research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and features of 3′,8-di­benzyl­­idene-4a,5,6,7,8,8a-hexa­hydro-2′H-spiro­[chromene-2,1′-cyclo­hexa­n]-2′-one

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, National Research Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russian Federation
*Correspondence e-mail: aniskovalvis@gmail.com

Edited by V. Rybakov, Moscow State University, Russia (Received 10 August 2017; accepted 2 October 2017; online 6 October 2017)

The synthesis and crystal structure of the title compound, C28H28O2, are reported. The C=C—C—C torsion angles in the phenyl­methyl­idene units are 166.6 (3) and −48.0 (4)°. In the crystal, mol­ecules form a three-dimensional network by means of weak C—H⋯O hydrogen bonds. The most important contributions to the crystal structure are the H⋯H inter­actions (68.8%), while the H⋯O contacts account for 4.5%.

1. Chemical context

Spiro heterocycles are of great inter­est for the creation of new promising biologically active compounds. The spiro center causes a rigid, spatially oriented configuration, which makes the compounds containing them potentially more complementary to binding sites for biological targets (Mirzabekova et al., 2008[Mirzabekova, N. S., Kuzmina, N. E., Osipova, E. S. & Lukashov, O. I. (2008). J. Struct. Chem. 49, 644-649.]; Abou-Elmagd & Hashem, 2016[Abou-Elmagd, W. S. I. & Hashem, A. I. (2016). J. Heterocycl. Chem. 53, 202-208.]; Saraswat et al., 2016[Saraswat, P., Jeyabalan, G., Hassan, M. Z., Rahman, U. M. & Nyola, K. N. (2016). Synth. Commun. 46, 1643-1664.]). A convenient way obtain heterocyclic compounds, including those with the spiro chromane moiety, is dimerization of Mannich ketones (Shchekina et al., 2017[Shchekina, M. P., Tumskii, R. S., Klochkova, I. N. & Anis'kov, A. A. (2017). Russ. J. Org. Chem. 53, 263-269.]).

[Scheme 1]

2. Structural commentary

The structure of the title compound is shown in Fig. 1[link]. The pyran, cyclo­hexa­none and methyl­ene­cyclo­hexene units are each non-planar structures with the following puckering parameters: Q = 0.447 Å, θ = 128.1°, φ = 249.3°; Q = 0.517 Å, θ = 167.2°, φ = 12.9°; and Q = 0.460 Å, θ = 130.0°, φ = 39.9°, respectively. In the two phenyl­methyl­idene moieties, the corresponding σ-bonds are shortened [C6—C7 = 1.475 (4) and C23—C22 = 1.471 (4) Å], which allows us to speak of incomplete ππ conjugation of aromatic rings and double bonds. These values are slightly longer than the bond lengths characteristic for complete conjugation in similarly constructed moieties (Golikov et al., 2006[Golikov, A. G., Kriven'ko, A. P., Bugaev, A. A. & Solodovnikov, S. F. (2006). J. Struct. Chem. 47, 102-105.]); in particular, for di­benzyl­idene­cyclo­hexa­none it is 1.341 Å. The torsion angles C8=C7—C6—C5 and C18=C22—C23—C28 are similar [−38.5 (5) and −36.3 (5)°, respectively], and reflect the non-coplanarity of the phenyl­methyl­idene moiety, and therefore confirms incomplete conjugation of the phenyl and yl­idene moieties (Kriven'ko et al., 2005[Kriven'ko, A. P., Bugaev, A. A. & Golikov, A. G. (2005). Chem. Heterocycl. Compd. 41, 163-167.]). The values noted above significantly exceed the corresponding ones for torsion angles in analogous moieties in di­benzyl­idene cyclo­hexa­nones (−28.70°; Jia et al., 1989[Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 285-289.]). Such a significant deviation of the torsion angle from the expected value is probably due to van der Waals repulsion of hydrogen atoms on the cyclo­hexene atoms C9 and C19 and hydrogen atoms of the aromatic rings. Thus, the inter­atomic distance between the hydrogen atoms of the aromatic substituent at C5 and the methyl­ene group at C9 is 2.27 Å, close to the sum of the van der Waals radii for hydrogen atoms (2.2 Å). The C7=C8 bond is a little shorter than the C18=C22 bond [1.337 (4) and 1.346 (4) Å, respectively]. We believe that this is due to better conditions for ππ conjugation of the Ph–C22=C18—C17=C16 unit compared to the Ph—C7=C8—C12=O1 unit. So, the value of the C22=C18—C17=C16 torsion angle is 166.6 (3)° in comparison with 135.0 (3)° for C7=C8—C12=O1, allowing us to conclude a more pronounced flat structure for the former unit. The O2—C17 bond is noticeably shorter [1.391 (3) Å] than O2—C13 [1.446 (3) Å] due to conjugation of the endocyclic oxygen atom and a multiple bond. The bond lengths of the spiro center are within expected values, and are typical of those in similar moieties (Clark et al., 2005[Clark, G. R., Tsang, K. Y. & Brimble, M. A. (2005). Acta Cryst. E61, o2748-o2749.]; Kia et al., 2012[Kia, Y., Osman, H., Murugaiyah, V., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2493-o2494.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom-labeling scheme, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked into a complex three-dimensional network by means of weak C20—H20B⋯O1i and C11—H11B⋯O1i hydrogen bonds between (Figs. 2[link]–4[link][link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20B⋯O1i 0.99 2.64 3.630 175
C11—H11B⋯O1i 0.99 2.61 3.521 153
Symmetry code: (i) [-x, -y, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Graphical representation of the hydrogen bonds (dashed lines) along the a axis.
[Figure 3]
Figure 3
Graphical representation of the hydrogen bonds (dashed lines) along the c axis.
[Figure 4]
Figure 4
Graphical representation of the hydrogen bonds.

4. Analysis of the Hirshfeld Surfaces

The C11—H11B⋯O1i and C20—H20B⋯O1i inter­actions are visualized as bright-red spots between the corresponding donor and acceptor atoms on the Hirshfeld surfaces, mapped by dnorm (Fig. 5[link]). This is confirmed by the Hirshfeld surfaces, displayed as the electrostatic potential (Fig. 6[link]), showing a negative potential around the oxygen atoms in the form of light-red clouds and a positive potential around the H atoms in the form of bluish clouds. The H⋯O contacts account for about 4.5% of the Hirshfeld surface displayed on the fingerprint plots with a curved surface with de + di ∼2.2 Å (Fig. 7[link]). The largest proportion, 68.8%, is for H⋯H contacts, with a bright splash on the fingerprint plot corresponding to de + di ∼2.2 Å. The C⋯H inter­action corresponds to 12.2% de + di ∼2.4 Å with peaks in the region of the aromatic rings (Fig. 7[link]). The presence of ππ stacking reflects the presence of C⋯C contacts, which account for only 1.0% of the Hirschfield surface with de + di ∼2.2 Å.

[Figure 5]
Figure 5
Graphical representation of the Hirshfeld surface mapped over dnorm. The highlighted red spots on the top face of the surfaces indicate contact points with the atoms participating in the C—H⋯O inter­molecular inter­actions.
[Figure 6]
Figure 6
Graphical representation of the electrostatic potential surfaces.
[Figure 7]
Figure 7
Graphical representation of the Hirshfeld surface two-dimensional fingerprint plot for the title compound (a) showing the: (b) H⋯O, (c) C⋯H, (d) H⋯H, (e) C⋯C inter­actions.

5. Database survey

The structure and configuration of the mol­ecule is complex and includes a spiro node and aryl­methyl­idene moieties. A similar spiro ring based on the Mannich ketone was described earlier (Siaka et al., 2012[Siaka, S., Soldatenkov, A. T., Malkova, A. V., Sorokina, E. A. & Khrustalev, V. N. (2012). Acta Cryst. E68, o3230.]). The tetra­hydro­pyridine ring is in an unsymmetrical half-chair conformation, while the cyclo­hexa­diene and cyclo­hexene rings display semi-boat conformations.

6. Synthesis and crystallization

A 5% solution of potassium tert-butoxide in i-iso­propanol (5 mL) was added to a 2-[(di­methyl­amino)­meth­yl)]-6-(phenyl­methyl­idene)cyclo­hexa­none solution (1.396 g, 5 mmol) in i-iso­propanol. The mixture was refluxed for two h, then cooled. The precipitated crystalline substance was washed with a 2% aqueous solution of acetic acid, recrystallized from i-iso­propanol, yielding colourless crystals (1.47 g, 74%), m.p. 413–414 K (i-PrOH). 1H NMR (CDCl3): δ 1.56–1.83 (m, 4H, CH2), 1.90–2.30 (m, 1H, CH2), 2.61 (tt, 2H, J = 15.4, 7.8 Hz, CH2), 2.76–2.88 (m, 1H, CH2), 2.91–3.01 (m,1H, CH2), 6.81 (s, 1H, =CH), 7.10–7.41 (m, 11H, Ar, =CH). 13C NMR (CDCl3): δ 19.6, 22.9 23.8, 27.4, 27.8, 28.7, 29.6, 34.8, 78.9 (spiro C), 111.7, 120.3, 125.8, 127.8, 128.3, 129.3, 129.9, 130.1, 132.7, 134.7, 135.8, 138.0, 138.2, 143.2, 201.2 (C=O). Analysis calculated for C28H28O2 (396.2): C 73.23; H 5.23; N 6.32. Found: C 73.68; H 5.09; N 6.27.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C28H28O2
Mr 396.50
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 100
a, b, c (Å) 8.5797 (7), 14.7450 (13), 16.7720 (14)
V3) 2121.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.24 × 0.22 × 0.21
 
Data collection
Diffractometer Bruker SMART CCD 1K area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.917, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 23380, 6113, 4907
Rint 0.050
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.132, 1.05
No. of reflections 6113
No. of parameters 271
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.24
Computer programs: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

3',8-Dibenzylidene-4a,5,6,7,8,8a-hexahydro-2'H-spiro[chromene-2,1'-cyclohexan]-2'-one top
Crystal data top
C28H28O2Dx = 1.241 Mg m3
Mr = 396.50Melting point = 413–414 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
a = 8.5797 (7) ÅCell parameters from 3830 reflections
b = 14.7450 (13) Åθ = 2.4–24.5°
c = 16.7720 (14) ŵ = 0.08 mm1
V = 2121.8 (3) Å3T = 100 K
Z = 4Prism, colourless
F(000) = 8480.24 × 0.22 × 0.21 mm
Data collection top
Bruker SMART CCD 1K area detector
diffractometer
4907 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.050
ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1112
Tmin = 0.917, Tmax = 0.984k = 2020
23380 measured reflectionsl = 2323
6113 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0522P)2 + 1.0029P]
where P = (Fo2 + 2Fc2)/3
6113 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.24 e Å3
Special details top

Geometry. All s.u.'s (except the s.u.in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.1174 (2)0.52918 (13)0.16577 (13)0.0218 (4)
O10.1183 (3)0.75243 (15)0.14425 (13)0.0280 (5)
C180.1447 (3)0.48947 (19)0.19621 (18)0.0196 (5)
C60.1400 (3)0.65682 (19)0.06165 (19)0.0225 (6)
C150.1452 (3)0.6535 (2)0.29827 (19)0.0244 (6)
H15A0.17630.64160.35410.029*
H15B0.12110.71890.29350.029*
C210.1350 (4)0.6132 (2)0.33496 (19)0.0255 (6)
H21A0.14340.67820.34920.031*
H21B0.11680.57870.38470.031*
C220.1532 (3)0.44888 (19)0.12445 (18)0.0214 (6)
H220.06580.45720.09040.026*
C240.3097 (4)0.3970 (2)0.01014 (18)0.0232 (6)
H240.24830.43580.02240.028*
C120.1424 (3)0.67807 (19)0.11548 (18)0.0202 (5)
C110.3598 (3)0.5667 (2)0.1080 (2)0.0245 (6)
H11A0.41350.51660.13600.029*
H11B0.43680.61550.09850.029*
C280.3708 (3)0.3333 (2)0.1377 (2)0.0252 (6)
H280.35090.32740.19320.030*
C90.2076 (4)0.6050 (2)0.01768 (19)0.0245 (6)
H9A0.28220.64990.03950.029*
H9B0.15350.57620.06320.029*
C20.3786 (4)0.6144 (2)0.1291 (2)0.0300 (7)
H20.48500.59660.12670.036*
C190.2720 (3)0.4892 (2)0.25860 (18)0.0231 (6)
H19A0.24740.44350.30000.028*
H19B0.37220.47210.23350.028*
C100.2982 (4)0.5323 (2)0.02809 (19)0.0252 (6)
H10A0.22920.47960.03750.030*
H10B0.38700.51160.00490.030*
C230.2807 (3)0.39322 (19)0.09204 (18)0.0219 (6)
C130.2283 (3)0.60278 (19)0.16023 (18)0.0212 (6)
C80.0891 (4)0.65388 (19)0.03317 (18)0.0218 (6)
C170.0070 (3)0.54326 (19)0.21749 (17)0.0204 (6)
C10.2972 (4)0.6319 (2)0.05929 (19)0.0271 (6)
H10.34870.62690.00940.033*
C140.2827 (4)0.6308 (2)0.24302 (19)0.0257 (6)
H14A0.35140.68440.23850.031*
H14B0.34420.58080.26680.031*
C250.4265 (4)0.3451 (2)0.0247 (2)0.0279 (7)
H250.44400.34860.08060.033*
C50.0683 (4)0.6665 (2)0.1359 (2)0.0264 (6)
H50.03740.68530.13870.032*
C40.1497 (4)0.6491 (2)0.2057 (2)0.0286 (7)
H40.09920.65530.25580.034*
C30.3049 (4)0.6227 (2)0.2025 (2)0.0307 (7)
H30.36040.61040.25030.037*
C70.0583 (4)0.67387 (19)0.01428 (18)0.0232 (6)
H70.11790.70260.05480.028*
C270.4889 (4)0.2823 (2)0.1028 (2)0.0316 (7)
H270.55060.24310.13480.038*
C160.0016 (3)0.6001 (2)0.27985 (19)0.0230 (6)
C200.2876 (4)0.5820 (2)0.2972 (2)0.0283 (7)
H20A0.36960.57960.33870.034*
H20B0.32030.62670.25640.034*
C260.5171 (4)0.2885 (2)0.0216 (2)0.0336 (7)
H260.59840.25390.00200.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0196 (9)0.0200 (10)0.0259 (10)0.0023 (8)0.0012 (8)0.0002 (8)
O10.0335 (12)0.0230 (10)0.0274 (12)0.0018 (9)0.0003 (9)0.0023 (9)
C180.0196 (12)0.0177 (12)0.0215 (13)0.0005 (10)0.0010 (11)0.0022 (10)
C60.0246 (14)0.0194 (13)0.0236 (14)0.0048 (11)0.0015 (12)0.0011 (11)
C150.0267 (15)0.0250 (14)0.0214 (14)0.0048 (11)0.0046 (12)0.0012 (11)
C210.0286 (16)0.0253 (14)0.0227 (14)0.0022 (12)0.0023 (12)0.0006 (12)
C220.0202 (12)0.0200 (13)0.0239 (15)0.0012 (11)0.0012 (11)0.0004 (11)
C240.0225 (14)0.0208 (14)0.0263 (15)0.0005 (11)0.0009 (12)0.0011 (11)
C120.0188 (12)0.0195 (13)0.0222 (14)0.0012 (10)0.0022 (11)0.0008 (11)
C110.0185 (13)0.0235 (14)0.0315 (16)0.0011 (11)0.0010 (12)0.0008 (12)
C280.0253 (14)0.0239 (14)0.0264 (15)0.0033 (11)0.0012 (12)0.0001 (12)
C90.0238 (14)0.0231 (14)0.0265 (15)0.0022 (11)0.0050 (12)0.0028 (12)
C20.0276 (15)0.0295 (16)0.0328 (17)0.0010 (12)0.0025 (14)0.0012 (13)
C190.0204 (13)0.0266 (14)0.0223 (15)0.0027 (11)0.0006 (11)0.0001 (12)
C100.0212 (13)0.0245 (14)0.0300 (16)0.0024 (11)0.0051 (12)0.0009 (12)
C230.0198 (13)0.0197 (13)0.0263 (15)0.0012 (11)0.0009 (12)0.0025 (11)
C130.0172 (12)0.0205 (13)0.0258 (14)0.0012 (10)0.0009 (11)0.0015 (11)
C80.0247 (14)0.0172 (12)0.0237 (15)0.0010 (10)0.0035 (12)0.0007 (11)
C170.0211 (13)0.0189 (13)0.0212 (14)0.0007 (11)0.0002 (10)0.0013 (10)
C10.0272 (15)0.0285 (15)0.0257 (16)0.0037 (12)0.0031 (13)0.0001 (12)
C140.0239 (14)0.0270 (15)0.0261 (16)0.0051 (12)0.0067 (13)0.0010 (12)
C250.0261 (15)0.0297 (16)0.0279 (16)0.0045 (13)0.0053 (13)0.0045 (13)
C50.0290 (16)0.0228 (14)0.0275 (15)0.0017 (11)0.0023 (13)0.0002 (12)
C40.0361 (17)0.0271 (15)0.0228 (15)0.0056 (13)0.0028 (13)0.0018 (12)
C30.0377 (18)0.0276 (16)0.0267 (16)0.0051 (13)0.0065 (14)0.0038 (13)
C70.0262 (14)0.0201 (13)0.0232 (14)0.0028 (11)0.0040 (12)0.0018 (11)
C270.0294 (15)0.0269 (15)0.0386 (19)0.0097 (13)0.0001 (14)0.0017 (14)
C160.0230 (13)0.0236 (14)0.0224 (14)0.0011 (11)0.0007 (11)0.0018 (11)
C200.0243 (15)0.0327 (16)0.0280 (16)0.0013 (13)0.0021 (13)0.0039 (13)
C260.0295 (16)0.0311 (16)0.0401 (18)0.0068 (13)0.0074 (15)0.0060 (14)
Geometric parameters (Å, º) top
O2—C171.391 (3)C9—C81.510 (4)
O2—C131.446 (3)C9—C101.531 (4)
O1—C121.216 (4)C9—H9A0.9900
C18—C221.346 (4)C9—H9B0.9900
C18—C171.467 (4)C2—C11.387 (5)
C18—C191.512 (4)C2—C31.390 (5)
C6—C51.396 (4)C2—H20.9500
C6—C11.398 (4)C19—C201.520 (4)
C6—C71.475 (4)C19—H19A0.9900
C15—C161.494 (4)C19—H19B0.9900
C15—C141.537 (4)C10—H10A0.9900
C15—H15A0.9900C10—H10B0.9900
C15—H15B0.9900C13—C141.522 (4)
C21—C161.505 (4)C8—C71.337 (4)
C21—C201.526 (4)C17—C161.342 (4)
C21—H21A0.9900C1—H10.9500
C21—H21B0.9900C14—H14A0.9900
C22—C231.471 (4)C14—H14B0.9900
C22—H220.9500C25—C261.380 (5)
C24—C251.390 (4)C25—H250.9500
C24—C231.397 (4)C5—C41.387 (5)
C24—H240.9500C5—H50.9500
C12—C81.497 (4)C4—C31.388 (5)
C12—C131.529 (4)C4—H40.9500
C11—C131.525 (4)C3—H30.9500
C11—C101.526 (4)C7—H70.9500
C11—H11A0.9900C27—C261.386 (5)
C11—H11B0.9900C27—H270.9500
C28—C271.391 (4)C20—H20A0.9900
C28—C231.402 (4)C20—H20B0.9900
C28—H280.9500C26—H260.9500
C17—O2—C13115.6 (2)C9—C10—H10B109.1
C22—C18—C17120.1 (3)H10A—C10—H10B107.8
C22—C18—C19125.3 (3)C24—C23—C28117.6 (3)
C17—C18—C19114.5 (3)C24—C23—C22118.3 (3)
C5—C6—C1118.5 (3)C28—C23—C22124.0 (3)
C5—C6—C7122.9 (3)O2—C13—C14110.3 (2)
C1—C6—C7118.6 (3)O2—C13—C11105.2 (2)
C16—C15—C14113.2 (3)C14—C13—C11113.1 (2)
C16—C15—H15A108.9O2—C13—C12105.0 (2)
C14—C15—H15A108.9C14—C13—C12113.5 (2)
C16—C15—H15B108.9C11—C13—C12109.1 (2)
C14—C15—H15B108.9C7—C8—C12117.1 (3)
H15A—C15—H15B107.8C7—C8—C9127.5 (3)
C16—C21—C20112.0 (3)C12—C8—C9115.4 (3)
C16—C21—H21A109.2C16—C17—O2122.5 (3)
C20—C21—H21A109.2C16—C17—C18124.8 (3)
C16—C21—H21B109.2O2—C17—C18112.7 (2)
C20—C21—H21B109.2C2—C1—C6120.7 (3)
H21A—C21—H21B107.9C2—C1—H1119.6
C18—C22—C23128.2 (3)C6—C1—H1119.6
C18—C22—H22115.9C13—C14—C15112.0 (2)
C23—C22—H22115.9C13—C14—H14A109.2
C25—C24—C23121.3 (3)C15—C14—H14A109.2
C25—C24—H24119.3C13—C14—H14B109.2
C23—C24—H24119.3C15—C14—H14B109.2
O1—C12—C8121.9 (3)H14A—C14—H14B107.9
O1—C12—C13122.8 (3)C26—C25—C24120.2 (3)
C8—C12—C13115.3 (2)C26—C25—H25119.9
C13—C11—C10111.3 (2)C24—C25—H25119.9
C13—C11—H11A109.4C4—C5—C6120.8 (3)
C10—C11—H11A109.4C4—C5—H5119.6
C13—C11—H11B109.4C6—C5—H5119.6
C10—C11—H11B109.4C5—C4—C3120.2 (3)
H11A—C11—H11B108.0C5—C4—H4119.9
C27—C28—C23120.8 (3)C3—C4—H4119.9
C27—C28—H28119.6C2—C3—C4119.7 (3)
C23—C28—H28119.6C2—C3—H3120.1
C8—C9—C10113.1 (3)C4—C3—H3120.1
C8—C9—H9A109.0C8—C7—C6128.1 (3)
C10—C9—H9A109.0C8—C7—H7116.0
C8—C9—H9B109.0C6—C7—H7116.0
C10—C9—H9B109.0C26—C27—C28120.4 (3)
H9A—C9—H9B107.8C26—C27—H27119.8
C1—C2—C3120.1 (3)C28—C27—H27119.8
C1—C2—H2120.0C17—C16—C15122.4 (3)
C3—C2—H2120.0C17—C16—C21121.1 (3)
C18—C19—C20110.8 (3)C15—C16—C21116.6 (3)
C18—C19—H19A109.5C19—C20—C21111.9 (3)
C20—C19—H19A109.5C19—C20—H20A109.2
C18—C19—H19B109.5C21—C20—H20A109.2
C20—C19—H19B109.5C19—C20—H20B109.2
H19A—C19—H19B108.1C21—C20—H20B109.2
C11—C10—C9112.6 (2)H20A—C20—H20B107.9
C11—C10—H10A109.1C25—C26—C27119.6 (3)
C9—C10—H10A109.1C25—C26—H26120.2
C11—C10—H10B109.1C27—C26—H26120.2
C17—C18—C22—C23179.5 (3)C19—C18—C17—C1610.4 (4)
C19—C18—C22—C232.9 (5)C22—C18—C17—O213.6 (4)
C22—C18—C19—C20138.5 (3)C19—C18—C17—O2169.4 (2)
C17—C18—C19—C2038.4 (3)C3—C2—C1—C60.9 (5)
C13—C11—C10—C956.7 (3)C5—C6—C1—C22.1 (5)
C8—C9—C10—C1147.7 (3)C7—C6—C1—C2179.4 (3)
C25—C24—C23—C281.7 (4)O2—C13—C14—C1554.1 (3)
C25—C24—C23—C22178.9 (3)C11—C13—C14—C15171.6 (2)
C27—C28—C23—C242.5 (4)C12—C13—C14—C1563.4 (3)
C27—C28—C23—C22179.6 (3)C16—C15—C14—C1331.0 (4)
C18—C22—C23—C24146.7 (3)C23—C24—C25—C260.2 (5)
C18—C22—C23—C2836.3 (5)C1—C6—C5—C42.0 (4)
C17—O2—C13—C1451.7 (3)C7—C6—C5—C4179.6 (3)
C17—O2—C13—C11173.9 (2)C6—C5—C4—C30.8 (5)
C17—O2—C13—C1270.9 (3)C1—C2—C3—C40.3 (5)
C10—C11—C13—O255.0 (3)C5—C4—C3—C20.4 (5)
C10—C11—C13—C14175.4 (2)C12—C8—C7—C6179.4 (3)
C10—C11—C13—C1257.2 (3)C9—C8—C7—C62.8 (5)
O1—C12—C13—O2119.4 (3)C5—C6—C7—C838.5 (5)
C8—C12—C13—O260.5 (3)C1—C6—C7—C8143.1 (3)
O1—C12—C13—C141.1 (4)C23—C28—C27—C261.5 (5)
C8—C12—C13—C14179.0 (3)O2—C17—C16—C150.6 (4)
O1—C12—C13—C11128.2 (3)C18—C17—C16—C15179.7 (3)
C8—C12—C13—C1151.9 (3)O2—C17—C16—C21179.6 (3)
O1—C12—C8—C748.0 (4)C18—C17—C16—C210.2 (5)
C13—C12—C8—C7131.9 (3)C14—C15—C16—C174.5 (4)
O1—C12—C8—C9135.0 (3)C14—C15—C16—C21175.6 (3)
C13—C12—C8—C945.1 (3)C20—C21—C16—C1718.7 (4)
C10—C9—C8—C7134.9 (3)C20—C21—C16—C15161.2 (3)
C10—C9—C8—C1241.8 (3)C18—C19—C20—C2157.5 (3)
C13—O2—C17—C1625.4 (4)C16—C21—C20—C1947.1 (4)
C13—O2—C17—C18154.9 (2)C24—C25—C26—C271.3 (5)
C22—C18—C17—C16166.6 (3)C28—C27—C26—C250.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20B···O1i0.992.643.630175
C11—H11B···O1i0.992.613.521153
Symmetry code: (i) x, y, z+1/2.
 

Funding information

Funding for this research was provided by: a grant from the Russian Science Foundation (grant No. Project 15-13-10007).

References

First citationAbou-Elmagd, W. S. I. & Hashem, A. I. (2016). J. Heterocycl. Chem. 53, 202–208.  CAS
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationClark, G. R., Tsang, K. Y. & Brimble, M. A. (2005). Acta Cryst. E61, o2748–o2749.  Web of Science CSD CrossRef IUCr Journals
First citationGolikov, A. G., Kriven'ko, A. P., Bugaev, A. A. & Solodovnikov, S. F. (2006). J. Struct. Chem. 47, 102–105.  Web of Science CrossRef CAS
First citationJia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 285–289.  CSD CrossRef CAS Web of Science IUCr Journals
First citationKia, Y., Osman, H., Murugaiyah, V., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2493–o2494.  CSD CrossRef IUCr Journals
First citationKriven'ko, A. P., Bugaev, A. A. & Golikov, A. G. (2005). Chem. Heterocycl. Compd. 41, 163–167.  CAS
First citationMirzabekova, N. S., Kuzmina, N. E., Osipova, E. S. & Lukashov, O. I. (2008). J. Struct. Chem. 49, 644–649.  Web of Science CrossRef CAS
First citationSaraswat, P., Jeyabalan, G., Hassan, M. Z., Rahman, U. M. & Nyola, K. N. (2016). Synth. Commun. 46, 1643–1664.  Web of Science CrossRef CAS
First citationShchekina, M. P., Tumskii, R. S., Klochkova, I. N. & Anis'kov, A. A. (2017). Russ. J. Org. Chem. 53, 263–269.  Web of Science CSD CrossRef CAS
First citation[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.] Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSiaka, S., Soldatenkov, A. T., Malkova, A. V., Sorokina, E. A. & Khrustalev, V. N. (2012). Acta Cryst. E68, o3230.  CSD CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds