research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-4-methyl-N-{2-[2-(4-nitro­benzyl­­idene)hydrazin-1-yl]-2-oxoeth­yl}benzene­sulfonamide N,N-di­methyl­formamide monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bDepartment of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, KA, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287, Darmstadt, Germany, and dKarnataka State Rural Development and Panchayat Raj University, Gadag 582 101, Karnataka, India
*Correspondence e-mail: gowdabt@yahoo.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 1 October 2017; accepted 10 October 2017; online 20 October 2017)

The mol­ecule of the title Schiff base compound, C16H16N4O5S·C3H7NO, displays a trans conformation with respect to the C=N double bond. The C—N and N—N bonds are relatively short compared to their normal bond lengths, indicating some degree of delocalization in the mol­ecule. The mol­ecule is bent at the S atom, with an S—N—C—C torsion angle of 164.48 (11)°. The dihedral angle between the two aromatic rings is 84.594 (7)°. Inter­molecular N—H⋯O and C —H⋯O hydrogen bonds connect centrosymmetrically related mol­ecules into dimers forming rings of R33(11) and R22(10) graph-set motif stacked along the a axis into a columnar arrangement. The mol­ecular columns are further linked into a three-dimensional network by C—H⋯π inter­actions.

1. Chemical context

Hydrazones possess a wide variety of biological activities which include anti-inflammatory, analgesic, anti­convulsant, anti­tuberculous, anti­tumor, anti-HIV and anti­microbial activity. Hydrazones and their derivatives which can be prepared easily are stable and crystalline in nature. These characteristics have made them suitable compounds in recent times for drug design, ligands for metal complexes and for heterocyclic synthesis. Thus, hydrazones derived from N-(p-toluene­sulfon­yl)amino acids have been studied extensively for their biological and medicinal activities (Tian et al., 2009[Tian, B., He, M., Tang, S., Hewlett, I., Tan, Z., Li, J., Jin, Y. & Yang, M. (2009). Bioorg. Med. Chem. Lett. 19, 2162-2167.], 2011[Tian, B., He, M., Tan, Z., Tang, S., Hewlett, I., Chen, S., Jin, Y. & Yang, M. (2011). Chem. Biol. Drug Des. 77, 189-198.]; Shedid et al., 2011[Shedid, S. A. M., Hassan, H. M., Kora, F. A. & El-Eisawy, R. M. (2011). J. Chem. Pharm. Res. 3, 388-394.]). The inter­molecular inter­actions of p-toluene­sulfonyl­amide groups lead to supra­molecular structures. In continuation of our efforts to explore the potential of N-acyl­hydrazone derivatives, we report herein the synthesis and crystal structure of the title compound, (E)-4-methyl-N-{2-[2-(4-nitro­benzyl­idene)hydrazin-1-yl]-2-oxoeth­yl}benzene­sulfonamide N,N-di­methyl­formamide monosolvate.

[Scheme 1]

2. Structural commentary

The title compound crystallizes as a di­methyl­formamide (DMF) monosolvate with one mol­ecule each of the Schiff base and solvent in the asymmetric unit (Fig. 1[link]), and two mol­ecules in the unit cell (Fig. 3[link]). The conformations of the C—H, N—H and C=O bonds in the central segment are syn to each other. The C8—O3 and C9—N3 bond lengths of 1.219 (2) and 1.274 (2) Å, respectively, confirm their significant double-bond characters. Further, the C8—N2 and N2—N3 bond lengths of 1.354 (2) and 1.3723 (18) Å, respectively, also indicate a significant delocalization of π-electron density over the hydrazone portion of the mol­ecule. The mol­ecule is bent at the S atom, with an S1—N1—C7—C8 torsion angle of 164.48 (11)°. The sulfonamide bond exists in a synclinal conformation, with a C—S—N—C torsion angle of −78.2 (1)°, which is the most preferred conformation for aromatic sulfon­amides (Katagiri et al., 2014[Katagiri, K., Sakai, T., Hishikawa, M., Masu, H., Tominaga, M., Yamaguchi, K. & Azumaya, I. (2014). Cryst. Growth Des. 14, 199-206.]). The other central part of the mol­ecule is almost linear, as indicated by the C7—C8—N2—N3, C8—N2—N3—C9 and N2—N3—C9—C10 torsion angles [−1.6 (2), −178.98 (14) and 178.34 (13)°, respectively]. The relative orientation of the sulfonamide group with respect to the attached p-tolyl ring is given by the torsion angles C2—C1—S1—N1 = −79.45 (14)° and C6—C1—S1—N1 = 98.87 (16)°, while that of the hydrazone group with the attached 4-nitrobenzene ring is given by the torsion angles C11—C10—C9—N3 = 1.6 (2)° and C15—C10—C9—N3 = −177.27 (15)°, respectively. The dihedral angle between the C1–C6 sulfonyl benzene ring and the mean plane through the SO2—NH—CH2—CO segment is 81.452 (6)°, while that between the C10–C15 benzene ring and the plane through the C9—N3—N2—CO group is 4.296 (10)°. The dihedral angle between the two aromatic rings is 84.594 (7)°. The central part of the title compound, between atoms N1 and C9, is nearly planar with an extended chain conformation. The two benzene rings, i.e. C1–C6 and C10–C15, are inclined to the mean plane of the central spacer unit [O3/N1–N3/C7–C9; maximum deviation of 0.0353 (18) Å for C7] by 85.59 (8) and 4.35 (8)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular packing of the title compound, with hydrogen bonding shown as dashed lines.

3. Supra­molecular features

The Schiff base and solvent mol­ecules in the asymmetric unit are linked by N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]), giving rise to a ring of [R_{3}^{3}](11) graph-set motif. These bimolecular units are then linked by a pair of N—H⋯O hydrogen bonds, resulting in inversion dimers forming an [R_{2}^{2}](10) ring motif (Fig. 3[link]), which are linked into columns running parallel to the a axis by C—H⋯O hydrogen bonds involving aromatic C3 and sulfonyl O3 atoms (Fig. 4[link]). Adjacent columns are further connected by C—H⋯π inter­actions, leading to the formation of a three-dimensional framework (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.82 (2) 2.24 (2) 3.0142 (18) 158 (2)
N2—H2N⋯O6i 0.86 (2) 2.02 (2) 2.863 (2) 168 (2)
C3—H3⋯O2ii 0.93 2.59 3.442 (2) 152
C14—H14⋯O5iii 0.93 2.56 3.484 (2) 171
C18—H18C⋯O2iv 0.96 2.56 3.446 (3) 154
C15—H15⋯Cg1v 0.93 2.66 3.564 (2) 164
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y, z; (iii) -x-1, -y+3, -z; (iv) -x, -y+1, -z+1; (v) -x, -y+2, -z.
[Figure 2]
Figure 2
The hydrogen-bonding pattern (dashed lines) in the title compound.
[Figure 4]
Figure 4
The C—H⋯O inter­actions (blue dotted lines) observed in the structure of the title compound

4. Database survey

Comparison of the C—H⋯O inter­actions observed in the title compound, (I)[link], with those of the 4-methyl derivative of N-acyl­hydrazone, namely (E)-N-{2-[2-(4-methyl­benzyl­idene)hydrazin-1-yl]-2-oxoeth­yl}-p-toluene­sulfonamide, (II) (Pur­andara et al., 2015[Purandara, H., Foro, S. & Gowda, B. T. (2015). Acta Cryst. E71, 730-733.]), indicates that the nitro group imparts a strong ability to the aromatic C—H groups to participate in C—H⋯O inter­actions, whereas the methyl substituent in the benzyl­idene ring of (II) does not activate aromatic protons for participating in inter­molecular C—H⋯O inter­actions. An aromatic H atom (C14—H14) of the nitro­phenyl moiety of (I)[link] is involved in the formation of inter­molecular C—H⋯O inter­actions. The inductive effect of electron-withdrawing nitro group decreases the electronic density on the benzene ring. As a result, the nitro­phenyl moiety provides more acidic protons to form C—H⋯O hydrogen bonds.

5. Synthesis and crystallization

(E)-N-{2-[2-(4-Nitro­benzyl­idene)hydrazine-1-yl]-2-oxoeth­yl}-4-methyl­benzene­sulfonamide N,N-di­methyl­formamide mono­solvate was prepared as follows: p-toluene­sulfonyl chloride (0.01 mol) was added to glycine (0.02 mol) dissolved in an aqueous solution of potassium carbonate (0.06 mol, 50 ml). The reaction mixture was stirred at 373 K for 6 h, left overnight at room temperature, then filtered and treated with dilute hydro­chloric acid. The solid N-(4-methyl­benzene­sulfon­yl)glycine (L1) obtained was crystallized from aqueous ethanol. Sulfuric acid (0.5 ml) was added to L1 (0.02 mol) dissolved in ethanol (30 ml) and the mixture was refluxed. The reaction mixture was monitored by thin-layer chromatography (TLC) at regular inter­vals. After completion of the reaction, the reaction mixture was concentrated to remove excess ethanol. The product, N-(4-methyl­benzene­sulfon­yl)glycine ethyl ester (L2), was poured into water, neutralized with sodium bicarbonate and recrystallized from acetone. Pure L2 (0.01 mol) was then added in small portions to a stirred solution of 99% hydrazine hydrate (10 ml) in 30 ml ethanol and the mixture was refluxed for 6 h. After cooling to room temperature, the resulting precipitate was filtered, washed with cold water and dried to obtain N-(4-methyl­benzene­sulfon­yl)glycinyl hydrazide (L3). A mixture of L3 (0.01 mol) and p-nitro­benzaldehyde (0.01 mol) in anhydrous methanol (30 ml) and two drops of glacial acetic acid was refluxed for 8 h. After cooling, the precipitated (E)-N-{2-[2-(4-nitro­ben­zyl­idene)hydrazine-1-yl]-2-oxoeth­yl}-4-methyl­benzene­sul­fon­amide was collected by vacuum filtration, washed with cold methanol, dried and recrystallized to constant melting point from methanol (522–523 K). The purity of the compound was checked by TLC and characterized by its IR spectrum. The characteristic absorptions observed are 3236.6, 1687.7, 1587.4, 1338.6 and 1163.1 cm−1 for the stretching bands of N—H, C=O, C=N, S=O asymmetric and S=O symmetric, respectively. The characteristic 1H and 13C NMR specta of the title compound are as follows. 1H NMR (400 MHz, DMSO-d6: δ 2.36 (s, 3H), 3.61, 4.10 (d, 2H,), 7.36–7.39 (m, 2H, Ar—H), 7.72–7.74 (m, 2H, Ar—H), 7.86 (d, 2H, Ar—H), 8.23–8.27 (m, 2H, Ar—H), 7.93 (t, 1H), 8.02 (s, 1H), 11.74 (s, 1H). 13C NMR (400 MHz, DMSO-d6): δ 20.91, 43.20, 44.55, 123.94, 126.60, 127.81, 129.48, 137.48, 140.24, 141.40, 142.64, 144.62, 147.73, 164.64, 169.44. Prism-like colourless single crystals of the title compound employed in the X-ray diffraction study were grown from a DMF solution by slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C atoms were positioned with idealized geometry using a riding model, with C—H = 0.93 (aromatic), 0.96 (meth­yl) or 0.97 Å (methyl­ene). The amino H atoms were freely refined with the N—H distances restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2Ueq(C,N) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C16H16N4O5S·C3H7NO
Mr 449.48
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.3515 (9), 10.5778 (9), 13.673 (1)
α, β, γ (°) 107.609 (7), 98.954 (8), 106.505 (8)
V3) 1064.57 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.40 × 0.40 × 0.22
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.])
Tmin, Tmax 0.925, 0.958
No. of measured, independent and observed [I > 2σ(I)] reflections 7611, 4347, 3592
Rint 0.010
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.04
No. of reflections 4347
No. of parameters 289
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.37
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-4-Methyl-N-{2-[2-(4-nitrobenzylidene)hydrazin-1-yl]-2-oxoethyl}benzenesulfonamide N,N-dimethylformamide monosolvate top
Crystal data top
C16H16N4O5S·C3H7NOZ = 2
Mr = 449.48F(000) = 472
Triclinic, P1Dx = 1.402 Mg m3
a = 8.3515 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5778 (9) ÅCell parameters from 3760 reflections
c = 13.673 (1) Åθ = 2.6–27.8°
α = 107.609 (7)°µ = 0.20 mm1
β = 98.954 (8)°T = 293 K
γ = 106.505 (8)°Prism, colourless
V = 1064.57 (18) Å30.40 × 0.40 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur single-crystal X-ray
diffractometer with Sapphire CCD Detector
3592 reflections with I > 2σ(I)
Rotation method data acquisition using ω scansRint = 0.010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
θmax = 26.4°, θmin = 2.6°
Tmin = 0.925, Tmax = 0.958h = 1010
7611 measured reflectionsk = 913
4347 independent reflectionsl = 1712
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3531P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.005
4347 reflectionsΔρmax = 0.32 e Å3
289 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2529 (2)0.80172 (17)0.30177 (12)0.0350 (3)
C20.3764 (2)0.73865 (18)0.28367 (13)0.0395 (4)
H20.34310.64050.25460.047*
C30.5479 (2)0.8222 (2)0.30897 (14)0.0436 (4)
H30.62980.77940.29710.052*
C40.6013 (2)0.9691 (2)0.35194 (14)0.0479 (4)
C50.4745 (3)1.0292 (2)0.3654 (2)0.0671 (6)
H50.50671.12740.39140.080*
C60.3022 (3)0.9472 (2)0.34106 (17)0.0567 (5)
H60.21980.98980.35110.068*
C70.0943 (2)0.74344 (18)0.10290 (13)0.0385 (4)
H7A0.00280.83560.13590.046*
H7B0.19970.75350.11980.046*
C80.1211 (2)0.69253 (16)0.01586 (13)0.0348 (3)
C90.2478 (2)0.96612 (17)0.05202 (13)0.0356 (3)
H90.26130.93930.12500.043*
C100.2839 (2)1.09163 (16)0.00553 (12)0.0340 (3)
C110.2613 (3)1.13753 (19)0.11526 (14)0.0476 (4)
H110.21741.09030.15390.057*
C120.3032 (3)1.2520 (2)0.16685 (14)0.0503 (5)
H120.28921.28190.24000.060*
C130.3662 (2)1.32173 (17)0.10891 (13)0.0386 (4)
C140.3851 (2)1.28192 (18)0.00117 (14)0.0415 (4)
H140.42421.33220.03640.050*
C150.3449 (2)1.16557 (18)0.05016 (13)0.0401 (4)
H150.35901.13640.12330.048*
C160.7899 (3)1.0600 (3)0.3827 (2)0.0686 (6)
H16A0.84051.02820.32580.103*
H16B0.84911.05290.44580.103*
H16C0.80021.15680.39610.103*
C170.2091 (3)0.3550 (2)0.33832 (16)0.0609 (6)
H170.19710.42070.30810.073*
C180.2597 (4)0.3016 (3)0.49621 (18)0.0765 (7)
H18A0.37920.33270.53400.115*
H18B0.22560.20720.44500.115*
H18C0.18960.30220.54560.115*
C190.2526 (5)0.5369 (3)0.50861 (19)0.0921 (10)
H19A0.23980.59100.46470.138*
H19B0.36440.58250.55900.138*
H19C0.16410.53080.54600.138*
N10.04825 (19)0.64431 (15)0.14518 (11)0.0387 (3)
H1N0.016 (2)0.5851 (18)0.1079 (14)0.046*
N20.17143 (19)0.77528 (14)0.06336 (11)0.0385 (3)
H2N0.181 (2)0.758 (2)0.1298 (12)0.046*
N30.19806 (17)0.89339 (13)0.00295 (10)0.0347 (3)
N40.4191 (2)1.43967 (16)0.16299 (13)0.0497 (4)
N50.2367 (2)0.39543 (18)0.44244 (12)0.0535 (4)
O10.02638 (17)0.57237 (14)0.29491 (11)0.0516 (3)
O20.05327 (16)0.78629 (15)0.32153 (10)0.0501 (3)
O30.09848 (18)0.58545 (13)0.06656 (10)0.0496 (3)
O40.4233 (3)1.46197 (19)0.25518 (13)0.0808 (5)
O50.4588 (2)1.50928 (16)0.11362 (13)0.0681 (4)
O60.1980 (3)0.23973 (17)0.27815 (11)0.0757 (5)
S10.03312 (5)0.69598 (5)0.27126 (3)0.03706 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0402 (8)0.0406 (9)0.0286 (7)0.0209 (7)0.0080 (6)0.0129 (6)
C20.0461 (9)0.0387 (9)0.0435 (9)0.0246 (7)0.0132 (7)0.0187 (7)
C30.0430 (9)0.0543 (11)0.0461 (10)0.0285 (8)0.0133 (7)0.0242 (8)
C40.0438 (10)0.0525 (11)0.0418 (9)0.0167 (8)0.0063 (7)0.0125 (8)
C50.0575 (12)0.0384 (10)0.0833 (16)0.0156 (9)0.0118 (11)0.0032 (10)
C60.0489 (11)0.0439 (10)0.0701 (13)0.0260 (9)0.0140 (9)0.0031 (9)
C70.0469 (9)0.0381 (8)0.0363 (8)0.0223 (7)0.0093 (7)0.0155 (7)
C80.0335 (8)0.0330 (8)0.0363 (8)0.0132 (6)0.0063 (6)0.0109 (7)
C90.0408 (8)0.0348 (8)0.0327 (8)0.0136 (7)0.0085 (6)0.0146 (7)
C100.0348 (8)0.0321 (8)0.0361 (8)0.0111 (6)0.0076 (6)0.0152 (7)
C110.0671 (12)0.0460 (10)0.0337 (9)0.0289 (9)0.0038 (8)0.0161 (8)
C120.0694 (12)0.0498 (11)0.0303 (9)0.0282 (9)0.0057 (8)0.0098 (8)
C130.0383 (8)0.0332 (8)0.0417 (9)0.0137 (7)0.0074 (7)0.0104 (7)
C140.0469 (9)0.0421 (9)0.0454 (9)0.0223 (8)0.0120 (7)0.0234 (8)
C150.0487 (9)0.0440 (9)0.0349 (8)0.0205 (8)0.0122 (7)0.0197 (7)
C160.0492 (12)0.0686 (14)0.0714 (15)0.0119 (10)0.0067 (10)0.0157 (12)
C170.0906 (16)0.0637 (13)0.0425 (10)0.0440 (12)0.0159 (10)0.0236 (10)
C180.125 (2)0.0649 (14)0.0463 (12)0.0357 (15)0.0264 (13)0.0263 (11)
C190.148 (3)0.0744 (16)0.0518 (14)0.0653 (18)0.0017 (15)0.0082 (12)
N10.0462 (8)0.0389 (8)0.0369 (8)0.0245 (6)0.0084 (6)0.0143 (6)
N20.0517 (8)0.0368 (7)0.0301 (7)0.0211 (6)0.0092 (6)0.0120 (6)
N30.0391 (7)0.0319 (7)0.0340 (7)0.0150 (6)0.0077 (5)0.0118 (6)
N40.0467 (9)0.0446 (9)0.0519 (10)0.0204 (7)0.0073 (7)0.0085 (7)
N50.0735 (11)0.0551 (9)0.0376 (8)0.0337 (9)0.0124 (7)0.0157 (7)
O10.0566 (8)0.0575 (8)0.0568 (8)0.0243 (6)0.0169 (6)0.0377 (7)
O20.0494 (7)0.0667 (8)0.0454 (7)0.0334 (6)0.0216 (6)0.0190 (6)
O30.0665 (8)0.0425 (7)0.0430 (7)0.0318 (6)0.0107 (6)0.0099 (5)
O40.1144 (14)0.0879 (12)0.0502 (9)0.0643 (11)0.0239 (9)0.0111 (8)
O50.0834 (11)0.0599 (9)0.0783 (10)0.0475 (8)0.0219 (8)0.0277 (8)
O60.1306 (15)0.0703 (10)0.0394 (8)0.0556 (10)0.0250 (8)0.0178 (7)
S10.0401 (2)0.0458 (2)0.0349 (2)0.02253 (18)0.01295 (16)0.01948 (18)
Geometric parameters (Å, º) top
C1—C61.377 (2)C13—C141.374 (2)
C1—C21.393 (2)C13—N41.468 (2)
C1—S11.7629 (17)C14—C151.381 (2)
C2—C31.376 (2)C14—H140.9300
C2—H20.9300C15—H150.9300
C3—C41.389 (3)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.390 (3)C16—H16C0.9600
C4—C161.507 (3)C17—O61.215 (2)
C5—C61.379 (3)C17—N51.318 (2)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—N51.438 (3)
C7—N11.452 (2)C18—H18A0.9600
C7—C81.505 (2)C18—H18B0.9600
C7—H7A0.9700C18—H18C0.9600
C7—H7B0.9700C19—N51.451 (3)
C8—O31.2191 (19)C19—H19A0.9600
C8—N21.354 (2)C19—H19B0.9600
C9—N31.274 (2)C19—H19C0.9600
C9—C101.464 (2)N1—S11.6082 (14)
C9—H90.9300N1—H1N0.818 (15)
C10—C151.384 (2)N2—N31.3723 (18)
C10—C111.393 (2)N2—H2N0.856 (15)
C11—C121.374 (3)N4—O51.216 (2)
C11—H110.9300N4—O41.218 (2)
C12—C131.376 (2)O1—S11.4273 (13)
C12—H120.9300O2—S11.4333 (13)
C6—C1—C2119.83 (16)C15—C14—H14120.7
C6—C1—S1119.93 (13)C14—C15—C10121.03 (16)
C2—C1—S1120.22 (13)C14—C15—H15119.5
C3—C2—C1119.72 (16)C10—C15—H15119.5
C3—C2—H2120.1C4—C16—H16A109.5
C1—C2—H2120.1C4—C16—H16B109.5
C2—C3—C4121.40 (16)H16A—C16—H16B109.5
C2—C3—H3119.3C4—C16—H16C109.5
C4—C3—H3119.3H16A—C16—H16C109.5
C3—C4—C5117.63 (18)H16B—C16—H16C109.5
C3—C4—C16121.21 (18)O6—C17—N5126.0 (2)
C5—C4—C16121.16 (19)O6—C17—H17117.0
C6—C5—C4121.71 (18)N5—C17—H17117.0
C6—C5—H5119.1N5—C18—H18A109.5
C4—C5—H5119.1N5—C18—H18B109.5
C1—C6—C5119.63 (17)H18A—C18—H18B109.5
C1—C6—H6120.2N5—C18—H18C109.5
C5—C6—H6120.2H18A—C18—H18C109.5
N1—C7—C8110.67 (13)H18B—C18—H18C109.5
N1—C7—H7A109.5N5—C19—H19A109.5
C8—C7—H7A109.5N5—C19—H19B109.5
N1—C7—H7B109.5H19A—C19—H19B109.5
C8—C7—H7B109.5N5—C19—H19C109.5
H7A—C7—H7B108.1H19A—C19—H19C109.5
O3—C8—N2121.73 (15)H19B—C19—H19C109.5
O3—C8—C7123.18 (14)C7—N1—S1118.51 (11)
N2—C8—C7115.08 (13)C7—N1—H1N118.6 (14)
N3—C9—C10120.54 (14)S1—N1—H1N115.5 (14)
N3—C9—H9119.7C8—N2—N3119.45 (13)
C10—C9—H9119.7C8—N2—H2N120.9 (13)
C15—C10—C11118.91 (15)N3—N2—H2N119.5 (13)
C15—C10—C9119.51 (14)C9—N3—N2116.76 (13)
C11—C10—C9121.57 (14)O5—N4—O4123.01 (17)
C12—C11—C10120.49 (16)O5—N4—C13118.74 (16)
C12—C11—H11119.8O4—N4—C13118.25 (16)
C10—C11—H11119.8C17—N5—C18120.84 (18)
C11—C12—C13119.13 (16)C17—N5—C19122.27 (18)
C11—C12—H12120.4C18—N5—C19116.84 (17)
C13—C12—H12120.4O1—S1—O2119.85 (8)
C14—C13—C12121.87 (16)O1—S1—N1107.10 (8)
C14—C13—N4118.89 (15)O2—S1—N1106.47 (8)
C12—C13—N4119.22 (16)O1—S1—C1107.68 (8)
C13—C14—C15118.52 (15)O2—S1—C1107.05 (8)
C13—C14—H14120.7N1—S1—C1108.25 (8)
C6—C1—C2—C32.5 (3)C11—C10—C15—C140.8 (3)
S1—C1—C2—C3179.22 (12)C9—C10—C15—C14178.07 (15)
C1—C2—C3—C40.4 (3)C8—C7—N1—S1164.48 (11)
C2—C3—C4—C52.1 (3)O3—C8—N2—N3178.85 (15)
C2—C3—C4—C16178.09 (18)C7—C8—N2—N31.6 (2)
C3—C4—C5—C62.5 (3)C10—C9—N3—N2178.34 (13)
C16—C4—C5—C6177.7 (2)C8—N2—N3—C9178.98 (14)
C2—C1—C6—C52.1 (3)C14—C13—N4—O58.6 (3)
S1—C1—C6—C5179.61 (17)C12—C13—N4—O5173.06 (18)
C4—C5—C6—C10.4 (4)C14—C13—N4—O4170.45 (18)
N1—C7—C8—O33.0 (2)C12—C13—N4—O47.9 (3)
N1—C7—C8—N2177.44 (14)O6—C17—N5—C181.0 (4)
N3—C9—C10—C15177.27 (15)O6—C17—N5—C19178.4 (3)
N3—C9—C10—C111.6 (2)C7—N1—S1—O1165.96 (13)
C15—C10—C11—C121.7 (3)C7—N1—S1—O236.61 (15)
C9—C10—C11—C12177.14 (17)C7—N1—S1—C178.19 (14)
C10—C11—C12—C130.7 (3)C6—C1—S1—O1145.65 (15)
C11—C12—C13—C141.3 (3)C2—C1—S1—O136.03 (15)
C11—C12—C13—N4177.02 (17)C6—C1—S1—O215.55 (17)
C12—C13—C14—C152.2 (3)C2—C1—S1—O2166.13 (13)
N4—C13—C14—C15176.14 (15)C6—C1—S1—N198.87 (16)
C13—C14—C15—C101.1 (3)C2—C1—S1—N179.45 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.82 (2)2.24 (2)3.0142 (18)158 (2)
N2—H2N···O6i0.86 (2)2.02 (2)2.863 (2)168 (2)
C3—H3···O2ii0.932.593.442 (2)152
C14—H14···O5iii0.932.563.484 (2)171
C18—H18C···O2iv0.962.563.446 (3)154
C15—H15···Cg1v0.932.663.564 (2)164
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x1, y+3, z; (iv) x, y+1, z+1; (v) x, y+2, z.
 

Funding information

HP thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its INSPIRE Program and BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under UGC–BSR one-time grant to faculty. The authors also thank SAIF Panjab University for extending the services of NMR facility.

References

First citationKatagiri, K., Sakai, T., Hishikawa, M., Masu, H., Tominaga, M., Yamaguchi, K. & Azumaya, I. (2014). Cryst. Growth Des. 14, 199–206.  CSD CrossRef CAS
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
First citationPurandara, H., Foro, S. & Gowda, B. T. (2015). Acta Cryst. E71, 730–733.  CSD CrossRef IUCr Journals
First citationShedid, S. A. M., Hassan, H. M., Kora, F. A. & El-Eisawy, R. M. (2011). J. Chem. Pharm. Res. 3, 388–394.  CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationTian, B., He, M., Tan, Z., Tang, S., Hewlett, I., Chen, S., Jin, Y. & Yang, M. (2011). Chem. Biol. Drug Des. 77, 189–198.  Web of Science CrossRef CAS PubMed
First citationTian, B., He, M., Tang, S., Hewlett, I., Tan, Z., Li, J., Jin, Y. & Yang, M. (2009). Bioorg. Med. Chem. Lett. 19, 2162–2167.  Web of Science CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds