research communications
of 2,3,5,6-tetrakis(pyridin-2-yl)pyrazine hydrogen peroxide 4.75-solvate
aInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: churakov@igic.ras.ru
The structure of the title 24H16N6·4.75H2O2, consists of a 2,3,5,6-tetrakis(pyridin-2-yl)pyrazine coformer and hydrogen peroxide solvent molecules in an overall ratio of 1:4.75. Three of the six H2O2 molecules modelled in the structure were found to be cross-orientationally disordered over two positions with occupancy ratios 0.846 (9):0.154 (9), 0.75 (2):0.25 (2), and 0.891 (9):0.109 (9). In the crystal, all of the peroxide molecules are linked into hydrogen-bonded chains that propagate parallel to the a axis. These chains are further linked by O—H⋯N hydrogen bonds to the pyridine groups of the main molecule.
CKeywords: peroxosolvate; disorder; H-bonded chain; crystal structure.
CCDC reference: 1581165
1. Chemical context
Peroxosolvates are solids that contain H2O2 molecules in a manner analogous to the water in crystalline hydrates. Nowadays, some peroxosolvates find widespread use as environmentally friendly decontaminating and bleaching compounds (Jakob et al., 2012), and as oxidizing agents in organic synthesis (Ahn et al., 2015). Hydrogen bonding in peroxosolvates is of particular interest because it may be used for modelling of hydrogen peroxide behaviour in various significant biochemical processes, especially oxidative stress and transport through cellular membranes (Kapustin et al., 2014).
2. Structural commentary
The title structure consists of a 2,3,5,6-tetrakis(pyridin-2-yl)pyrazine coformer and six crystallographically independent peroxide molecules (Fig. 1), namely Per1 (major occupancy component H11/O11/O12/H12, minor component H13/O13/O14/H14); Per2 (major occupancy component H21/O21/O22/H22, minor component H23/O23/O24/H24); Per3 (major occupancy component H31/O31/O31/H31, minor component H32/O32/O32/H32); Per4 (H41/O41/O42/H42); Per5 (H51/O51/O52/H52); Per6 (H61/O61/O61/H61). Molecules Per1, Per2, Per4, Per5 occupy general positions and thus exhibit a skew geometry. Molecules Per3 and Per6 lie on inversion centres. Three of the six H2O2 molecules are cross-orientationally disordered over two positions (Fig. 2). This type of disorder was previously reported for several inorganic peroxosolvates (Adams & Pritchard, 1977; Carrondo et al., 1977; Pritchard & Islam, 2003; Medvedev et al., 2012).
In the organic molecule, all four pyridin-2-yl substituents are significantly inclined with respect to the central pyrazine ring (Fig. 3), such that the N—C—C—N torsion angles range between 130.8 (6) and 140.0 (4)°. Similar conformations have been observed for all three known polymorphs of the pure coformer (Bock et al., 1992; Behrens & Rehder, 2009; Malecki, 2010). Of structural significance, the pairs of pyridinyl nitrogen atoms N1, N4 and N2, N3 are located at opposite sides of the central pyrazine ring. This arrangement clearly facilitates the organization of hydrogen-bonded chains in the structure (see below). All four pyridinyl nitrogen atoms are involved as hydrogen-bond acceptors, but neither of the pyrazine N atoms participate in hydrogen bonding, presumably because of steric hindrance.
In the peroxide molecules, the O—O distances range between 1.44 (4) and 1.485 (5) Å. The mean value of 1.465 Å is close to those previously observed in the accurately determined structures of crystalline hydrogen peroxide [1.461 (3) Å; Savariault & Lehmann, 1980] and urea perhydrate [1.4573 (8) Å; Fritchie & McMullan, 1981].
The ordered molecules Per4 and Per5 form four hydrogen bonds (two as donor and two as acceptor) in [2,2] mode (Fig. 4). This coordination environment of the peroxide molecules is the most common arrangement in organic peroxosolvates (Prikhodchenko et al., 2011). In contrast, the disordered or partially occupied molecules Per1, Per2, Per3, and Per6 are involved in just two or three hydrogen bonds with adjacent peroxide molecules, but not with the organic coformer. It should be noted that the maximum number of hydrogen bonds possible for H2O2 is six (two as donor and four as acceptor), but such cases are quite rare (Chernyshov et al., 2017).
3. Supramolecular features
In the crystal, all six peroxide molecules are linked into hydrogen-bonded chains that propagate parallel to the a-axis (Table 1, Fig. 5). To the best of our knowledge, this is only the second example of hydrogen-bonded chains formed exclusively from peroxide molecules. Recently we reported the structure of thymine peroxosolvate obtained from 98% hydrogen peroxide (Chernyshov et al., 2017). However, in the latter compound, the peroxide chains are very simple (see Scheme below), belonging to the C1 type according to the Infantes–Motherwell notation of water clusters (Infantes & Motherwell, 2002). In the title structure, the chains represent the more complicated T4(0)A1 motif (Fig. 5).
The peroxide chains are interconnected via the organic molecules by moderate HOO—H⋯N hydrogen bonds. Despite the aromatic nature of organic coformer, no π–π stacking or T-shaped C—H⋯π intermolecular interactions are observed in the structure. Thus, hydrogen bonding plays the predominant role in the crystal packing.
4. Database survey
The Cambridge Structural Database (Version 5.38: Groom et al., 2016) contains data for 72 individual `true' peroxosolvates (78 refcodes), in which the peroxide molecules do not form direct bonds to metal atoms. A few of these represent examples of mixed halogen–peroxide chains of general formula ⋯Hal−⋯(H2O2)n⋯Hal−⋯(H2O2)k⋯ (n, k = 1, 2; Hal = Cl, Br; CAZHAN, CAZHER, CAZHIV, CAZHOB, CAZHUH, CAZJAP: Churakov et al., 2005), mixed carbonate–peroxide chains (WUXSIT: Medvedev et al., 2012) and disordered mixed peroxide–water chains (WINSAO: Churakov & Howard, 2007; QOHXUH: Laus et al., 2008).
5. Synthesis and crystallization
98% Hydrogen peroxide was prepared by an extraction method from serine peroxosolvate (Wolanov et al., 2010). Colourless prismatic crystals of the title compound were obtained by cooling a (r.t.) of 2,3,5,6-tetrakis(pyridin-2-yl)pyrazine (Aldrich) in 96% hydrogen peroxide to 255 K.
Several crystals were examined. All of them exhibited poor crystallinity, presumably as a result of the rather extensive disorder of the peroxide molecules.
Handling procedures for concentrated hydrogen peroxide have been described in detail (danger of explosion!) by Schumb et al. (1955).
6. Refinement
Crystal data, data collection and structure . Three of the six H2O2 molecules were found to be cross-orientationally disordered over two positions with occupancy ratios 0.846 (9):0.154 (9), 0.75 (2):0.25 (2), and 0.891 (9):0.109 (9), and were refined with restrained O—O distances.
details are summarized in Table 2
|
The centrosymmetric peroxide molecule modelled as H61/O61/O61i/H61i [symmetry code: (i) 1 − x, −y, 1 − z] was found to be partially occupied. Simultaneous of occupancy and thermal parameters for atom O61 was not stable and resulted in oscillating occupancies between 0.46 and 0.53 for consecutive cycles of It was therefore fixed at 0.5 for the final refinement.
Aromatic H atoms were placed in calculated positions with C—H = 0.95 Å and refined as riding atoms with relative isotropic displacement parameters Uiso(H) = 1.2Ueq(C). Peroxide hydrogen atoms were placed on the lines connecting hydrogen-bonded atoms at a distance of 0.80 Å from the corresponding O atoms. They were refined as riding atoms with relative isotropic displacement parameters Uiso(H) = 1.5Ueq(O).
Supporting information
CCDC reference: 1581165
https://doi.org/10.1107/S2056989017015328/pk2607sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017015328/pk2607Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017015328/pk2607Isup3.cml
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C24H16N6·4.75H2O2 | F(000) = 1150 |
Mr = 550.00 | Dx = 1.414 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5939 reflections |
a = 19.000 (7) Å | θ = 2.2–30.1° |
b = 7.382 (3) Å | µ = 0.11 mm−1 |
c = 20.212 (7) Å | T = 150 K |
β = 114.271 (5)° | Prism, colourless |
V = 2584.3 (16) Å3 | 0.40 × 0.40 × 0.30 mm |
Z = 4 |
Bruker SMART APEXII diffractometer | 4563 independent reflections |
Radiation source: fine-focus sealed tube | 3870 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω scans | θmax = 25.1°, θmin = 1.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −22→22 |
Tmin = 0.957, Tmax = 0.967 | k = −8→8 |
16397 measured reflections | l = −24→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.090 | H-atom parameters constrained |
wR(F2) = 0.191 | w = 1/[σ2(Fo2) + (0.010P)2 + 10.P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max < 0.001 |
4563 reflections | Δρmax = 0.39 e Å−3 |
388 parameters | Δρmin = −0.36 e Å−3 |
3 restraints | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0017 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O11 | 0.3518 (4) | −0.0660 (7) | 0.4736 (3) | 0.0662 (16) | 0.846 (9) |
H11 | 0.3640 | −0.0353 | 0.5148 | 0.099* | 0.846 (9) |
O12 | 0.3037 (3) | 0.0865 (7) | 0.4355 (3) | 0.0500 (13) | 0.846 (9) |
H12 | 0.2602 | 0.0537 | 0.4129 | 0.075* | 0.846 (9) |
O13 | 0.302 (2) | −0.084 (3) | 0.4427 (16) | 0.0662 (16) | 0.154 (9) |
H13 | 0.2574 | −0.0674 | 0.4170 | 0.099* | 0.154 (9) |
O14 | 0.325 (2) | 0.101 (4) | 0.4650 (18) | 0.0500 (13) | 0.154 (9) |
H14 | 0.3448 | 0.0846 | 0.5079 | 0.075* | 0.154 (9) |
O21 | 0.1982 (4) | 0.8976 (8) | 0.5494 (5) | 0.046 (2) | 0.75 (2) |
H21 | 0.2428 | 0.9008 | 0.5768 | 0.068* | 0.75 (2) |
O22 | 0.1750 (5) | 1.0887 (9) | 0.5388 (5) | 0.045 (2) | 0.75 (2) |
H22 | 0.1578 | 1.0953 | 0.4955 | 0.068* | 0.75 (2) |
O23 | 0.2088 (15) | 1.053 (3) | 0.5761 (17) | 0.054 (6) | 0.25 (2) |
H23 | 0.2513 | 1.0114 | 0.5961 | 0.081* | 0.25 (2) |
O24 | 0.1651 (17) | 0.951 (3) | 0.5117 (15) | 0.056 (7) | 0.25 (2) |
H24 | 0.1496 | 0.9992 | 0.4729 | 0.084* | 0.25 (2) |
O31 | 0.0252 (3) | 0.9210 (7) | 0.5133 (3) | 0.0661 (17) | 0.891 (9) |
H31 | 0.0661 | 0.9677 | 0.5224 | 0.099* | 0.891 (9) |
O32 | −0.014 (2) | 0.952 (6) | 0.4653 (14) | 0.0661 (17) | 0.109 (9) |
H32 | 0.0309 | 0.9595 | 0.4745 | 0.099* | 0.109 (9) |
O41 | 0.15205 (18) | 0.9727 (4) | 0.35656 (18) | 0.0412 (8) | |
H41 | 0.1267 | 0.8912 | 0.3612 | 0.062* | |
O42 | 0.1137 (2) | 1.1114 (4) | 0.38369 (18) | 0.0440 (9) | |
H42 | 0.1200 | 1.1955 | 0.3618 | 0.066* | |
O51 | 0.35556 (18) | 0.9097 (5) | 0.64562 (18) | 0.0438 (8) | |
H51 | 0.3802 | 0.8260 | 0.6415 | 0.066* | |
O52 | 0.3959 (2) | 1.0412 (5) | 0.61765 (18) | 0.0496 (9) | |
H52 | 0.3851 | 1.1264 | 0.6362 | 0.074* | |
O61 | 0.4922 (9) | −0.0768 (15) | 0.5192 (8) | 0.149 (6)* | 0.50 |
H61 | 0.4462 | −0.0750 | 0.5046 | 0.224* | 0.50 |
N1 | 0.35882 (19) | 0.3326 (5) | 0.68106 (18) | 0.0299 (8) | |
N2 | 0.43995 (19) | 0.6236 (5) | 0.63149 (18) | 0.0310 (8) | |
N3 | 0.06552 (18) | 0.6947 (5) | 0.37238 (18) | 0.0276 (8) | |
N4 | 0.13565 (19) | 0.4025 (5) | 0.30774 (17) | 0.0270 (8) | |
N5 | 0.19869 (18) | 0.5011 (5) | 0.53122 (17) | 0.0232 (7) | |
N6 | 0.29935 (18) | 0.5095 (5) | 0.46312 (17) | 0.0243 (7) | |
C11 | 0.2751 (2) | 0.4834 (6) | 0.5698 (2) | 0.0242 (9) | |
C12 | 0.3013 (2) | 0.4523 (6) | 0.6494 (2) | 0.0255 (9) | |
C13 | 0.2670 (2) | 0.5469 (6) | 0.6880 (2) | 0.0307 (10) | |
H13A | 0.2254 | 0.6277 | 0.6639 | 0.037* | |
C14 | 0.2949 (3) | 0.5205 (7) | 0.7624 (2) | 0.0374 (11) | |
H14A | 0.2723 | 0.5826 | 0.7900 | 0.045* | |
C15 | 0.3561 (3) | 0.4026 (7) | 0.7959 (2) | 0.0414 (12) | |
H15A | 0.3772 | 0.3847 | 0.8470 | 0.050* | |
C16 | 0.3856 (3) | 0.3116 (7) | 0.7531 (2) | 0.0375 (11) | |
H16A | 0.4271 | 0.2296 | 0.7761 | 0.045* | |
C21 | 0.3263 (2) | 0.4994 (6) | 0.5354 (2) | 0.0248 (9) | |
C22 | 0.4120 (2) | 0.5050 (6) | 0.5756 (2) | 0.0287 (9) | |
C23 | 0.4586 (2) | 0.3985 (7) | 0.5539 (2) | 0.0329 (10) | |
H23A | 0.4367 | 0.3177 | 0.5140 | 0.039* | |
C24 | 0.5380 (2) | 0.4123 (7) | 0.5916 (2) | 0.0380 (11) | |
H24A | 0.5716 | 0.3398 | 0.5784 | 0.046* | |
C25 | 0.5674 (2) | 0.5328 (8) | 0.6485 (3) | 0.0444 (13) | |
H25A | 0.6217 | 0.5459 | 0.6747 | 0.053* | |
C26 | 0.5169 (2) | 0.6350 (7) | 0.6671 (3) | 0.0396 (11) | |
H26A | 0.5378 | 0.7166 | 0.7068 | 0.048* | |
C31 | 0.1721 (2) | 0.5232 (5) | 0.45945 (19) | 0.0199 (8) | |
C32 | 0.0876 (2) | 0.5562 (5) | 0.42050 (19) | 0.0215 (8) | |
C33 | 0.0354 (2) | 0.4529 (6) | 0.4356 (2) | 0.0240 (9) | |
H33A | 0.0530 | 0.3572 | 0.4700 | 0.029* | |
C34 | −0.0424 (2) | 0.4894 (6) | 0.4006 (2) | 0.0283 (9) | |
H34A | −0.0791 | 0.4196 | 0.4102 | 0.034* | |
C35 | −0.0658 (2) | 0.6309 (7) | 0.3507 (2) | 0.0371 (11) | |
H35A | −0.1190 | 0.6598 | 0.3256 | 0.045* | |
C36 | −0.0101 (2) | 0.7290 (7) | 0.3384 (2) | 0.0356 (11) | |
H36A | −0.0265 | 0.8252 | 0.3042 | 0.043* | |
C41 | 0.2231 (2) | 0.5160 (5) | 0.4245 (2) | 0.0217 (8) | |
C42 | 0.1960 (2) | 0.5127 (6) | 0.3444 (2) | 0.0249 (9) | |
C43 | 0.2327 (2) | 0.6153 (6) | 0.3100 (2) | 0.0294 (9) | |
H43A | 0.2757 | 0.6893 | 0.3376 | 0.035* | |
C44 | 0.2056 (2) | 0.6080 (7) | 0.2353 (2) | 0.0334 (10) | |
H44A | 0.2299 | 0.6763 | 0.2107 | 0.040* | |
C45 | 0.1427 (3) | 0.4993 (7) | 0.1970 (2) | 0.0372 (11) | |
H45A | 0.1225 | 0.4932 | 0.1456 | 0.045* | |
C46 | 0.1094 (3) | 0.3989 (6) | 0.2350 (2) | 0.0329 (10) | |
H46A | 0.0662 | 0.3245 | 0.2083 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O11 | 0.075 (4) | 0.052 (3) | 0.057 (3) | 0.014 (3) | 0.013 (3) | −0.001 (2) |
O12 | 0.053 (3) | 0.051 (3) | 0.046 (3) | −0.002 (2) | 0.020 (3) | 0.005 (3) |
O13 | 0.075 (4) | 0.052 (3) | 0.057 (3) | 0.014 (3) | 0.013 (3) | −0.001 (2) |
O14 | 0.053 (3) | 0.051 (3) | 0.046 (3) | −0.002 (2) | 0.020 (3) | 0.005 (3) |
O21 | 0.045 (3) | 0.022 (3) | 0.062 (5) | 0.006 (2) | 0.015 (3) | 0.009 (3) |
O22 | 0.054 (5) | 0.034 (4) | 0.051 (4) | 0.011 (3) | 0.026 (4) | 0.008 (3) |
O23 | 0.053 (12) | 0.050 (12) | 0.054 (14) | 0.018 (9) | 0.017 (11) | −0.002 (10) |
O24 | 0.067 (15) | 0.039 (12) | 0.054 (12) | −0.013 (10) | 0.015 (12) | 0.015 (10) |
O31 | 0.046 (3) | 0.066 (4) | 0.084 (4) | −0.006 (2) | 0.023 (3) | 0.019 (3) |
O32 | 0.046 (3) | 0.066 (4) | 0.084 (4) | −0.006 (2) | 0.023 (3) | 0.019 (3) |
O41 | 0.0441 (19) | 0.0314 (18) | 0.060 (2) | −0.0005 (15) | 0.0332 (17) | 0.0008 (16) |
O42 | 0.062 (2) | 0.0319 (19) | 0.055 (2) | 0.0017 (16) | 0.0406 (18) | 0.0050 (16) |
O51 | 0.0428 (19) | 0.040 (2) | 0.053 (2) | 0.0024 (16) | 0.0236 (16) | 0.0053 (16) |
O52 | 0.062 (2) | 0.044 (2) | 0.050 (2) | −0.0047 (18) | 0.0307 (18) | 0.0026 (17) |
N1 | 0.0267 (18) | 0.034 (2) | 0.0260 (18) | −0.0024 (16) | 0.0076 (14) | 0.0065 (15) |
N2 | 0.0246 (18) | 0.033 (2) | 0.0324 (19) | −0.0004 (15) | 0.0087 (15) | 0.0069 (16) |
N3 | 0.0224 (17) | 0.032 (2) | 0.0316 (18) | 0.0030 (15) | 0.0143 (14) | 0.0028 (15) |
N4 | 0.0268 (18) | 0.031 (2) | 0.0245 (17) | 0.0013 (15) | 0.0114 (14) | −0.0026 (15) |
N5 | 0.0201 (16) | 0.0252 (18) | 0.0246 (17) | −0.0034 (14) | 0.0096 (13) | −0.0016 (14) |
N6 | 0.0235 (17) | 0.0241 (18) | 0.0271 (17) | 0.0006 (14) | 0.0123 (14) | 0.0058 (14) |
C11 | 0.0234 (19) | 0.024 (2) | 0.0248 (19) | −0.0030 (16) | 0.0097 (16) | −0.0010 (16) |
C12 | 0.0208 (19) | 0.031 (2) | 0.025 (2) | −0.0072 (17) | 0.0096 (16) | −0.0005 (17) |
C13 | 0.026 (2) | 0.039 (3) | 0.027 (2) | −0.0044 (19) | 0.0112 (17) | −0.0007 (18) |
C14 | 0.039 (2) | 0.046 (3) | 0.031 (2) | −0.012 (2) | 0.017 (2) | −0.003 (2) |
C15 | 0.043 (3) | 0.050 (3) | 0.024 (2) | −0.013 (2) | 0.007 (2) | 0.004 (2) |
C16 | 0.033 (2) | 0.045 (3) | 0.029 (2) | −0.003 (2) | 0.0070 (19) | 0.008 (2) |
C21 | 0.0216 (19) | 0.026 (2) | 0.025 (2) | 0.0003 (17) | 0.0082 (16) | 0.0015 (17) |
C22 | 0.023 (2) | 0.037 (3) | 0.024 (2) | −0.0014 (18) | 0.0079 (16) | 0.0115 (19) |
C23 | 0.024 (2) | 0.051 (3) | 0.026 (2) | 0.006 (2) | 0.0129 (17) | 0.011 (2) |
C24 | 0.026 (2) | 0.051 (3) | 0.040 (2) | 0.010 (2) | 0.017 (2) | 0.020 (2) |
C25 | 0.019 (2) | 0.063 (4) | 0.047 (3) | 0.004 (2) | 0.009 (2) | 0.019 (3) |
C26 | 0.028 (2) | 0.041 (3) | 0.039 (2) | −0.009 (2) | 0.0039 (19) | 0.008 (2) |
C31 | 0.0243 (19) | 0.0136 (19) | 0.0240 (19) | −0.0047 (15) | 0.0121 (16) | −0.0011 (15) |
C32 | 0.0224 (19) | 0.024 (2) | 0.0203 (18) | −0.0004 (16) | 0.0112 (15) | −0.0025 (16) |
C33 | 0.025 (2) | 0.029 (2) | 0.0189 (18) | −0.0030 (17) | 0.0103 (16) | −0.0022 (16) |
C34 | 0.0204 (19) | 0.040 (3) | 0.026 (2) | −0.0063 (18) | 0.0105 (16) | −0.0057 (19) |
C35 | 0.018 (2) | 0.054 (3) | 0.036 (2) | 0.006 (2) | 0.0076 (18) | 0.002 (2) |
C36 | 0.027 (2) | 0.041 (3) | 0.039 (2) | 0.007 (2) | 0.0141 (19) | 0.008 (2) |
C41 | 0.0215 (19) | 0.019 (2) | 0.027 (2) | −0.0008 (16) | 0.0120 (16) | 0.0035 (16) |
C42 | 0.0221 (19) | 0.028 (2) | 0.027 (2) | 0.0058 (17) | 0.0122 (16) | 0.0016 (17) |
C43 | 0.022 (2) | 0.040 (3) | 0.030 (2) | 0.0027 (18) | 0.0144 (17) | 0.0044 (19) |
C44 | 0.033 (2) | 0.044 (3) | 0.031 (2) | 0.006 (2) | 0.0208 (19) | 0.009 (2) |
C45 | 0.044 (3) | 0.049 (3) | 0.023 (2) | 0.012 (2) | 0.0183 (19) | 0.001 (2) |
C46 | 0.035 (2) | 0.038 (3) | 0.024 (2) | 0.001 (2) | 0.0107 (18) | −0.0081 (19) |
O11—H11 | 0.8000 | C12—C13 | 1.392 (6) |
O12—H12 | 0.8001 | C13—C14 | 1.387 (6) |
O13—H13 | 0.8000 | C13—H13A | 0.9500 |
O14—H14 | 0.7999 | C14—C15 | 1.386 (7) |
O21—O22 | 1.467 (12) | C14—H14A | 0.9500 |
O21—H21 | 0.8000 | C15—C16 | 1.383 (7) |
O22—H22 | 0.8002 | C15—H15A | 0.9500 |
O23—O24 | 1.44 (4) | C16—H16A | 0.9500 |
O23—H23 | 0.8001 | C21—C22 | 1.491 (5) |
O24—H24 | 0.7998 | C22—C23 | 1.384 (6) |
O31—O31i | 1.465 (9) | C23—C24 | 1.386 (6) |
O31—H31 | 0.7999 | C23—H23A | 0.9500 |
O31—H32 | 0.8813 | C24—C25 | 1.378 (7) |
O32—O32i | 1.463 (13) | C24—H24A | 0.9500 |
O32—H32 | 0.7999 | C25—C26 | 1.389 (7) |
O41—O42 | 1.486 (4) | C25—H25A | 0.9500 |
O41—H41 | 0.7997 | C26—H26A | 0.9500 |
O42—H42 | 0.8001 | C31—C41 | 1.415 (5) |
O51—O52 | 1.485 (5) | C31—C32 | 1.489 (5) |
O51—H51 | 0.8002 | C32—C33 | 1.382 (5) |
O52—H52 | 0.8001 | C33—C34 | 1.377 (5) |
O61—O61ii | 1.471 (10) | C33—H33A | 0.9500 |
O61—H61 | 0.7999 | C34—C35 | 1.391 (6) |
N1—C16 | 1.340 (5) | C34—H34A | 0.9500 |
N1—C12 | 1.345 (5) | C35—C36 | 1.387 (6) |
N2—C26 | 1.340 (5) | C35—H35A | 0.9500 |
N2—C22 | 1.354 (6) | C36—H36A | 0.9500 |
N3—C36 | 1.338 (5) | C41—C42 | 1.483 (5) |
N3—C32 | 1.353 (5) | C42—C43 | 1.394 (6) |
N4—C46 | 1.345 (5) | C43—C44 | 1.381 (6) |
N4—C42 | 1.352 (5) | C43—H43A | 0.9500 |
N5—C31 | 1.336 (5) | C44—C45 | 1.383 (6) |
N5—C11 | 1.342 (5) | C44—H44A | 0.9500 |
N6—C41 | 1.335 (5) | C45—C46 | 1.391 (6) |
N6—C21 | 1.337 (5) | C45—H45A | 0.9500 |
C11—C21 | 1.416 (5) | C46—H46A | 0.9500 |
C11—C12 | 1.493 (5) | ||
O12—O11—H11 | 100.6 | C22—C23—C24 | 118.6 (4) |
O11—O12—H12 | 110.1 | C22—C23—H23A | 120.7 |
H12—O12—H14 | 128.2 | C24—C23—H23A | 120.7 |
H13—O12—H14 | 107.7 | C25—C24—C23 | 118.8 (4) |
O14—O13—H13 | 99.5 | C25—C24—H24A | 120.6 |
H11—O14—H12 | 115.4 | C23—C24—H24A | 120.6 |
O13—O14—H14 | 97.8 | C24—C25—C26 | 119.2 (4) |
O22—O21—H21 | 104.0 | C24—C25—H25A | 120.4 |
O21—O22—H22 | 100.4 | C26—C25—H25A | 120.4 |
O24—O23—H23 | 110.2 | N2—C26—C25 | 122.9 (5) |
O23—O24—H24 | 119.8 | N2—C26—H26A | 118.5 |
O31i—O31—H31 | 99.7 | C25—C26—H26A | 118.5 |
O32i—O32—H32 | 78.8 | N5—C31—C41 | 120.5 (3) |
O42—O41—H41 | 93.7 | N5—C31—C32 | 116.0 (3) |
O41—O42—H42 | 97.0 | C41—C31—C32 | 123.5 (3) |
O52—O51—H51 | 92.9 | N3—C32—C33 | 122.5 (4) |
O51—O52—H52 | 93.7 | N3—C32—C31 | 116.9 (3) |
O61ii—O61—H61 | 102.7 | C33—C32—C31 | 120.6 (3) |
C16—N1—C12 | 117.7 (4) | C34—C33—C32 | 119.6 (4) |
C26—N2—C22 | 117.1 (4) | C34—C33—H33A | 120.2 |
C36—N3—C32 | 117.5 (4) | C32—C33—H33A | 120.2 |
C46—N4—C42 | 117.5 (4) | C33—C34—C35 | 118.4 (4) |
C31—N5—C11 | 118.6 (3) | C33—C34—H34A | 120.8 |
C41—N6—C21 | 118.5 (3) | C35—C34—H34A | 120.8 |
N5—C11—C21 | 120.2 (3) | C36—C35—C34 | 118.8 (4) |
N5—C11—C12 | 116.4 (3) | C36—C35—H35A | 120.6 |
C21—C11—C12 | 123.4 (3) | C34—C35—H35A | 120.6 |
N1—C12—C13 | 122.6 (4) | N3—C36—C35 | 123.2 (4) |
N1—C12—C11 | 117.4 (4) | N3—C36—H36A | 118.4 |
C13—C12—C11 | 120.0 (4) | C35—C36—H36A | 118.4 |
C14—C13—C12 | 118.6 (4) | N6—C41—C31 | 120.7 (3) |
C14—C13—H13A | 120.7 | N6—C41—C42 | 116.3 (3) |
C12—C13—H13A | 120.7 | C31—C41—C42 | 122.9 (3) |
C15—C14—C13 | 119.2 (4) | N4—C42—C43 | 122.6 (4) |
C15—C14—H14A | 120.4 | N4—C42—C41 | 116.4 (3) |
C13—C14—H14A | 120.4 | C43—C42—C41 | 121.0 (4) |
C16—C15—C14 | 118.3 (4) | C44—C43—C42 | 119.1 (4) |
C16—C15—H15A | 120.9 | C44—C43—H43A | 120.5 |
C14—C15—H15A | 120.9 | C42—C43—H43A | 120.5 |
N1—C16—C15 | 123.6 (4) | C43—C44—C45 | 118.8 (4) |
N1—C16—H16A | 118.2 | C43—C44—H44A | 120.6 |
C15—C16—H16A | 118.2 | C45—C44—H44A | 120.6 |
N6—C21—C11 | 120.6 (3) | C44—C45—C46 | 119.0 (4) |
N6—C21—C22 | 115.8 (3) | C44—C45—H45A | 120.5 |
C11—C21—C22 | 123.5 (3) | C46—C45—H45A | 120.5 |
N2—C22—C23 | 123.3 (4) | N4—C46—C45 | 123.0 (4) |
N2—C22—C21 | 116.0 (4) | N4—C46—H46A | 118.5 |
C23—C22—C21 | 120.6 (4) | C45—C46—H46A | 118.5 |
C31—N5—C11—C21 | 3.9 (6) | C41—C31—C32—N3 | −47.1 (5) |
C31—N5—C11—C12 | −177.8 (4) | N5—C31—C32—C33 | −45.2 (5) |
C16—N1—C12—C13 | −3.0 (6) | C41—C31—C32—C33 | 135.2 (4) |
C16—N1—C12—C11 | 176.3 (4) | N3—C32—C33—C34 | 0.4 (6) |
N5—C11—C12—N1 | 140.0 (4) | C31—C32—C33—C34 | 178.0 (3) |
C21—C11—C12—N1 | −41.8 (6) | C32—C33—C34—C35 | −0.1 (6) |
N5—C11—C12—C13 | −40.7 (6) | C33—C34—C35—C36 | 0.0 (6) |
C21—C11—C12—C13 | 137.6 (4) | C32—N3—C36—C35 | 0.5 (7) |
N1—C12—C13—C14 | 2.0 (6) | C34—C35—C36—N3 | −0.2 (7) |
C11—C12—C13—C14 | −177.3 (4) | C21—N6—C41—C31 | 3.8 (6) |
C12—C13—C14—C15 | 0.5 (7) | C21—N6—C41—C42 | −175.4 (4) |
C13—C14—C15—C16 | −1.8 (7) | N5—C31—C41—N6 | −8.3 (6) |
C12—N1—C16—C15 | 1.6 (7) | C32—C31—C41—N6 | 171.2 (4) |
C14—C15—C16—N1 | 0.7 (7) | N5—C31—C41—C42 | 170.9 (4) |
C41—N6—C21—C11 | 4.3 (6) | C32—C31—C41—C42 | −9.6 (6) |
C41—N6—C21—C22 | −176.0 (4) | C46—N4—C42—C43 | −2.3 (6) |
N5—C11—C21—N6 | −8.4 (6) | C46—N4—C42—C41 | 179.2 (4) |
C12—C11—C21—N6 | 173.4 (4) | N6—C41—C42—N4 | 135.6 (4) |
N5—C11—C21—C22 | 171.9 (4) | C31—C41—C42—N4 | −43.6 (5) |
C12—C11—C21—C22 | −6.2 (7) | N6—C41—C42—C43 | −42.8 (6) |
C26—N2—C22—C23 | −0.4 (6) | C31—C41—C42—C43 | 137.9 (4) |
C26—N2—C22—C21 | −178.1 (4) | N4—C42—C43—C44 | 1.5 (6) |
N6—C21—C22—N2 | 130.8 (4) | C41—C42—C43—C44 | 179.9 (4) |
C11—C21—C22—N2 | −49.6 (6) | C42—C43—C44—C45 | 0.2 (6) |
N6—C21—C22—C23 | −47.0 (6) | C43—C44—C45—C46 | −1.0 (7) |
C11—C21—C22—C23 | 132.7 (4) | C42—N4—C46—C45 | 1.6 (6) |
N2—C22—C23—C24 | 0.6 (6) | C44—C45—C46—N4 | 0.1 (7) |
C21—C22—C23—C24 | 178.1 (4) | H11—O11—O12—H12 | −116.1 |
C22—C23—C24—C25 | −0.8 (6) | H13—O13—O14—H14 | 127.8 |
C23—C24—C25—C26 | 0.9 (7) | H21—O21—O22—H22 | 125.3 |
C22—N2—C26—C25 | 0.5 (6) | H23—O23—O24—H24 | −118.1 |
C24—C25—C26—N2 | −0.8 (7) | H31—O31—O31i—H31i | 180.0 |
C11—N5—C31—C41 | 4.1 (6) | H32—O32—O32i—H32i | 180.0 |
C11—N5—C31—C32 | −175.5 (4) | H41—O41—O42—H42 | −152.1 |
C36—N3—C32—C33 | −0.6 (6) | H51—O51—O52—H52 | −158.2 |
C36—N3—C32—C31 | −178.3 (4) | H61—O61—O61ii—H61ii | 180.0 |
N5—C31—C32—N3 | 132.5 (4) |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H11···O52iii | 0.80 | 1.99 | 2.793 (7) | 179 |
O12—H12···O41iii | 0.80 | 1.99 | 2.789 (7) | 180 |
O13—H13···O41iii | 0.80 | 1.89 | 2.69 (4) | 180 |
O14—H14···O52iii | 0.80 | 2.05 | 2.85 (3) | 179 |
O21—H21···O51 | 0.80 | 2.02 | 2.820 (9) | 180 |
O22—H22···O42 | 0.80 | 2.07 | 2.866 (11) | 180 |
O23—H23···O51 | 0.80 | 1.96 | 2.77 (3) | 180 |
O24—H24···O42 | 0.80 | 1.84 | 2.64 (3) | 180 |
O31—H31···O22 | 0.80 | 2.15 | 2.947 (9) | 176 |
O32—H32···O24 | 0.80 | 2.34 | 3.14 (5) | 173 |
O41—H41···N3 | 0.80 | 1.93 | 2.729 (5) | 180 |
O42—H42···N4iv | 0.80 | 1.97 | 2.770 (5) | 180 |
O51—H51···N2 | 0.80 | 1.94 | 2.737 (5) | 180 |
O52—H52···N1iv | 0.80 | 1.94 | 2.740 (5) | 180 |
O61—H61···O11 | 0.80 | 1.64 | 2.440 (17) | 178 |
Symmetry codes: (iii) x, y−1, z; (iv) x, y+1, z. |
Acknowledgements
X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS.
Funding information
The financial support from RFBR is greatly acknowledged (17–03-00762).
References
Adams, J. M. & Pritchard, R. G. (1977). Acta Cryst. B33, 3650–3653. CrossRef CAS IUCr Journals Web of Science
Ahn, S. H., Cluff, K. J., Bhuvanesh, N. & Blümel, J. (2015). Angew. Chem. Int. Ed. 54, 13341–13345. CAS
Behrens, A. & Rehder, D. (2009). CCDC 261615: CSD communication.
Bock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed. Engl. 31, 299–301. CSD CrossRef Web of Science
Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Carrondo, M. A. A. F. de C. T., Griffith, W. P., Jones, D. P. & Skapski, A. C. (1977). J. Chem. Soc. Dalton Trans. pp. 2323–2327.
Chernyshov, I. Yu., Vener, M. V., Prikhodchenko, P. V., Medvedev, A. G., Lev, O. & Churakov, A. V. (2017). Cryst. Growth Des. 17, 214–220. CAS
Churakov, A. V. & Howard, J. A. K. (2007). Acta Cryst. E63, o4483. Web of Science CSD CrossRef IUCr Journals
Churakov, A. V., Prikhodchenko, P. V. & Howard, J. A. K. (2005). CrystEngComm, 7, 664–669. Web of Science CSD CrossRef CAS
Fritchie, C. J. & McMullan, R. K. (1981). Acta Cryst. B37, 1086–1091. CSD CrossRef CAS Web of Science IUCr Journals
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Infantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454–461. Web of Science CSD CrossRef CAS
Jakob, H., Leininger, S., Lehmann, T., Jacobi, S. & Gutewort, S. (2012). Ullmann's Encyclopedia of Industrial Chemistry, pp 1–33. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
Kapustin, E. A., Minkov, V. S. & Boldyreva, E. V. (2014). CrystEngComm, 16, 10165–10168. CAS
Laus, G., Kahlenberg, V., Wurst, K., Lörting, T. & Schottenberger, H. (2008). CrystEngComm, 10, 1638–1644. Web of Science CSD CrossRef CAS
Malecki, J. G. (2010). Private communication (refcode 783938). CCDC, Cambridge, England.
Medvedev, A. G., Mikhaylov, A. A., Churakov, A. V., Prikhodchenko, P. V. & Lev, O. (2012). Acta Cryst. C68, i20–i24. Web of Science CSD CrossRef IUCr Journals
Prikhodchenko, P. V., Medvedev, A. G., Tripol'skaya, T. A., Churakov, A. V., Wolanov, Y., Howard, J. A. K. & Lev, O. (2011). CrystEngComm, 13, 2399–2407. Web of Science CSD CrossRef CAS
Pritchard, R. G. & Islam, E. (2003). Acta Cryst. B59, 596–605. Web of Science CSD CrossRef CAS IUCr Journals
Savariault, J. M. & Lehmann, M. S. (1980). J. Am. Chem. Soc. 102, 1298–1303. CrossRef CAS Web of Science
Schumb, W. C., Satterfield, C. N. & Wentworth, R. P. (1955). Hydrogen peroxide. New York: Reinhold Publishing Corp.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Wolanov, Y., Lev, O., Churakov, A. V., Medvedev, A. G., Novotortsev, V. M. & Prikhodchenko, P. V. (2010). Tetrahedron, 66, 5130–5133. Web of Science CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.