A1.6636590.4317190.8442350.054*
H35B1.9000440.4257320.7711140.054*
C361.8488 (8)0.38931 (8)0.8632 (2)0.0525 (9)
H36A1.6956320.3811830.8981660.079*
H36B2.0037130.3957390.9100940.079*
H36C1.9158120.3736600.8207210.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0317 (11)0.0275 (11)0.0412 (12)0.0051 (9)0.0072 (9)0.0049 (9)
C10.0237 (14)0.0243 (14)0.0334 (15)0.0016 (11)0.0025 (12)0.0025 (12)
O20.0262 (10)0.0271 (10)0.0389 (11)0.0023 (8)0.0038 (9)0.0001 (8)
C20.0236 (14)0.0239 (14)0.0350 (15)0.0027 (11)0.0020 (12)0.0028 (11)
O30.0343 (12)0.0276 (11)0.0423 (12)0.0038 (9)0.0007 (9)0.0058 (9)
C30.0229 (14)0.0232 (14)0.0400 (16)0.0018 (11)0.0033 (12)0.0031 (12)
O40.0353 (12)0.0298 (11)0.0446 (12)0.0010 (9)0.0009 (9)0.0078 (9)
C40.0251 (15)0.0226 (14)0.0387 (16)0.0024 (11)0.0057 (12)0.0020 (12)
O50.0347 (12)0.0297 (11)0.0464 (12)0.0070 (9)0.0060 (9)0.0081 (9)
C50.0211 (14)0.0233 (13)0.0325 (15)0.0019 (11)0.0059 (11)0.0008 (11)
O60.0331 (12)0.0261 (10)0.0468 (13)0.0057 (9)0.0015 (9)0.0027 (9)
C60.0236 (14)0.0279 (15)0.0364 (16)0.0066 (11)0.0024 (12)0.0021 (12)
O70.0321 (11)0.0302 (11)0.0467 (12)0.0039 (9)0.0022 (9)0.0032 (9)
C70.0224 (14)0.0272 (14)0.0306 (15)0.0048 (11)0.0048 (12)0.0013 (11)
O80.0304 (11)0.0261 (10)0.0456 (12)0.0053 (9)0.0028 (9)0.0013 (9)
C80.0322 (16)0.0337 (16)0.0324 (16)0.0068 (13)0.0024 (13)0.0022 (12)
O90.0342 (12)0.0263 (11)0.0474 (12)0.0037 (9)0.0047 (9)0.0027 (9)
C90.0273 (16)0.0401 (17)0.0360 (17)0.0071 (13)0.0035 (13)0.0072 (13)
O100.0291 (11)0.0263 (11)0.0487 (12)0.0046 (8)0.0049 (9)0.0003 (9)
C100.0279 (16)0.0323 (16)0.0411 (17)0.0001 (12)0.0006 (13)0.0099 (13)
C110.0292 (16)0.0276 (15)0.0394 (16)0.0003 (12)0.0030 (13)0.0039 (12)
C120.0235 (14)0.0266 (14)0.0323 (15)0.0036 (11)0.0029 (12)0.0039 (12)
C130.0239 (14)0.0282 (15)0.0335 (15)0.0013 (12)0.0008 (12)0.0015 (12)
C140.0207 (13)0.0232 (14)0.0355 (15)0.0006 (11)0.0033 (11)0.0004 (11)
C150.0266 (15)0.0225 (14)0.0443 (17)0.0034 (11)0.0009 (13)0.0019 (12)
C160.0295 (16)0.0277 (15)0.0427 (17)0.0001 (12)0.0065 (13)0.0047 (13)
C170.0374 (18)0.0405 (18)0.0415 (18)0.0057 (14)0.0024 (14)0.0005 (14)
C180.061 (2)0.0373 (19)0.0463 (19)0.0090 (16)0.0058 (17)0.0034 (15)
C190.0277 (15)0.0196 (13)0.0425 (17)0.0021 (11)0.0083 (13)0.0014 (12)
C200.0263 (15)0.0263 (14)0.0382 (16)0.0031 (12)0.0058 (13)0.0011 (12)
C210.0243 (15)0.0255 (14)0.0412 (17)0.0009 (11)0.0058 (13)0.0041 (12)
C220.0265 (15)0.0216 (14)0.0432 (17)0.0018 (11)0.0107 (13)0.0056 (12)
C230.0235 (14)0.0217 (14)0.0386 (16)0.0013 (11)0.0058 (12)0.0025 (12)
C240.0236 (14)0.0238 (14)0.0413 (16)0.0001 (11)0.0069 (12)0.0037 (12)
C250.0247 (15)0.0257 (14)0.0404 (16)0.0012 (11)0.0064 (12)0.0027 (12)
C260.0330 (17)0.0319 (16)0.0445 (18)0.0002 (13)0.0029 (14)0.0034 (13)
C270.0371 (18)0.0395 (18)0.0462 (19)0.0042 (14)0.0024 (15)0.0013 (14)
C280.0311 (17)0.0384 (17)0.0475 (19)0.0008 (13)0.0022 (14)0.0066 (14)
C290.0277 (16)0.0303 (16)0.0483 (18)0.0006 (12)0.0049 (14)0.0055 (13)
C300.0240 (15)0.0278 (15)0.0401 (17)0.0020 (11)0.0055 (13)0.0051 (12)
C310.0250 (15)0.0234 (14)0.0416 (17)0.0023 (11)0.0095 (13)0.0047 (12)
C320.0227 (14)0.0242 (14)0.0405 (16)0.0004 (11)0.0059 (12)0.0039 (12)
C330.0313 (16)0.0294 (15)0.0446 (18)0.0043 (13)0.0009 (13)0.0040 (13)
C340.0383 (18)0.0347 (17)0.0440 (18)0.0003 (14)0.0001 (14)0.0010 (14)
C350.046 (2)0.0380 (18)0.0495 (19)0.0035 (15)0.0053 (16)0.0038 (15)
C360.056 (2)0.047 (2)0.052 (2)0.0065 (17)0.0088 (17)0.0009 (16)
Geometric parameters (Å, º) top
O1—C11.345 (3)C16—H16A0.9900
O1—H1O0.848 (18)C16—H16B0.9900
C1—C141.390 (4)C17—C181.520 (4)
C1—C21.431 (4)C17—H17A0.9900
O2—C21.356 (3)C17—H17B0.9900
O2—C151.450 (3)C18—H18A0.9800
C2—C31.372 (4)C18—H18B0.9800
O3—C41.344 (3)C18—H18C0.9800
O3—H3O0.870 (17)C19—C321.377 (4)
C3—C41.404 (4)C19—C201.432 (4)
C3—H30.9500C20—C211.370 (4)
O4—C61.251 (3)C21—C221.402 (4)
C4—C51.399 (4)C21—H210.9500
O5—C131.249 (3)C22—C231.400 (4)
C5—C141.420 (4)C23—C321.426 (4)
C5—C61.453 (4)C23—C241.441 (4)
O6—C191.349 (3)C24—C251.486 (4)
O6—H6O0.863 (18)C25—C261.392 (4)
C6—C71.485 (4)C25—C301.401 (4)
O7—C201.348 (3)C26—C271.388 (4)
O7—C331.453 (3)C26—H260.9500
C7—C81.393 (4)C27—C281.384 (4)
C7—C121.396 (4)C27—H270.9500
O8—C221.354 (3)C28—C291.384 (4)
O8—H8O0.874 (17)C28—H280.9500
C8—C91.390 (4)C29—C301.392 (4)
C8—H80.9500C29—H290.9500
O9—C241.253 (3)C30—C311.469 (4)
C9—C101.391 (4)C31—C321.462 (4)
C9—H90.9500C33—C341.512 (4)
O10—C311.254 (3)C33—H33A0.9900
C10—C111.381 (4)C33—H33B0.9900
C10—H100.9500C34—C351.517 (4)
C11—C121.399 (4)C34—H34A0.9900
C11—H110.9500C34—H34B0.9900
C12—C131.479 (4)C35—C361.531 (4)
C13—C141.460 (4)C35—H35A0.9900
C15—C161.510 (4)C35—H35B0.9900
C15—H15B0.9900C36—H36A0.9800
C15—H15A0.9900C36—H36B0.9800
C16—C171.518 (4)C36—H36C0.9800
C1—O1—H1O103 (2)C17—C18—H18C109.5
O1—C1—C14123.8 (2)H18A—C18—H18C109.5
O1—C1—C2116.9 (2)H18B—C18—H18C109.5
C14—C1—C2119.3 (2)O6—C19—C32123.3 (2)
C2—O2—C15116.7 (2)O6—C19—C20116.6 (2)
O2—C2—C3125.4 (2)C32—C19—C20120.1 (2)
O2—C2—C1114.2 (2)O7—C20—C21125.8 (3)
C3—C2—C1120.4 (2)O7—C20—C19114.4 (2)
C4—O3—H3O105 (2)C21—C20—C19119.9 (3)
C2—C3—C4120.3 (2)C20—C21—C22120.1 (3)
C2—C3—H3119.9C20—C21—H21120.0
C4—C3—H3119.9C22—C21—H21120.0
O3—C4—C5121.9 (2)O8—C22—C23121.4 (3)
O3—C4—C3117.5 (2)O8—C22—C21117.3 (2)
C5—C4—C3120.5 (2)C23—C22—C21121.3 (2)
C4—C5—C14119.2 (2)C22—C23—C32118.2 (2)
C4—C5—C6119.6 (2)C22—C23—C24120.4 (2)
C14—C5—C6121.2 (2)C32—C23—C24121.4 (2)
C19—O6—H6O100 (2)O9—C24—C23122.1 (3)
O4—C6—C5121.7 (2)O9—C24—C25119.7 (3)
O4—C6—C7120.1 (2)C23—C24—C25118.2 (2)
C5—C6—C7118.2 (2)C26—C25—C30119.3 (3)
C20—O7—C33118.4 (2)C26—C25—C24119.9 (3)
C8—C7—C12119.9 (3)C30—C25—C24120.8 (3)
C8—C7—C6119.6 (2)C27—C26—C25120.3 (3)
C12—C7—C6120.6 (2)C27—C26—H26119.8
C22—O8—H8O103 (2)C25—C26—H26119.8
C9—C8—C7119.9 (3)C28—C27—C26120.2 (3)
C9—C8—H8120.1C28—C27—H27119.9
C7—C8—H8120.1C26—C27—H27119.9
C8—C9—C10120.4 (3)C27—C28—C29120.1 (3)
C8—C9—H9119.8C27—C28—H28120.0
C10—C9—H9119.8C29—C28—H28120.0
C11—C10—C9119.9 (3)C28—C29—C30120.2 (3)
C11—C10—H10120.1C28—C29—H29119.9
C9—C10—H10120.1C30—C29—H29119.9
C10—C11—C12120.3 (3)C29—C30—C25119.9 (3)
C10—C11—H11119.9C29—C30—C31119.5 (3)
C12—C11—H11119.9C25—C30—C31120.6 (3)
C7—C12—C11119.7 (2)O10—C31—C32121.0 (3)
C7—C12—C13121.1 (2)O10—C31—C30120.2 (2)
C11—C12—C13119.2 (2)C32—C31—C30118.9 (2)
O5—C13—C14121.7 (2)C19—C32—C23120.5 (2)
O5—C13—C12120.0 (2)C19—C32—C31119.5 (2)
C14—C13—C12118.2 (2)C23—C32—C31120.0 (2)
C1—C14—C5120.3 (2)O7—C33—C34106.5 (2)
C1—C14—C13119.1 (2)O7—C33—H33A110.4
C5—C14—C13120.6 (2)C34—C33—H33A110.4
O2—C15—C16107.4 (2)O7—C33—H33B110.4
O2—C15—H15B110.2C34—C33—H33B110.4
C16—C15—H15B110.2H33A—C33—H33B108.6
O2—C15—H15A110.2C33—C34—C35112.9 (2)
C16—C15—H15A110.2C33—C34—H34A109.0
H15B—C15—H15A108.5C35—C34—H34A109.0
C15—C16—C17113.7 (2)C33—C34—H34B109.0
C15—C16—H16A108.8C35—C34—H34B109.0
C17—C16—H16A108.8H34A—C34—H34B107.8
C15—C16—H16B108.8C34—C35—C36110.9 (3)
C17—C16—H16B108.8C34—C35—H35A109.5
H16A—C16—H16B107.7C36—C35—H35A109.5
C16—C17—C18113.3 (3)C34—C35—H35B109.5
C16—C17—H17A108.9C36—C35—H35B109.5
C18—C17—H17A108.9H35A—C35—H35B108.1
C16—C17—H17B108.9C35—C36—H36A109.5
C18—C17—H17B108.9C35—C36—H36B109.5
H17A—C17—H17B107.7H36A—C36—H36B109.5
C17—C18—H18A109.5C35—C36—H36C109.5
C17—C18—H18B109.5H36A—C36—H36C109.5
H18A—C18—H18B109.5H36B—C36—H36C109.5
C15—O2—C2—C32.6 (4)C33—O7—C20—C210.9 (4)
C15—O2—C2—C1176.8 (2)C33—O7—C20—C19179.4 (2)
O1—C1—C2—O20.6 (3)O6—C19—C20—O71.7 (4)
C14—C1—C2—O2178.7 (2)C32—C19—C20—O7178.9 (2)
O1—C1—C2—C3179.9 (2)O6—C19—C20—C21178.5 (2)
C14—C1—C2—C30.7 (4)C32—C19—C20—C210.8 (4)
O2—C2—C3—C4179.2 (2)O7—C20—C21—C22178.6 (3)
C1—C2—C3—C40.2 (4)C19—C20—C21—C221.1 (4)
C2—C3—C4—O3179.2 (2)C20—C21—C22—O8177.9 (2)
C2—C3—C4—C50.6 (4)C20—C21—C22—C231.0 (4)
O3—C4—C5—C14178.8 (2)O8—C22—C23—C32178.2 (2)
C3—C4—C5—C141.0 (4)C21—C22—C23—C320.7 (4)
O3—C4—C5—C60.4 (4)O8—C22—C23—C241.7 (4)
C3—C4—C5—C6179.4 (2)C21—C22—C23—C24179.4 (3)
C4—C5—C6—O40.1 (4)C22—C23—C24—O90.4 (4)
C14—C5—C6—O4178.5 (3)C32—C23—C24—O9179.7 (3)
C4—C5—C6—C7179.8 (2)C22—C23—C24—C25178.4 (3)
C14—C5—C6—C71.4 (4)C32—C23—C24—C251.5 (4)
O4—C6—C7—C80.8 (4)O9—C24—C25—C260.3 (4)
C5—C6—C7—C8179.3 (2)C23—C24—C25—C26179.1 (3)
O4—C6—C7—C12178.8 (3)O9—C24—C25—C30179.0 (3)
C5—C6—C7—C121.0 (4)C23—C24—C25—C300.2 (4)
C12—C7—C8—C90.1 (4)C30—C25—C26—C271.4 (4)
C6—C7—C8—C9179.8 (3)C24—C25—C26—C27178.0 (3)
C7—C8—C9—C100.8 (4)C25—C26—C27—C281.6 (5)
C8—C9—C10—C111.5 (4)C26—C27—C28—C290.9 (5)
C9—C10—C11—C121.6 (4)C27—C28—C29—C300.1 (4)
C8—C7—C12—C110.2 (4)C28—C29—C30—C250.1 (4)
C6—C7—C12—C11179.9 (2)C28—C29—C30—C31178.8 (3)
C8—C7—C12—C13179.3 (2)C26—C25—C30—C290.6 (4)
C6—C7—C12—C130.3 (4)C24—C25—C30—C29178.8 (3)
C10—C11—C12—C71.0 (4)C26—C25—C30—C31178.2 (3)
C10—C11—C12—C13178.6 (2)C24—C25—C30—C312.5 (4)
C7—C12—C13—O5178.4 (3)C29—C30—C31—O102.8 (4)
C11—C12—C13—O51.2 (4)C25—C30—C31—O10176.0 (2)
C7—C12—C13—C141.3 (4)C29—C30—C31—C32177.3 (3)
C11—C12—C13—C14179.1 (2)C25—C30—C31—C323.9 (4)
O1—C1—C14—C5179.7 (2)O6—C19—C32—C23178.8 (2)
C2—C1—C14—C50.4 (4)C20—C19—C32—C230.5 (4)
O1—C1—C14—C131.0 (4)O6—C19—C32—C310.9 (4)
C2—C1—C14—C13179.6 (2)C20—C19—C32—C31179.8 (2)
C4—C5—C14—C10.5 (4)C22—C23—C32—C190.5 (4)
C6—C5—C14—C1178.9 (2)C24—C23—C32—C19179.6 (3)
C4—C5—C14—C13178.8 (2)C22—C23—C32—C31179.9 (2)
C6—C5—C14—C130.4 (4)C24—C23—C32—C310.0 (4)
O5—C13—C14—C10.6 (4)O10—C31—C32—C192.4 (4)
C12—C13—C14—C1179.7 (2)C30—C31—C32—C19177.7 (2)
O5—C13—C14—C5178.7 (3)O10—C31—C32—C23177.2 (2)
C12—C13—C14—C51.0 (4)C30—C31—C32—C232.7 (4)
C2—O2—C15—C16176.7 (2)C20—O7—C33—C34167.3 (2)
O2—C15—C16—C1765.1 (3)O7—C33—C34—C35174.3 (3)
C15—C16—C17—C18173.1 (2)C33—C34—C35—C36175.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O50.85 (2)1.78 (2)2.564 (3)153 (3)
O3—H3O···O40.87 (2)1.74 (2)2.536 (3)151 (3)
O6—H6O···O100.86 (2)1.72 (2)2.542 (3)158 (3)
O8—H8O···O90.87 (2)1.73 (2)2.554 (3)155 (3)
C3—H3···O100.952.553.494 (3)173
C29—H29···O30.952.413.231 (4)144
C15—H15B···O6i0.992.523.485 (3)164
C21—H21···O8ii0.952.553.502 (3)180
C33—H33A···O9iii0.992.563.547 (4)172
Symmetry codes: (i) x1, y, z; (ii) x+3, y+1, z+1; (iii) x+2, y+1, z+1.
 

Acknowledgements

We thank the Missouri State University Provost Incentive Fund that funded the purchase of the X-ray diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS
First citationBergerhoff, G. & Wunderlich, C. H. (1993). Z. Kristallogr. 207, 189–192.  CAS
First citationBruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals
First citationDas, P., Jain, C. K., Dey, S. K., Saha, R., Chowdhury, A. D., Roychoudhury, S., Kumar, S., Majumder, H. K. & Das, S. (2014). RSC Adv. 4, 59344–59357.  CSD CrossRef CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationMuangsin, N., Wisetsakdakorn, W., Chaichit, N., Sihanonth, P., Petsom, A. & Sangvanich, P. (2008). Dyes Pigments, 77, 653–656.  CSD CrossRef CAS
First citationSathiyendiran, M., Liao, R. T., Thanasekaran, P., Luo, T. T., Venkataramanan, N. S., Lee, G. H., Peng, S. M. & Lu, K. L. (2006). Inorg. Chem. 45, 10052–10054.  CSD CrossRef PubMed CAS
First citationSathiyendiran, M., Tsai, C. C., Thanasekaran, P., Luo, T. T., Yang, C. I., Lee, G. H., Peng, S. M. & Lu, K. L. (2011). Chem. Eur. J. 17, 3343–3346.  CSD CrossRef CAS PubMed
First citationSchweppe, H. & Winter, J. (1997). Artists Pigments, 3, edited by E. W. Fitzhugh, pp. 109–142. New York: Oxford University Press.
First citationShe, Z.-G., Huang, H.-R., Lin, Y.-C., Vrijmoed, L. L. P. & Jones, E. B. G. (2006). Acta Cryst. E62, o3737–o3738.  CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSousa, A. T. de, Bessler, K. E., Lemos, S. S., Ellena, J. & Gatto, C. C. (2009). Z. Anorg. Allg. Chem. 635, 106–111.
First citationYatsenko, A. V., Chernyshev, V. V., Popov, S. I., Sonneveld, E. J. & Schenk, H. (2000). Dyes Pigments, 45, 169–176.  CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds