research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,6-di­methyl-2-{[3,4,5-trihy­dr­oxy-6-(hy­dr­oxy­meth­yl)tetra­hydro-2H-pyran-2-yl]sulfan­yl}nicotino­nitrile

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, bPharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by P. McArdle, National University of Ireland, Ireland (Received 18 October 2017; accepted 18 October 2017; online 20 October 2017)

In the title compound, C14H18N2O5S, the C—S bond lengths are unequal, with S—Cglucose = 1.8016 (15) Å and S—Cpyrid­yl = 1.7723 (13) Å. The hydro­philic glucose residues lie in the regions z ≃ 0.25 and 0.75. Four classical hydrogen bonds link the mol­ecules to form layers parallel to the ab plane, from which the pyridyl rings project; pyridyl ring stacking parallel to the a axis links adjacent layers.

1. Chemical context

The search for new anti­cancer chemotherapeutic agents continues to be an active area of research (Elgemeie, 2003[Elgemeie, G. H. (2003). Curr. Pharm. Design, 9, 2627-2642.]; Elgemeie & Jones, 2004[Elgemeie, G. H. & Jones, P. G. (2004). Acta Cryst. E60, o2107-o2109.]). In recent years nucleoside analogs have occupied a significant position in the search for effective chemotherapeutic agents, because many non-natural nucleoside derivatives have been shown to possess bioactivity (Elgemeie & Abou-Zeid, 2015[Elgemeie, G. H. & Abu-Zaied, M. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 834-847.]). In the last few decades, pyridine derivatives have received considerable attention because of their wide-ranging applications as anti­metabolic agents (Elgemeie et al., 2009[Elgemeie, G. H., Eltamny, E. H., Elgawad, I. I. & Mahmoud, N. M. (2009). Synth. Commun. 39, 443-458.]). Recently, we reported that many pyridine thio­glycosides showed strong cytotoxicity against several human cancer cell lines and block proliferation of various cancer cell lines (Elgemeie, Abou-Zeid et al., 2015[Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659-673.]). We also showed that thio­glycosides involving pyridine and di­hydro­pyridine groups exerted inhibitory effects on both DNA- and RNA-containing viruses and inhibitors of protein glycosyl­ation, respectively (Elgemeie et al., 2010[Elgemeie, G. H., Mahdy, E. M., Elgawish, M. A., Ahmed, M. M., Shousha, W. G. & Eldin, M. E. (2010). Z. Naturforsch. 65c, 577-587.]). In view of these observations and with the aim of identifying new anti­cancer agents with improved pharmacokinetic and safety profiles, we have synthesized some new non-classical nucleoside analogs incorporating pyridine thio­glycosides.

We report here a novel one-step synthesis of a pyridine-2-thio­glucoside derivative by reaction of the pyridine-2(1H)-thione derivative (1) with 2,3,4,6-tetra-O-acetyl-α-D-gluco­pyranosyl bromide (2). Thus, (1) reacted with (2) in KOH/acetone to give a product for which two isomeric structures, (3) and (4), seemed possible, corresponding to two possible modes of glu­cosyl­ation. After deprotection of the product (see Scheme), the final free sugar pyridine­thione N-glucoside (5) or its regioisomer pyridine-2-thio­glucoside (6) was obtained. Spectroscopic data cannot differentiate between these structures.

[Scheme 1]

2. Structural commentary

The X-ray structure determination indicated unambiguously the formation of the pyridine-2-thio­glucoside (6) as the product in the solid state. The mol­ecule is shown in Fig. 1[link] and geometrical parameters are given in Table 1[link]. The C—S bond lengths are markedly unequal, with S—Cglucose 1.8016 (15), S—Cpyrid­yl 1.7723 (13) Å. The main torsional degrees of freedom are between the rings, as defined by the torsion angles N11—C12—S1—C1 = −2.08 (14) and C2—C1—S1—C12 = 152.98 (9)°.

Table 1
Selected geometric parameters (Å, °)

S1—C12 1.7723 (13) S1—C1 1.8016 (15)
       
C12—S1—C1 100.43 (6)    
       
C12—S1—C1—C2 152.98 (9) C1—S1—C12—N11 −2.08 (14)
[Figure 1]
Figure 1
The structure of the title compound in the crystal. Displacement ellipsoids represent 50% probability levels.

3. Supra­molecular features

The glucose moieties of (6) occupy the regions at z ≃ 0.25 and 0.75. The layer structure of (6) is shown in Fig. 2[link]. Each O—H donor forms one two-centre hydrogen bond (Table 2[link]); the two most linear C—H⋯X inter­actions also lie within the layer, but are not drawn explicitly in Fig. 2[link]. The same applies to the short contact S1⋯O5 ([{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z) = 3.1417 (10) Å.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H02⋯O3i 0.80 (2) 2.01 (2) 2.7909 (16) 165 (3)
O3—H03⋯O5ii 0.81 (2) 1.93 (2) 2.7394 (14) 174 (2)
O4—H04⋯O1iii 0.80 (2) 2.06 (2) 2.7490 (15) 144 (2)
O5—H05⋯O4iv 0.79 (2) 1.96 (2) 2.7324 (18) 165 (3)
C2—H2⋯O5iv 1.00 2.47 3.3326 (19) 144
C5—H5⋯N12v 1.00 2.64 3.638 (2) 179
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x, y-1, z.
[Figure 2]
Figure 2
Packing diagram of the title compound, viewed perpendicular to the ab plane. Classical hydrogen bonds are indicated by dashed lines. Methyl and nitrile substituents of the pyridine rings have been omitted for clarity.

Adjacent layers are connected via the pyridyl rings, which project into the spaces between the hydro­philic layers and form π stacks parallel to the a axis. Adjacent rings in the stack are related by the twofold axis (operators 1 − x, y, 1 − z and 2 − x, y, 1 − z). The inter­planar angles are 4.33 (5)°, the centroid-to-centroid distances are 3.96 and 3.72 Å, and the ring offsets are ca 1.26 and 0.94 Å; these cannot be expressed exactly because neighbouring rings are not exactly parallel.

4. Database survey

Perhaps surprisingly, a database search revealed only one other example of a pyridine ring with a thio­glucose substituent at the 2-position, namely pyridyl thio­glucose monohydrate (Nordenson & Jeffrey, 1980[Nordenson, S. & Jeffrey, G. A. (1980). Acta Cryst. B36, 1214-1216.]; refcode PYSGPR). This compound also shows a marked inequality between the S—C bond lengths (cf. Table 1[link]); S—Cglucose is 1.793 (3), S—Cpyrid­yl is 1.759 (3) Å.

5. Synthesis and crystallization

To a solution of the pyridine-2-(1H)-thione (1) (1.64 gm, 0.01 mol) in aqueous potassium hydroxide (6 ml, 0.56 g, 0.01 mol) was added a solution of 2,3,4,6-tetra-O-acetyl-α-D-gluco­pyranosyl bromide (2) (4.52 g, 0.011 mol) in acetone (30 ml). The reaction mixture was stirred at room temperature until the reaction was judged complete by TLC (30 min to 2 h). The mixture was evaporated under reduced pressure at 313 K and the residue was washed with distilled water to remove the potassium bromide. The solid was collected by filtration and crystallized from ethanol to give compound (3) in 85% yield (m.p. 468 K). Dry gaseous ammonia was then passed through a solution of the protected thio­glycoside (3) (0.5 g) in dry methanol (20 ml) at 273 K for 0.5 h, then the mixture was stirred at 273 K until completion of the reaction (TLC, 2–6 h). The mixture was evaporated at 313 K to give a solid residue, which was recrystallized from ethanol to give compound (6) in 85% yield (m.p. 482–483 K).

IR (KBr): 3600–3258 (OH), 2222 (CN) cm−1. 1H NMR (DMSO-d6): δ 2.22 (s, 3H, CH3), 2.31 (s, 3H, CH3), 3.15–3.80 (m, 6H, 2H-6′, H-5′, H-4′, H-3′, H-2′), 4.40 (d, J = 9.55 Hz, 2H, HO-2′ and HO-3′), 4.90 (s, 1H, HO-4′), 5.30 (s, 1H, HO-6′), 5.59 (d, J1,2 = 9.86 Hz, 1H, H-1′), 7.19 (s, 1H, pyridine H-5) ppm. 13C NMR: δ 20.7 (CH3), 22.9 (CH3), 61.0 (C6′), 68.9 (C4′), 72.7 (C2′), 75.9 (C3′), 80.7 (C5′), 83.7 (C1′), 103.2 (C3), 116.0 (CN), 119.7 (C5), 149.2 (C4), 159.0 (C6), 164.0 (C2) ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The space group as initially found by the diffractometer program was P21, with two independent but virtually identical mol­ecules in the asymmetric unit. It became apparent that the two mol­ecules formed layer structures independent of each other, and were related by a translation vector (0.5, 0.5, 0.5). The checkCIF program also indicated that the true space group should be centred, with a 100% fit and a small deviation. The same cell was retained for ease of checking, and the structure determination and refinement repeated in space group I2. The refinement was entirely satisfactory, and corresponds to the structure presented here. However, the reflections with (h + k + l) odd, which are required to be systematically absent in I2, seemed to be quite definitely present. We are unable to explain this anomaly. The HKL file appended to the CIF contains these reflections.

Table 3
Experimental details

Crystal data
Chemical formula C14H18N2O5S
Mr 326.36
Crystal system, space group Monoclinic, I2
Temperature (K) 100
a, b, c (Å) 7.66978 (18), 8.72860 (13), 23.7524 (4)
β (°) 98.7356 (16)
V3) 1571.69 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.40 × 0.35 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.980, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 84844, 4741, 4590
Rint 0.027
(sin θ/λ)max−1) 0.729
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.05
No. of reflections 4741
No. of parameters 217
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.17
Absolute structure Flack x determined using 2066 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.008 (8)
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.]).

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. OH hydrogen atoms were refined freely but with an O—H distance restraint (SADI). Methyl groups were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137), with C—H 0.98 Å and H—C—H 109.5°. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic 0.95, C—Hmethyl­ene 0.99, C—Hmethine 1.00 Å).

The absolute configuration was determined by the unambiguous Flack parameter of −0.008 (8) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015).

4,6-Dimethyl-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]sulfanyl}nicotinonitrile top
Crystal data top
C14H18N2O5SF(000) = 688
Mr = 326.36Dx = 1.379 Mg m3
Monoclinic, I2Mo Kα radiation, λ = 0.71073 Å
a = 7.66978 (18) ÅCell parameters from 46975 reflections
b = 8.72860 (13) Åθ = 2.7–30.9°
c = 23.7524 (4) ŵ = 0.23 mm1
β = 98.7356 (16)°T = 100 K
V = 1571.69 (5) Å3Block, colourless
Z = 40.40 × 0.35 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4741 independent reflections
Radiation source: Enhance (Mo) X-ray Source4590 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.027
ω–scanθmax = 31.2°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 1011
Tmin = 0.980, Tmax = 1.000k = 1212
84844 measured reflectionsl = 3433
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.4674P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.30 e Å3
4741 reflectionsΔρmin = 0.17 e Å3
217 parametersAbsolute structure: Flack x determined using 2066 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
7 restraintsAbsolute structure parameter: 0.008 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.59062 (4)0.54939 (4)0.37504 (2)0.01953 (8)
C10.57772 (17)0.35296 (17)0.35150 (5)0.0175 (2)
H10.5576060.2848480.3837490.021*
O10.74310 (12)0.31545 (12)0.33376 (4)0.0183 (2)
C20.42750 (17)0.33167 (17)0.30152 (5)0.0177 (3)
H20.4442910.4041100.2701640.021*
O20.26172 (13)0.35885 (13)0.31878 (4)0.0200 (2)
H020.223 (4)0.438 (3)0.3050 (12)0.054 (8)*
C30.42986 (17)0.16706 (17)0.27975 (5)0.0184 (2)
H30.3998280.0952440.3096450.022*
O30.30583 (13)0.14881 (14)0.22910 (4)0.0226 (2)
H030.207 (3)0.161 (3)0.2365 (9)0.033 (6)*
C40.61090 (18)0.12809 (18)0.26570 (6)0.0185 (3)
H40.6366160.1946950.2337040.022*
O40.61422 (15)0.02842 (14)0.24885 (5)0.0250 (2)
H040.672 (3)0.035 (3)0.2237 (9)0.039 (6)*
C50.74991 (17)0.15622 (18)0.31794 (5)0.0186 (2)
H50.7226280.0911010.3501290.022*
C60.93568 (18)0.12113 (19)0.30688 (5)0.0210 (3)
H6A1.0210810.1743400.3358090.025*
H6B0.9571320.0096360.3113680.025*
O50.96641 (13)0.16663 (14)0.25148 (4)0.0208 (2)
H050.957 (3)0.256 (2)0.2480 (11)0.043 (7)*
N110.71744 (19)0.38506 (16)0.46739 (5)0.0247 (3)
C120.68518 (18)0.52490 (16)0.44732 (5)0.0193 (3)
C130.7223 (2)0.65733 (19)0.48057 (6)0.0219 (3)
C140.8011 (2)0.64238 (19)0.53789 (6)0.0235 (3)
C150.8355 (2)0.4955 (2)0.55786 (6)0.0274 (3)
H150.8897550.4798400.5961140.033*
C160.7915 (2)0.3696 (2)0.52236 (6)0.0290 (3)
C170.6799 (3)0.8053 (2)0.45591 (7)0.0313 (4)
N120.6448 (3)0.9219 (2)0.43492 (7)0.0491 (5)
C180.8435 (3)0.7795 (2)0.57556 (7)0.0357 (4)
H18A0.8765280.7458520.6151040.054*
H18B0.7398650.8463390.5727170.054*
H18C0.9419030.8359620.5634680.054*
C190.8230 (4)0.2094 (2)0.54374 (8)0.0472 (5)
H19A0.7793150.1370310.5133170.071*
H19B0.7606240.1928420.5763010.071*
H19C0.9497170.1934150.5556210.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01731 (15)0.02917 (15)0.01144 (12)0.00026 (13)0.00001 (10)0.00067 (12)
C10.0108 (6)0.0311 (7)0.0110 (5)0.0011 (5)0.0029 (4)0.0017 (5)
O10.0094 (4)0.0321 (5)0.0138 (4)0.0017 (4)0.0028 (3)0.0016 (4)
C20.0091 (6)0.0334 (7)0.0107 (5)0.0015 (5)0.0023 (4)0.0006 (5)
O20.0097 (4)0.0329 (5)0.0181 (4)0.0011 (4)0.0045 (3)0.0002 (4)
C30.0094 (6)0.0328 (7)0.0132 (5)0.0023 (5)0.0029 (4)0.0023 (5)
O30.0084 (4)0.0429 (6)0.0162 (4)0.0026 (4)0.0014 (3)0.0066 (4)
C40.0093 (6)0.0329 (7)0.0136 (5)0.0026 (5)0.0029 (4)0.0033 (5)
O40.0159 (5)0.0371 (6)0.0239 (5)0.0036 (4)0.0095 (4)0.0100 (5)
C50.0114 (6)0.0322 (6)0.0123 (5)0.0006 (5)0.0025 (4)0.0015 (5)
C60.0104 (6)0.0404 (8)0.0124 (5)0.0011 (5)0.0018 (4)0.0012 (5)
O50.0113 (4)0.0378 (6)0.0138 (4)0.0013 (4)0.0040 (3)0.0025 (4)
N110.0303 (7)0.0304 (6)0.0123 (5)0.0068 (5)0.0003 (5)0.0028 (5)
C120.0153 (6)0.0318 (8)0.0107 (5)0.0027 (5)0.0022 (4)0.0005 (5)
C130.0213 (7)0.0316 (7)0.0131 (6)0.0011 (6)0.0039 (5)0.0001 (5)
C140.0249 (7)0.0330 (8)0.0127 (6)0.0042 (6)0.0030 (5)0.0021 (5)
C150.0331 (8)0.0353 (7)0.0124 (6)0.0069 (6)0.0010 (5)0.0010 (5)
C160.0397 (9)0.0319 (8)0.0139 (6)0.0065 (7)0.0009 (6)0.0042 (6)
C170.0441 (10)0.0340 (8)0.0151 (6)0.0055 (7)0.0029 (6)0.0042 (6)
N120.0849 (15)0.0372 (9)0.0232 (7)0.0143 (9)0.0022 (8)0.0021 (6)
C180.0511 (11)0.0371 (9)0.0175 (7)0.0039 (8)0.0005 (7)0.0059 (6)
C190.0847 (17)0.0335 (9)0.0182 (7)0.0065 (10)0.0093 (8)0.0069 (7)
Geometric parameters (Å, º) top
S1—C121.7723 (13)C6—H6A0.9900
S1—C11.8016 (15)C6—H6B0.9900
C1—O11.4338 (16)O5—H050.79 (2)
C1—C21.5348 (17)N11—C121.3201 (19)
C1—H11.0000N11—C161.3492 (19)
O1—C51.4428 (18)C12—C131.405 (2)
C2—O21.4141 (16)C13—C141.4092 (19)
C2—C31.528 (2)C13—C171.435 (2)
C2—H21.0000C14—C151.379 (2)
O2—H020.80 (2)C14—C181.500 (2)
C3—O31.4247 (16)C15—C161.394 (2)
C3—C41.5152 (18)C15—H150.9500
C3—H31.0000C16—C191.495 (2)
O3—H030.809 (19)C17—N121.147 (2)
C4—O41.4249 (18)C18—H18A0.9800
C4—C51.5280 (18)C18—H18B0.9800
C4—H41.0000C18—H18C0.9800
O4—H040.800 (19)C19—H19A0.9800
C5—C61.5187 (18)C19—H19B0.9800
C5—H51.0000C19—H19C0.9800
C6—O51.4279 (16)
C12—S1—C1100.43 (6)O5—C6—H6A108.9
O1—C1—C2109.80 (10)C5—C6—H6A108.9
O1—C1—S1107.40 (9)O5—C6—H6B108.9
C2—C1—S1110.77 (10)C5—C6—H6B108.9
O1—C1—H1109.6H6A—C6—H6B107.8
C2—C1—H1109.6C6—O5—H05110.3 (19)
S1—C1—H1109.6C12—N11—C16118.04 (14)
C1—O1—C5111.41 (10)N11—C12—C13123.16 (13)
O2—C2—C3108.25 (11)N11—C12—S1119.22 (10)
O2—C2—C1110.96 (10)C13—C12—S1117.62 (11)
C3—C2—C1109.24 (11)C12—C13—C14119.18 (14)
O2—C2—H2109.5C12—C13—C17119.82 (13)
C3—C2—H2109.5C14—C13—C17121.00 (15)
C1—C2—H2109.5C15—C14—C13116.75 (14)
C2—O2—H02109 (2)C15—C14—C18121.60 (13)
O3—C3—C4107.80 (10)C13—C14—C18121.64 (15)
O3—C3—C2110.49 (11)C14—C15—C16120.56 (14)
C4—C3—C2110.12 (11)C14—C15—H15119.7
O3—C3—H3109.5C16—C15—H15119.7
C4—C3—H3109.5N11—C16—C15122.29 (15)
C2—C3—H3109.5N11—C16—C19116.40 (15)
C3—O3—H03109.1 (16)C15—C16—C19121.31 (14)
O4—C4—C3109.46 (12)N12—C17—C13178.31 (17)
O4—C4—C5110.01 (12)C14—C18—H18A109.5
C3—C4—C5109.57 (11)C14—C18—H18B109.5
O4—C4—H4109.3H18A—C18—H18B109.5
C3—C4—H4109.3C14—C18—H18C109.5
C5—C4—H4109.3H18A—C18—H18C109.5
C4—O4—H04108.6 (19)H18B—C18—H18C109.5
O1—C5—C6108.14 (11)C16—C19—H19A109.5
O1—C5—C4108.53 (11)C16—C19—H19B109.5
C6—C5—C4112.61 (11)H19A—C19—H19B109.5
O1—C5—H5109.2C16—C19—H19C109.5
C6—C5—H5109.2H19A—C19—H19C109.5
C4—C5—H5109.2H19B—C19—H19C109.5
O5—C6—C5113.19 (11)
C12—S1—C1—O187.12 (9)C3—C4—C5—C6179.39 (13)
C12—S1—C1—C2152.98 (9)O1—C5—C6—O581.24 (14)
C2—C1—O1—C563.63 (14)C4—C5—C6—O538.67 (18)
S1—C1—O1—C5175.85 (8)C16—N11—C12—C130.8 (2)
O1—C1—C2—O2176.40 (11)C16—N11—C12—S1179.18 (12)
S1—C1—C2—O265.14 (13)C1—S1—C12—N112.08 (14)
O1—C1—C2—C357.13 (14)C1—S1—C12—C13177.90 (11)
S1—C1—C2—C3175.59 (8)N11—C12—C13—C141.4 (2)
O2—C2—C3—O366.09 (13)S1—C12—C13—C14178.62 (11)
C1—C2—C3—O3172.97 (10)N11—C12—C13—C17178.71 (16)
O2—C2—C3—C4174.93 (11)S1—C12—C13—C171.31 (19)
C1—C2—C3—C454.00 (14)C12—C13—C14—C150.6 (2)
O3—C3—C4—O462.97 (14)C17—C13—C14—C15179.51 (16)
C2—C3—C4—O4176.42 (10)C12—C13—C14—C18179.89 (15)
O3—C3—C4—C5176.33 (12)C17—C13—C14—C180.2 (2)
C2—C3—C4—C555.72 (15)C13—C14—C15—C160.7 (3)
C1—O1—C5—C6173.06 (10)C18—C14—C15—C16178.65 (17)
C1—O1—C5—C464.49 (13)C12—N11—C16—C150.5 (3)
O4—C4—C5—O1179.92 (10)C12—N11—C16—C19178.95 (18)
C3—C4—C5—O159.70 (14)C14—C15—C16—N111.3 (3)
O4—C4—C5—C660.23 (16)C14—C15—C16—C19178.17 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H02···O3i0.80 (2)2.01 (2)2.7909 (16)165 (3)
O3—H03···O5ii0.81 (2)1.93 (2)2.7394 (14)174 (2)
O4—H04···O1iii0.80 (2)2.06 (2)2.7490 (15)144 (2)
O5—H05···O4iv0.79 (2)1.96 (2)2.7324 (18)165 (3)
C2—H2···O5iv1.002.473.3326 (19)144
C5—H5···N12v1.002.643.638 (2)179
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2; (v) x, y1, z.
 

References

First citationElgemeie, G. H. (2003). Curr. Pharm. Design, 9, 2627–2642.  CrossRef CAS
First citationElgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659–673.  Web of Science CrossRef CAS PubMed
First citationElgemeie, G. H. & Abu-Zaied, M. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 834–847.  CrossRef CAS PubMed
First citationElgemeie, G. H., Eltamny, E. H., Elgawad, I. I. & Mahmoud, N. M. (2009). Synth. Commun. 39, 443–458.  CrossRef CAS
First citationElgemeie, G. H. & Jones, P. G. (2004). Acta Cryst. E60, o2107–o2109.  Web of Science CSD CrossRef IUCr Journals
First citationElgemeie, G. H., Mahdy, E. M., Elgawish, M. A., Ahmed, M. M., Shousha, W. G. & Eldin, M. E. (2010). Z. Naturforsch. 65c, 577–587.
First citationNordenson, S. & Jeffrey, G. A. (1980). Acta Cryst. B36, 1214–1216.  CSD CrossRef CAS IUCr Journals
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds