research communications
H-spiro[chromene-2,1′-cyclohexan]-2′-one
and features of 3′,8-dibenzylidene-4a,5,6,7,8,8a-hexahydro-2′aInstitute of Chemistry, National Research Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russian Federation
*Correspondence e-mail: aniskovalvis@gmail.com
The synthesis and 28H28O2, are reported. The C=C—C—C torsion angles in the phenylmethylidene units are 166.6 (3) and −48.0 (4)°. In the crystal, molecules form a three-dimensional network by means of weak C—H⋯O hydrogen bonds. The most important contributions to the are the H⋯H interactions (68.8%), while the H⋯O contacts account for 4.5%.
of the title compound, CKeywords: X-ray structural analysis; crystal structure; non-covalent interactions; spiro heterocycle.
CCDC reference: 1577738
1. Chemical context
Spiro heterocycles are of great interest for the creation of new promising biologically active compounds. The spiro center causes a rigid, spatially oriented configuration, which makes the compounds containing them potentially more complementary to binding sites for biological targets (Mirzabekova et al., 2008; Abou-Elmagd & Hashem, 2016; Saraswat et al., 2016). A convenient way obtain including those with the spiro chromane moiety, is dimerization of Mannich (Shchekina et al., 2017).
2. Structural commentary
The structure of the title compound is shown in Fig. 1. The pyran, cyclohexanone and methylenecyclohexene units are each non-planar structures with the following puckering parameters: Q = 0.447 Å, θ = 128.1°, φ = 249.3°; Q = 0.517 Å, θ = 167.2°, φ = 12.9°; and Q = 0.460 Å, θ = 130.0°, φ = 39.9°, respectively. In the two phenylmethylidene moieties, the corresponding σ-bonds are shortened [C6—C7 = 1.475 (4) and C23—C22 = 1.471 (4) Å], which allows us to speak of incomplete π–π conjugation of aromatic rings and double bonds. These values are slightly longer than the bond lengths characteristic for complete conjugation in similarly constructed moieties (Golikov et al., 2006); in particular, for dibenzylidenecyclohexanone it is 1.341 Å. The torsion angles C8=C7—C6—C5 and C18=C22—C23—C28 are similar [−38.5 (5) and −36.3 (5)°, respectively], and reflect the non-coplanarity of the phenylmethylidene moiety, and therefore confirms incomplete conjugation of the phenyl and ylidene moieties (Kriven'ko et al., 2005). The values noted above significantly exceed the corresponding ones for torsion angles in analogous moieties in dibenzylidene cyclohexanones (−28.70°; Jia et al., 1989). Such a significant deviation of the torsion angle from the expected value is probably due to van der Waals repulsion of hydrogen atoms on the cyclohexene atoms C9 and C19 and hydrogen atoms of the aromatic rings. Thus, the interatomic distance between the hydrogen atoms of the aromatic substituent at C5 and the methylene group at C9 is 2.27 Å, close to the sum of the van der Waals radii for hydrogen atoms (2.2 Å). The C7=C8 bond is a little shorter than the C18=C22 bond [1.337 (4) and 1.346 (4) Å, respectively]. We believe that this is due to better conditions for π–π conjugation of the Ph–C22=C18—C17=C16 unit compared to the Ph—C7=C8—C12=O1 unit. So, the value of the C22=C18—C17=C16 torsion angle is 166.6 (3)° in comparison with 135.0 (3)° for C7=C8—C12=O1, allowing us to conclude a more pronounced flat structure for the former unit. The O2—C17 bond is noticeably shorter [1.391 (3) Å] than O2—C13 [1.446 (3) Å] due to conjugation of the endocyclic oxygen atom and a multiple bond. The bond lengths of the spiro center are within expected values, and are typical of those in similar moieties (Clark et al., 2005; Kia et al., 2012).
3. Supramolecular features
In the crystal, the molecules are linked into a complex three-dimensional network by means of weak C20—H20B⋯O1i and C11—H11B⋯O1i hydrogen bonds between (Figs. 2–4 and Table 1).
4. Analysis of the Hirshfeld Surfaces
The C11—H11B⋯O1i and C20—H20B⋯O1i interactions are visualized as bright-red spots between the corresponding donor and acceptor atoms on the Hirshfeld surfaces, mapped by dnorm (Fig. 5). This is confirmed by the Hirshfeld surfaces, displayed as the electrostatic potential (Fig. 6), showing a negative potential around the oxygen atoms in the form of light-red clouds and a positive potential around the H atoms in the form of bluish clouds. The H⋯O contacts account for about 4.5% of the Hirshfeld surface displayed on the fingerprint plots with a curved surface with de + di ∼2.2 Å (Fig. 7). The largest proportion, 68.8%, is for H⋯H contacts, with a bright splash on the fingerprint plot corresponding to de + di ∼2.2 Å. The C⋯H interaction corresponds to 12.2% de + di ∼2.4 Å with peaks in the region of the aromatic rings (Fig. 7). The presence of π–π stacking reflects the presence of C⋯C contacts, which account for only 1.0% of the Hirschfield surface with de + di ∼2.2 Å.
5. Database survey
The structure and configuration of the molecule is complex and includes a spiro node and arylmethylidene moieties. A similar spiro ring based on the Mannich ketone was described earlier (Siaka et al., 2012). The tetrahydropyridine ring is in an unsymmetrical half-chair conformation, while the cyclohexadiene and cyclohexene rings display semi-boat conformations.
6. Synthesis and crystallization
A 5% solution of potassium tert-butoxide in i-isopropanol (5 mL) was added to a 2-[(dimethylamino)methyl)]-6-(phenylmethylidene)cyclohexanone solution (1.396 g, 5 mmol) in i-isopropanol. The mixture was refluxed for two h, then cooled. The precipitated crystalline substance was washed with a 2% aqueous solution of acetic acid, recrystallized from i-isopropanol, yielding colourless crystals (1.47 g, 74%), m.p. 413–414 K (i-PrOH). 1H NMR (CDCl3): δ 1.56–1.83 (m, 4H, CH2), 1.90–2.30 (m, 1H, CH2), 2.61 (tt, 2H, J = 15.4, 7.8 Hz, CH2), 2.76–2.88 (m, 1H, CH2), 2.91–3.01 (m,1H, CH2), 6.81 (s, 1H, =CH), 7.10–7.41 (m, 11H, Ar, =CH). 13C NMR (CDCl3): δ 19.6, 22.9 23.8, 27.4, 27.8, 28.7, 29.6, 34.8, 78.9 (spiro C), 111.7, 120.3, 125.8, 127.8, 128.3, 129.3, 129.9, 130.1, 132.7, 134.7, 135.8, 138.0, 138.2, 143.2, 201.2 (C=O). Analysis calculated for C28H28O2 (396.2): C 73.23; H 5.23; N 6.32. Found: C 73.68; H 5.09; N 6.27.
7. Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Supporting information
CCDC reference: 1577738
https://doi.org/10.1107/S2056989017014165/rk2438sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017014165/rk2438Isup2.hkl
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C28H28O2 | Dx = 1.241 Mg m−3 |
Mr = 396.50 | Melting point = 413–414 K |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5797 (7) Å | Cell parameters from 3830 reflections |
b = 14.7450 (13) Å | θ = 2.4–24.5° |
c = 16.7720 (14) Å | µ = 0.08 mm−1 |
V = 2121.8 (3) Å3 | T = 100 K |
Z = 4 | Prism, colourless |
F(000) = 848 | 0.24 × 0.22 × 0.21 mm |
Bruker SMART CCD 1K area detector diffractometer | 4907 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube | Rint = 0.050 |
ω scans | θmax = 30.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −11→12 |
Tmin = 0.917, Tmax = 0.984 | k = −20→20 |
23380 measured reflections | l = −23→23 |
6113 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0522P)2 + 1.0029P] where P = (Fo2 + 2Fc2)/3 |
6113 reflections | (Δ/σ)max < 0.001 |
271 parameters | Δρmax = 0.33 e Å−3 |
1 restraint | Δρmin = −0.24 e Å−3 |
Geometry. All s.u.'s (except the s.u.in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.1174 (2) | 0.52918 (13) | 0.16577 (13) | 0.0218 (4) | |
O1 | 0.1183 (3) | 0.75243 (15) | 0.14425 (13) | 0.0280 (5) | |
C18 | −0.1447 (3) | 0.48947 (19) | 0.19621 (18) | 0.0196 (5) | |
C6 | −0.1400 (3) | 0.65682 (19) | −0.06165 (19) | 0.0225 (6) | |
C15 | 0.1452 (3) | 0.6535 (2) | 0.29827 (19) | 0.0244 (6) | |
H15A | 0.1763 | 0.6416 | 0.3541 | 0.029* | |
H15B | 0.1211 | 0.7189 | 0.2935 | 0.029* | |
C21 | −0.1350 (4) | 0.6132 (2) | 0.33496 (19) | 0.0255 (6) | |
H21A | −0.1434 | 0.6782 | 0.3492 | 0.031* | |
H21B | −0.1168 | 0.5787 | 0.3847 | 0.031* | |
C22 | −0.1532 (3) | 0.44888 (19) | 0.12445 (18) | 0.0214 (6) | |
H22 | −0.0658 | 0.4572 | 0.0904 | 0.026* | |
C24 | −0.3097 (4) | 0.3970 (2) | 0.01014 (18) | 0.0232 (6) | |
H24 | −0.2483 | 0.4358 | −0.0224 | 0.028* | |
C12 | 0.1424 (3) | 0.67807 (19) | 0.11548 (18) | 0.0202 (5) | |
C11 | 0.3598 (3) | 0.5667 (2) | 0.1080 (2) | 0.0245 (6) | |
H11A | 0.4135 | 0.5166 | 0.1360 | 0.029* | |
H11B | 0.4368 | 0.6155 | 0.0985 | 0.029* | |
C28 | −0.3708 (3) | 0.3333 (2) | 0.1377 (2) | 0.0252 (6) | |
H28 | −0.3509 | 0.3274 | 0.1932 | 0.030* | |
C9 | 0.2076 (4) | 0.6050 (2) | −0.01768 (19) | 0.0245 (6) | |
H9A | 0.2822 | 0.6499 | −0.0395 | 0.029* | |
H9B | 0.1535 | 0.5762 | −0.0632 | 0.029* | |
C2 | −0.3786 (4) | 0.6144 (2) | −0.1291 (2) | 0.0300 (7) | |
H2 | −0.4850 | 0.5966 | −0.1267 | 0.036* | |
C19 | −0.2720 (3) | 0.4892 (2) | 0.25860 (18) | 0.0231 (6) | |
H19A | −0.2474 | 0.4435 | 0.3000 | 0.028* | |
H19B | −0.3722 | 0.4721 | 0.2335 | 0.028* | |
C10 | 0.2982 (4) | 0.5323 (2) | 0.02809 (19) | 0.0252 (6) | |
H10A | 0.2292 | 0.4796 | 0.0375 | 0.030* | |
H10B | 0.3870 | 0.5116 | −0.0049 | 0.030* | |
C23 | −0.2807 (3) | 0.39322 (19) | 0.09204 (18) | 0.0219 (6) | |
C13 | 0.2283 (3) | 0.60278 (19) | 0.16023 (18) | 0.0212 (6) | |
C8 | 0.0891 (4) | 0.65388 (19) | 0.03317 (18) | 0.0218 (6) | |
C17 | −0.0070 (3) | 0.54326 (19) | 0.21749 (17) | 0.0204 (6) | |
C1 | −0.2972 (4) | 0.6319 (2) | −0.05929 (19) | 0.0271 (6) | |
H1 | −0.3487 | 0.6269 | −0.0094 | 0.033* | |
C14 | 0.2827 (4) | 0.6308 (2) | 0.24302 (19) | 0.0257 (6) | |
H14A | 0.3514 | 0.6844 | 0.2385 | 0.031* | |
H14B | 0.3442 | 0.5808 | 0.2668 | 0.031* | |
C25 | −0.4265 (4) | 0.3451 (2) | −0.0247 (2) | 0.0279 (7) | |
H25 | −0.4440 | 0.3486 | −0.0806 | 0.033* | |
C5 | −0.0683 (4) | 0.6665 (2) | −0.1359 (2) | 0.0264 (6) | |
H5 | 0.0374 | 0.6853 | −0.1387 | 0.032* | |
C4 | −0.1497 (4) | 0.6491 (2) | −0.2057 (2) | 0.0286 (7) | |
H4 | −0.0992 | 0.6553 | −0.2558 | 0.034* | |
C3 | −0.3049 (4) | 0.6227 (2) | −0.2025 (2) | 0.0307 (7) | |
H3 | −0.3604 | 0.6104 | −0.2503 | 0.037* | |
C7 | −0.0583 (4) | 0.67387 (19) | 0.01428 (18) | 0.0232 (6) | |
H7 | −0.1179 | 0.7026 | 0.0548 | 0.028* | |
C27 | −0.4889 (4) | 0.2823 (2) | 0.1028 (2) | 0.0316 (7) | |
H27 | −0.5506 | 0.2431 | 0.1348 | 0.038* | |
C16 | 0.0016 (3) | 0.6001 (2) | 0.27985 (19) | 0.0230 (6) | |
C20 | −0.2876 (4) | 0.5820 (2) | 0.2972 (2) | 0.0283 (7) | |
H20A | −0.3696 | 0.5796 | 0.3387 | 0.034* | |
H20B | −0.3203 | 0.6267 | 0.2564 | 0.034* | |
C26 | −0.5171 (4) | 0.2885 (2) | 0.0216 (2) | 0.0336 (7) | |
H26 | −0.5984 | 0.2539 | −0.0020 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0196 (9) | 0.0200 (10) | 0.0259 (10) | −0.0023 (8) | 0.0012 (8) | 0.0002 (8) |
O1 | 0.0335 (12) | 0.0230 (10) | 0.0274 (12) | 0.0018 (9) | −0.0003 (9) | −0.0023 (9) |
C18 | 0.0196 (12) | 0.0177 (12) | 0.0215 (13) | 0.0005 (10) | −0.0010 (11) | 0.0022 (10) |
C6 | 0.0246 (14) | 0.0194 (13) | 0.0236 (14) | 0.0048 (11) | −0.0015 (12) | −0.0011 (11) |
C15 | 0.0267 (15) | 0.0250 (14) | 0.0214 (14) | −0.0048 (11) | −0.0046 (12) | −0.0012 (11) |
C21 | 0.0286 (16) | 0.0253 (14) | 0.0227 (14) | −0.0022 (12) | 0.0023 (12) | −0.0006 (12) |
C22 | 0.0202 (12) | 0.0200 (13) | 0.0239 (15) | −0.0012 (11) | 0.0012 (11) | −0.0004 (11) |
C24 | 0.0225 (14) | 0.0208 (14) | 0.0263 (15) | 0.0005 (11) | 0.0009 (12) | −0.0011 (11) |
C12 | 0.0188 (12) | 0.0195 (13) | 0.0222 (14) | −0.0012 (10) | 0.0022 (11) | −0.0008 (11) |
C11 | 0.0185 (13) | 0.0235 (14) | 0.0315 (16) | 0.0011 (11) | 0.0010 (12) | 0.0008 (12) |
C28 | 0.0253 (14) | 0.0239 (14) | 0.0264 (15) | −0.0033 (11) | −0.0012 (12) | −0.0001 (12) |
C9 | 0.0238 (14) | 0.0231 (14) | 0.0265 (15) | 0.0022 (11) | 0.0050 (12) | −0.0028 (12) |
C2 | 0.0276 (15) | 0.0295 (16) | 0.0328 (17) | 0.0010 (12) | −0.0025 (14) | −0.0012 (13) |
C19 | 0.0204 (13) | 0.0266 (14) | 0.0223 (15) | −0.0027 (11) | 0.0006 (11) | 0.0001 (12) |
C10 | 0.0212 (13) | 0.0245 (14) | 0.0300 (16) | 0.0024 (11) | 0.0051 (12) | −0.0009 (12) |
C23 | 0.0198 (13) | 0.0197 (13) | 0.0263 (15) | 0.0012 (11) | −0.0009 (12) | −0.0025 (11) |
C13 | 0.0172 (12) | 0.0205 (13) | 0.0258 (14) | −0.0012 (10) | −0.0009 (11) | 0.0015 (11) |
C8 | 0.0247 (14) | 0.0172 (12) | 0.0237 (15) | −0.0010 (10) | 0.0035 (12) | −0.0007 (11) |
C17 | 0.0211 (13) | 0.0189 (13) | 0.0212 (14) | 0.0007 (11) | 0.0002 (10) | 0.0013 (10) |
C1 | 0.0272 (15) | 0.0285 (15) | 0.0257 (16) | 0.0037 (12) | 0.0031 (13) | −0.0001 (12) |
C14 | 0.0239 (14) | 0.0270 (15) | 0.0261 (16) | −0.0051 (12) | −0.0067 (13) | 0.0010 (12) |
C25 | 0.0261 (15) | 0.0297 (16) | 0.0279 (16) | 0.0045 (13) | −0.0053 (13) | −0.0045 (13) |
C5 | 0.0290 (16) | 0.0228 (14) | 0.0275 (15) | 0.0017 (11) | 0.0023 (13) | 0.0002 (12) |
C4 | 0.0361 (17) | 0.0271 (15) | 0.0228 (15) | 0.0056 (13) | 0.0028 (13) | 0.0018 (12) |
C3 | 0.0377 (18) | 0.0276 (16) | 0.0267 (16) | 0.0051 (13) | −0.0065 (14) | −0.0038 (13) |
C7 | 0.0262 (14) | 0.0201 (13) | 0.0232 (14) | 0.0028 (11) | 0.0040 (12) | −0.0018 (11) |
C27 | 0.0294 (15) | 0.0269 (15) | 0.0386 (19) | −0.0097 (13) | −0.0001 (14) | 0.0017 (14) |
C16 | 0.0230 (13) | 0.0236 (14) | 0.0224 (14) | −0.0011 (11) | −0.0007 (11) | 0.0018 (11) |
C20 | 0.0243 (15) | 0.0327 (16) | 0.0280 (16) | 0.0013 (13) | 0.0021 (13) | −0.0039 (13) |
C26 | 0.0295 (16) | 0.0311 (16) | 0.0401 (18) | −0.0068 (13) | −0.0074 (15) | −0.0060 (14) |
O2—C17 | 1.391 (3) | C9—C8 | 1.510 (4) |
O2—C13 | 1.446 (3) | C9—C10 | 1.531 (4) |
O1—C12 | 1.216 (4) | C9—H9A | 0.9900 |
C18—C22 | 1.346 (4) | C9—H9B | 0.9900 |
C18—C17 | 1.467 (4) | C2—C1 | 1.387 (5) |
C18—C19 | 1.512 (4) | C2—C3 | 1.390 (5) |
C6—C5 | 1.396 (4) | C2—H2 | 0.9500 |
C6—C1 | 1.398 (4) | C19—C20 | 1.520 (4) |
C6—C7 | 1.475 (4) | C19—H19A | 0.9900 |
C15—C16 | 1.494 (4) | C19—H19B | 0.9900 |
C15—C14 | 1.537 (4) | C10—H10A | 0.9900 |
C15—H15A | 0.9900 | C10—H10B | 0.9900 |
C15—H15B | 0.9900 | C13—C14 | 1.522 (4) |
C21—C16 | 1.505 (4) | C8—C7 | 1.337 (4) |
C21—C20 | 1.526 (4) | C17—C16 | 1.342 (4) |
C21—H21A | 0.9900 | C1—H1 | 0.9500 |
C21—H21B | 0.9900 | C14—H14A | 0.9900 |
C22—C23 | 1.471 (4) | C14—H14B | 0.9900 |
C22—H22 | 0.9500 | C25—C26 | 1.380 (5) |
C24—C25 | 1.390 (4) | C25—H25 | 0.9500 |
C24—C23 | 1.397 (4) | C5—C4 | 1.387 (5) |
C24—H24 | 0.9500 | C5—H5 | 0.9500 |
C12—C8 | 1.497 (4) | C4—C3 | 1.388 (5) |
C12—C13 | 1.529 (4) | C4—H4 | 0.9500 |
C11—C13 | 1.525 (4) | C3—H3 | 0.9500 |
C11—C10 | 1.526 (4) | C7—H7 | 0.9500 |
C11—H11A | 0.9900 | C27—C26 | 1.386 (5) |
C11—H11B | 0.9900 | C27—H27 | 0.9500 |
C28—C27 | 1.391 (4) | C20—H20A | 0.9900 |
C28—C23 | 1.402 (4) | C20—H20B | 0.9900 |
C28—H28 | 0.9500 | C26—H26 | 0.9500 |
C17—O2—C13 | 115.6 (2) | C9—C10—H10B | 109.1 |
C22—C18—C17 | 120.1 (3) | H10A—C10—H10B | 107.8 |
C22—C18—C19 | 125.3 (3) | C24—C23—C28 | 117.6 (3) |
C17—C18—C19 | 114.5 (3) | C24—C23—C22 | 118.3 (3) |
C5—C6—C1 | 118.5 (3) | C28—C23—C22 | 124.0 (3) |
C5—C6—C7 | 122.9 (3) | O2—C13—C14 | 110.3 (2) |
C1—C6—C7 | 118.6 (3) | O2—C13—C11 | 105.2 (2) |
C16—C15—C14 | 113.2 (3) | C14—C13—C11 | 113.1 (2) |
C16—C15—H15A | 108.9 | O2—C13—C12 | 105.0 (2) |
C14—C15—H15A | 108.9 | C14—C13—C12 | 113.5 (2) |
C16—C15—H15B | 108.9 | C11—C13—C12 | 109.1 (2) |
C14—C15—H15B | 108.9 | C7—C8—C12 | 117.1 (3) |
H15A—C15—H15B | 107.8 | C7—C8—C9 | 127.5 (3) |
C16—C21—C20 | 112.0 (3) | C12—C8—C9 | 115.4 (3) |
C16—C21—H21A | 109.2 | C16—C17—O2 | 122.5 (3) |
C20—C21—H21A | 109.2 | C16—C17—C18 | 124.8 (3) |
C16—C21—H21B | 109.2 | O2—C17—C18 | 112.7 (2) |
C20—C21—H21B | 109.2 | C2—C1—C6 | 120.7 (3) |
H21A—C21—H21B | 107.9 | C2—C1—H1 | 119.6 |
C18—C22—C23 | 128.2 (3) | C6—C1—H1 | 119.6 |
C18—C22—H22 | 115.9 | C13—C14—C15 | 112.0 (2) |
C23—C22—H22 | 115.9 | C13—C14—H14A | 109.2 |
C25—C24—C23 | 121.3 (3) | C15—C14—H14A | 109.2 |
C25—C24—H24 | 119.3 | C13—C14—H14B | 109.2 |
C23—C24—H24 | 119.3 | C15—C14—H14B | 109.2 |
O1—C12—C8 | 121.9 (3) | H14A—C14—H14B | 107.9 |
O1—C12—C13 | 122.8 (3) | C26—C25—C24 | 120.2 (3) |
C8—C12—C13 | 115.3 (2) | C26—C25—H25 | 119.9 |
C13—C11—C10 | 111.3 (2) | C24—C25—H25 | 119.9 |
C13—C11—H11A | 109.4 | C4—C5—C6 | 120.8 (3) |
C10—C11—H11A | 109.4 | C4—C5—H5 | 119.6 |
C13—C11—H11B | 109.4 | C6—C5—H5 | 119.6 |
C10—C11—H11B | 109.4 | C5—C4—C3 | 120.2 (3) |
H11A—C11—H11B | 108.0 | C5—C4—H4 | 119.9 |
C27—C28—C23 | 120.8 (3) | C3—C4—H4 | 119.9 |
C27—C28—H28 | 119.6 | C2—C3—C4 | 119.7 (3) |
C23—C28—H28 | 119.6 | C2—C3—H3 | 120.1 |
C8—C9—C10 | 113.1 (3) | C4—C3—H3 | 120.1 |
C8—C9—H9A | 109.0 | C8—C7—C6 | 128.1 (3) |
C10—C9—H9A | 109.0 | C8—C7—H7 | 116.0 |
C8—C9—H9B | 109.0 | C6—C7—H7 | 116.0 |
C10—C9—H9B | 109.0 | C26—C27—C28 | 120.4 (3) |
H9A—C9—H9B | 107.8 | C26—C27—H27 | 119.8 |
C1—C2—C3 | 120.1 (3) | C28—C27—H27 | 119.8 |
C1—C2—H2 | 120.0 | C17—C16—C15 | 122.4 (3) |
C3—C2—H2 | 120.0 | C17—C16—C21 | 121.1 (3) |
C18—C19—C20 | 110.8 (3) | C15—C16—C21 | 116.6 (3) |
C18—C19—H19A | 109.5 | C19—C20—C21 | 111.9 (3) |
C20—C19—H19A | 109.5 | C19—C20—H20A | 109.2 |
C18—C19—H19B | 109.5 | C21—C20—H20A | 109.2 |
C20—C19—H19B | 109.5 | C19—C20—H20B | 109.2 |
H19A—C19—H19B | 108.1 | C21—C20—H20B | 109.2 |
C11—C10—C9 | 112.6 (2) | H20A—C20—H20B | 107.9 |
C11—C10—H10A | 109.1 | C25—C26—C27 | 119.6 (3) |
C9—C10—H10A | 109.1 | C25—C26—H26 | 120.2 |
C11—C10—H10B | 109.1 | C27—C26—H26 | 120.2 |
C17—C18—C22—C23 | −179.5 (3) | C19—C18—C17—C16 | −10.4 (4) |
C19—C18—C22—C23 | −2.9 (5) | C22—C18—C17—O2 | −13.6 (4) |
C22—C18—C19—C20 | −138.5 (3) | C19—C18—C17—O2 | 169.4 (2) |
C17—C18—C19—C20 | 38.4 (3) | C3—C2—C1—C6 | −0.9 (5) |
C13—C11—C10—C9 | 56.7 (3) | C5—C6—C1—C2 | 2.1 (5) |
C8—C9—C10—C11 | −47.7 (3) | C7—C6—C1—C2 | −179.4 (3) |
C25—C24—C23—C28 | 1.7 (4) | O2—C13—C14—C15 | −54.1 (3) |
C25—C24—C23—C22 | 178.9 (3) | C11—C13—C14—C15 | −171.6 (2) |
C27—C28—C23—C24 | −2.5 (4) | C12—C13—C14—C15 | 63.4 (3) |
C27—C28—C23—C22 | −179.6 (3) | C16—C15—C14—C13 | 31.0 (4) |
C18—C22—C23—C24 | 146.7 (3) | C23—C24—C25—C26 | 0.2 (5) |
C18—C22—C23—C28 | −36.3 (5) | C1—C6—C5—C4 | −2.0 (4) |
C17—O2—C13—C14 | 51.7 (3) | C7—C6—C5—C4 | 179.6 (3) |
C17—O2—C13—C11 | 173.9 (2) | C6—C5—C4—C3 | 0.8 (5) |
C17—O2—C13—C12 | −70.9 (3) | C1—C2—C3—C4 | −0.3 (5) |
C10—C11—C13—O2 | 55.0 (3) | C5—C4—C3—C2 | 0.4 (5) |
C10—C11—C13—C14 | 175.4 (2) | C12—C8—C7—C6 | −179.4 (3) |
C10—C11—C13—C12 | −57.2 (3) | C9—C8—C7—C6 | −2.8 (5) |
O1—C12—C13—O2 | 119.4 (3) | C5—C6—C7—C8 | −38.5 (5) |
C8—C12—C13—O2 | −60.5 (3) | C1—C6—C7—C8 | 143.1 (3) |
O1—C12—C13—C14 | −1.1 (4) | C23—C28—C27—C26 | 1.5 (5) |
C8—C12—C13—C14 | 179.0 (3) | O2—C17—C16—C15 | 0.6 (4) |
O1—C12—C13—C11 | −128.2 (3) | C18—C17—C16—C15 | −179.7 (3) |
C8—C12—C13—C11 | 51.9 (3) | O2—C17—C16—C21 | −179.6 (3) |
O1—C12—C8—C7 | −48.0 (4) | C18—C17—C16—C21 | 0.2 (5) |
C13—C12—C8—C7 | 131.9 (3) | C14—C15—C16—C17 | −4.5 (4) |
O1—C12—C8—C9 | 135.0 (3) | C14—C15—C16—C21 | 175.6 (3) |
C13—C12—C8—C9 | −45.1 (3) | C20—C21—C16—C17 | −18.7 (4) |
C10—C9—C8—C7 | −134.9 (3) | C20—C21—C16—C15 | 161.2 (3) |
C10—C9—C8—C12 | 41.8 (3) | C18—C19—C20—C21 | −57.5 (3) |
C13—O2—C17—C16 | −25.4 (4) | C16—C21—C20—C19 | 47.1 (4) |
C13—O2—C17—C18 | 154.9 (2) | C24—C25—C26—C27 | −1.3 (5) |
C22—C18—C17—C16 | 166.6 (3) | C28—C27—C26—C25 | 0.4 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20B···O1i | 0.99 | 2.64 | 3.630 | 175 |
C11—H11B···O1i | 0.99 | 2.61 | 3.521 | 153 |
Symmetry code: (i) −x, −y, z+1/2. |
Funding information
Funding for this research was provided by: a grant from the Russian Science Foundation (grant No. Project 15-13-10007).
References
Abou-Elmagd, W. S. I. & Hashem, A. I. (2016). J. Heterocycl. Chem. 53, 202–208. CAS
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Clark, G. R., Tsang, K. Y. & Brimble, M. A. (2005). Acta Cryst. E61, o2748–o2749. Web of Science CSD CrossRef IUCr Journals
Golikov, A. G., Kriven'ko, A. P., Bugaev, A. A. & Solodovnikov, S. F. (2006). J. Struct. Chem. 47, 102–105. Web of Science CrossRef CAS
Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 285–289. CSD CrossRef CAS Web of Science IUCr Journals
Kia, Y., Osman, H., Murugaiyah, V., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2493–o2494. CSD CrossRef IUCr Journals
Kriven'ko, A. P., Bugaev, A. A. & Golikov, A. G. (2005). Chem. Heterocycl. Compd. 41, 163–167. CAS
Mirzabekova, N. S., Kuzmina, N. E., Osipova, E. S. & Lukashov, O. I. (2008). J. Struct. Chem. 49, 644–649. Web of Science CrossRef CAS
Saraswat, P., Jeyabalan, G., Hassan, M. Z., Rahman, U. M. & Nyola, K. N. (2016). Synth. Commun. 46, 1643–1664. Web of Science CrossRef CAS
Shchekina, M. P., Tumskii, R. S., Klochkova, I. N. & Anis'kov, A. A. (2017). Russ. J. Org. Chem. 53, 263–269. Web of Science CSD CrossRef CAS
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Siaka, S., Soldatenkov, A. T., Malkova, A. V., Sorokina, E. A. & Khrustalev, V. N. (2012). Acta Cryst. E68, o3230. CSD CrossRef IUCr Journals
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.