research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the co-crystalline adduct 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane (TATD)–4-iodo­phenol (1/2): supra­molecular assembly mediated by halogen and hydrogen bonding

CROSSMARK_Color_square_no_text.svg

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código, Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by J. Simpson, University of Otago, New Zealand (Received 8 October 2017; accepted 14 October 2017; online 20 October 2017)

The asymmetric unit of the title co-crystalline adduct, 1,3,6,8-tetra­aza­tri­cyclo[4.4.1.13,8]dodecane (TATD)–4-iodo­phenol (1/2), C8H16N4·2C6H5IO, comprises a half mol­ecule of the aminal cage polyamine plus a 4-iodo­phenol mol­ecule. A twofold rotation axis generates the other half of the adduct. The components are linked by two inter­molecular O—H⋯N hydrogen bonds. The adducts are further linked into a three-dimensional framework structure by a combination of N⋯I halogen bonds and weak non-conventional C—H⋯O and C—H⋯I hydrogen bonds.

1. Chemical context

Halogenoorganic compounds are able to play a role in organic supra­molecular assemblies as electrophilic species, and have been used as models in the construction of self-assembled architectures. Non-covalent bonds such as hydrogen bonds (HB) and halogen bonds (XB) attract inter­est in crystal engineering because they have clear directional properties (Umezono & Okuno, 2017[Umezono, S. & Okuno, T. (2017). J. Mol. Struct. 1147, 636-642.]). Hydrogen bonds have been used successfully to construct supra­molecular architectures as a result of their high directionality, which also results in high selectivity. Halogen bonds exhibit similar directionality and strength to hydrogen bonds and can offer a new approach to the control of supra­molecular assemblies (Jin et al., 2014[Jin, S., Liu, H., Gao, X. J., Lin, Z., Chen, G. & Wang, D. (2014). J. Mol. Struct. 1075, 124-138.]). XB also play important roles in natural systems, and have been effectively applied in various fields including crystal engineering, solid-state mol­ecular recognition, materials with optical properties and supra­molecular liquid crystals (Li et al., 2017[Li, J., Hu, Y.-H., Ge, C.-W., Gong, H.-G. & Gao, H.-K. (2017). Chinese Chem. Lett. https://dx.doi.org/10.1016/j.cclet.2017.06.008]). The strength of the inter­actions involving halogens increases on going from chlorine to bromine to iodine. Although hydrogen bonds are likely to be more effective, XB also are also important in crystal packing (Aakeröy et al., 2015[Aakeröy, C. B., Spartz, C. L., Dembowski, S., Dwyre, S. & Desper, J. (2015). IUCrJ, 2, 498-510.]; Geboes et al., 2017[Geboes, Y., De Proft, F. & Herrebout, W. A. (2017). Acta Cryst. B73, 168-178.]). In view of the analogies between halogen and hydrogen bonding, we think that the 4-iodo­phenol mol­ecule offers inter­esting possibilities for exploring the effect of halogen-bonding inter­actions on supra­molecular assemblies of phenols with polyamines. Following our previous work on acid–base adducts based on macrocyclic aminals and phenols, we report herein the synthesis and crystal structure of the title compound, a supra­molecular complex assembled through non-covalent HB and XB inter­actions between 4-iodo­phenol and 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD).

[Scheme 1]

2. Structural commentary

The title compound is isostructural with 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD)–4-bromo­phenol (Rivera, Uribe et al., 2015[Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 463-465.]): both crystallize in the space group Fdd2, and the differences between the unit-cell parameters (a, b, c) are < 7%. The asymmetric unit comprises one half of a 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) mol­ecule and one iodo­phenol mol­ecule held together by inter­molecular O—H⋯N hydrogen bonds [O⋯N 2.741 (6) Å; O—H⋯N 154 (7)°; Table 1[link]]. The complete adduct is generated by a crystallographic twofold rotation axis, (Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 (1) 1.96 (4) 2.741 (6) 154 (7)
C5—H5B⋯I1i 0.99 3.03 3.961 (7) 158
C13—H13⋯O1ii 0.95 2.53 3.455 (6) 165
Symmetry codes: (i) -x+1, -y+1, z-1; (ii) [-x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability. H atoms bonded to C atoms are omitted for clarity. Hydrogen bonds are drawn as dashed lines. Atoms labelled with the suffix A are generated using the symmetry operator (−x + 1, −y + 1, z).

Apart from the C—I/Br bond-length differences and some of the bond angles in the benzene ring, the mol­ecules have similar geometric data (bond lengths and angles). The C14—I1 bond length [2.106 (5) Å] is in good agreement with the value reported for 4-iodo­phenol itself [2.104 (5) Å; Merz, 2006[Merz, K. (2006). Cryst. Growth Des. 6, 1615-1619.]]. The overall mol­ecular conformation of TATD observed here is very close to that of TATD in the related bromo­phenol adduct (Rivera, Uribe et al., 2015[Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 463-465.]).

3. Supra­molecular features

In the crystal, the three independent mol­ecules are linked via two inter­molecular O1—H1⋯N1 hydrogen bonds (Table 1[link] and Fig. 1[link]). These supra­molecular units are then linked by direction-specific inter­molecular inter­actions, including both non-conventional hydrogen bonds and halogen bonds, C—H⋯O and C—H⋯I hydrogen bonds, forming slabs lying parallel to the bc plane (Table 1[link] and Fig. 2[link]). However, considering the donor–acceptor bond lengths of 3.961 (7) Å [C5—H5B⋯I1] and 3.455 (6) Å [C13—H13⋯O1], which exceed the sum of the corresponding van der Waals radii (0.281 and 0.255 Å, respectively), the strength of the these non-conventional hydrogen bonds can be classified as very weak (Steiner, 2003[Steiner, T. (2003). Crystallogr. Rev. 9, 177-228.]).

[Figure 2]
Figure 2
A view of the crystal packing of the title compound, showing the O—H⋯N hydrogen bonds; and C—H⋯O and C—H⋯hydrogen bonds (dashed lines).

In addition, as indicated by a PLATON analysis (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), the iodine atom is involved, as an electron-density acceptor, in two short contacts with N2 and C3, seemingly forming a bifurcated halogen bond, where the I⋯N [3.351 (5) Å] and I⋯C distances [3.519 (5) Å] are 0.18 and 0.16 Å, respectively, less than the sum of the corresponding van der Waals radii (Alvarez, 2013[Alvarez, S. (2013). Dalton Trans. 42, 8617-8636.]). The I⋯N distance corresponds to 90% of the sum of the van der Waals radii (3.70 Å) and the C14—I1⋯N2iii angle of 173.11 (2)° is close to being linear [symmetry code: (iii) x + [{1\over 4}], −y + [{5\over 4}], z + [{5\over 4}]]. Taking into account these geometrical parameters, the I1⋯N2 contacts can formally be considered as halogen bonds. It appears that this contact imposes the relatively close, but significantly longer I⋯C contact. Unsurprisingly, this pattern is repeated with the isostructural bromo analogue (Rivera, Uribe et al., 2015[Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 463-465.]) with Br⋯N = 3.292 (4) and C⋯Br = 3.477 (4) Å. There is also a Cl⋯N halogen bond in the related 4-chloro-3,5-di­methyl­phenol analogue (Rivera, Rojas, et al., 2015[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 737-740.]) with Cl⋯N = 3.1680 (16); the C⋯Cl contact has extended to 3.5828 (19) Å and can be disregarded.

4. Database survey

The structure of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane has already been determined (Murray-Rust, 1974[Murray-Rust, P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 1136.]; Rivera et al., 2014[Rivera, A., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o266.]). Since the mol­ecule is rigid, it is not surprising that it compares very closely with the TATD mol­ecule in the title compound. The structure of 1,3,6,8-tetra­aza­tri­cyclo[4.4.1.13,8]dodecane hydro­quinone (Rivera et al., 2007[Rivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180-186.]) shows two O—H⋯N hydrogen bonds of similar geometry to that of the title compound. Inter­estingly, this pattern is repeated with 4-bromo­phenol 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (Rivera, Uribe et al., 2015[Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 463-465.]), which is isostructural with the title compound. In contrast, 4-chloro-3,5-di­methyl­phenol 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (Rivera, Rojas et al., 2015[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 737-740.]) only forms one O—H⋯N hydrogen bond, nonetheless with similar geometric parameters to those in the title compound. Similarly, in the supra­molecular complex with a 2:1 ratio of 4-iodo­phenol to the aza-donor 1,4-di­aza­bicyclo[2.2.2]octane (Nayak & Pedireddi, 2017[Nayak, A. & Pedireddi, V. R. (2017). J. Mol. Struct. 1130, 251-263.]), the mol­ecules are again connected through O—H⋯N hydrogen bonds but with no halogen-bond inter­action involving the iodo substituent.

5. Synthesis and crystallization

A mixture of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) (0.168g, 1 mmol) and 4-iodo­phenol (0.440g, 2 mmol) was ground at room temperature with a pestle in a mortar for 15 min., as required to complete the reaction (TLC). The mixture was recrystallized from a mixture of n-hexane with a few drops of ethanol to obtain crystals suitable for X-ray analysis, m.p. = 391 K. (yield: 56%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in a difference electron-density map. The hydroxyl H atom was refined freely, while C-bound H atoms were fixed geometrically (C—H = 0.95 or 0.99 Å) and refined using a riding-model approximation, with Uiso(H) set to 1.2Ueq of the parent atom

Table 2
Experimental details

Crystal data
Chemical formula C8H16N4·2C6H5IO
Mr 608.25
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 173
a, b, c (Å) 20.8869 (16), 22.4197 (13), 9.6352 (6)
V3) 4512.0 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.81
Crystal size (mm) 0.24 × 0.23 × 0.23
 
Data collection
Diffractometer Stoe IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.548, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7213, 2102, 2079
Rint 0.029
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.06
No. of reflections 2102
No. of parameters 132
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.67
Absolute structure Classical Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) method preferred over Parsons because s.u. lower
Absolute structure parameter −0.03 (4)
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), XP in SHELXTL-Plus and SHELXS2016 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS2016 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015).

1,3,6,8-Tetraazatricyclo[4.4.1.13,8]dodecane–4-iodophenol (1/2) top
Crystal data top
C8H16N4·2C6H5IODx = 1.791 Mg m3
Mr = 608.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 15571 reflections
a = 20.8869 (16) Åθ = 3.6–25.9°
b = 22.4197 (13) ŵ = 2.81 mm1
c = 9.6352 (6) ÅT = 173 K
V = 4512.0 (5) Å3Block, yellow
Z = 80.24 × 0.23 × 0.23 mm
F(000) = 2368
Data collection top
Stoe IPDS II two-circle
diffractometer
2079 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.029
ω scansθmax = 25.5°, θmin = 3.6°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 2425
Tmin = 0.548, Tmax = 1.000k = 2627
7213 measured reflectionsl = 1111
2102 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0495P)2 + 5.1297P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.25 e Å3
2102 reflectionsΔρmin = 0.67 e Å3
132 parametersAbsolute structure: Classical Flack (1983) method preferred over Parsons because s.u. lower
2 restraintsAbsolute structure parameter: 0.03 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.5189 (2)0.55327 (17)0.2785 (4)0.0293 (9)
N20.4501 (2)0.5309 (2)0.0695 (5)0.0335 (9)
C10.5000000.5000000.3551 (8)0.0350 (16)
H1A0.4638250.5111420.4162300.042*0.5
H1B0.5361760.4888580.4162290.042*0.5
C20.4734 (3)0.5730 (3)0.1705 (6)0.0413 (13)
H2A0.4355850.5899270.2185430.050*
H2B0.4938470.6061190.1190810.050*
C30.5000000.5000000.0073 (9)0.0383 (16)
H3A0.5211090.5295650.0683310.046*0.5
H3B0.4788910.4704370.0683360.046*0.5
C40.3977 (3)0.4922 (3)0.1176 (7)0.0439 (13)
H4A0.3816910.4691700.0371090.053*
H4B0.3622140.5179730.1499240.053*
C50.4138 (3)0.4485 (3)0.2331 (7)0.0456 (14)
H5A0.3868530.4582520.3145390.055*
H5B0.4015460.4079710.2018220.055*
I10.63999 (2)0.68958 (2)1.00445 (6)0.03902 (14)
O10.5030 (2)0.65445 (17)0.4344 (4)0.0364 (8)
H10.518 (3)0.623 (2)0.402 (7)0.05 (2)*
C110.5320 (2)0.6593 (2)0.5604 (6)0.0293 (10)
C120.5220 (3)0.7116 (2)0.6361 (6)0.0352 (11)
H120.4942890.7414640.6003280.042*
C130.5518 (2)0.72031 (19)0.7624 (7)0.0330 (10)
H130.5449630.7561090.8130670.040*
C140.5920 (2)0.6759 (2)0.8149 (6)0.0293 (10)
C150.6015 (2)0.6234 (2)0.7428 (7)0.0312 (9)
H150.6283140.5931580.7803450.037*
C160.5715 (2)0.6147 (2)0.6143 (6)0.0309 (10)
H160.5780320.5787730.5641690.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.038 (2)0.028 (2)0.022 (2)0.0009 (16)0.0024 (17)0.0024 (16)
N20.031 (2)0.045 (2)0.025 (2)0.0090 (19)0.0002 (17)0.0008 (18)
C10.047 (4)0.035 (4)0.023 (3)0.008 (3)0.0000.000
C20.050 (3)0.038 (3)0.036 (3)0.015 (3)0.006 (2)0.004 (2)
C30.032 (3)0.061 (4)0.022 (3)0.011 (3)0.0000.000
C40.026 (2)0.067 (4)0.038 (3)0.007 (2)0.003 (2)0.002 (3)
C50.039 (3)0.050 (3)0.048 (4)0.007 (2)0.001 (3)0.002 (3)
I10.0425 (2)0.03403 (19)0.0405 (2)0.00169 (13)0.00853 (15)0.00435 (16)
O10.044 (2)0.0297 (18)0.0355 (19)0.0035 (16)0.0077 (17)0.0043 (16)
C110.024 (2)0.030 (2)0.034 (2)0.0028 (18)0.0035 (19)0.0018 (19)
C120.035 (3)0.029 (2)0.041 (3)0.005 (2)0.001 (2)0.000 (2)
C130.037 (2)0.0255 (19)0.036 (3)0.0028 (18)0.007 (2)0.005 (3)
C140.027 (2)0.032 (2)0.030 (2)0.0029 (19)0.003 (2)0.000 (2)
C150.030 (2)0.027 (2)0.036 (3)0.0023 (16)0.001 (2)0.001 (2)
C160.033 (2)0.024 (2)0.036 (2)0.0012 (18)0.002 (2)0.002 (2)
Geometric parameters (Å, º) top
N1—C11.458 (5)C5—H5A0.9900
N1—C5i1.474 (7)C5—H5B0.9900
N1—C21.478 (7)I1—C142.106 (5)
N2—C21.440 (8)O1—C111.361 (6)
N2—C31.453 (6)O1—H10.838 (14)
N2—C41.472 (8)C11—C161.395 (7)
C1—H1A0.9900C11—C121.397 (8)
C1—H1B0.9900C12—C131.381 (9)
C2—H2A0.9900C12—H120.9500
C2—H2B0.9900C13—C141.398 (8)
C3—H3A0.9900C13—H130.9500
C3—H3B0.9900C14—C151.382 (7)
C4—C51.520 (9)C15—C161.401 (8)
C4—H4A0.9900C15—H150.9500
C4—H4B0.9900C16—H160.9500
C1—N1—C5i112.8 (4)C5—C4—H4B108.2
C1—N1—C2115.3 (4)H4A—C4—H4B107.3
C5i—N1—C2114.4 (5)N1i—C5—C4116.4 (5)
C2—N2—C3114.5 (4)N1i—C5—H5A108.2
C2—N2—C4115.1 (5)C4—C5—H5A108.2
C3—N2—C4114.4 (4)N1i—C5—H5B108.2
N1—C1—N1i119.2 (6)C4—C5—H5B108.2
N1—C1—H1A107.5H5A—C5—H5B107.3
N1i—C1—H1A107.5C11—O1—H1103 (5)
N1—C1—H1B107.5O1—C11—C16122.6 (5)
N1i—C1—H1B107.5O1—C11—C12117.7 (5)
H1A—C1—H1B107.0C16—C11—C12119.6 (5)
N2—C2—N1119.8 (4)C13—C12—C11120.8 (5)
N2—C2—H2A107.4C13—C12—H12119.6
N1—C2—H2A107.4C11—C12—H12119.6
N2—C2—H2B107.4C12—C13—C14119.3 (5)
N1—C2—H2B107.4C12—C13—H13120.4
H2A—C2—H2B106.9C14—C13—H13120.4
N2—C3—N2i118.8 (7)C15—C14—C13120.8 (5)
N2—C3—H3A107.6C15—C14—I1119.5 (4)
N2i—C3—H3A107.6C13—C14—I1119.8 (4)
N2—C3—H3B107.6C14—C15—C16119.8 (5)
N2i—C3—H3B107.6C14—C15—H15120.1
H3A—C3—H3B107.0C16—C15—H15120.1
N2—C4—C5116.5 (5)C11—C16—C15119.7 (5)
N2—C4—H4A108.2C11—C16—H16120.2
C5—C4—H4A108.2C15—C16—H16120.2
N2—C4—H4B108.2
C5i—N1—C1—N1i82.7 (4)O1—C11—C12—C13177.7 (5)
C2—N1—C1—N1i51.3 (3)C16—C11—C12—C131.5 (8)
C3—N2—C2—N155.1 (7)C11—C12—C13—C140.5 (8)
C4—N2—C2—N180.5 (7)C12—C13—C14—C150.9 (8)
C1—N1—C2—N250.6 (7)C12—C13—C14—I1178.2 (4)
C5i—N1—C2—N282.6 (7)C13—C14—C15—C161.3 (8)
C2—N2—C3—N2i53.6 (4)I1—C14—C15—C16177.8 (4)
C4—N2—C3—N2i82.3 (4)O1—C11—C16—C15178.1 (5)
C2—N2—C4—C565.6 (7)C12—C11—C16—C151.1 (8)
C3—N2—C4—C570.1 (7)C14—C15—C16—C110.3 (8)
N2—C4—C5—N1i3.8 (8)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (1)1.96 (4)2.741 (6)154 (7)
C5—H5B···I1ii0.993.033.961 (7)158
C13—H13···O1iii0.952.533.455 (6)165
Symmetry codes: (ii) x+1, y+1, z1; (iii) x+1, y+3/2, z+1/2.
 

Funding information

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work (research project No. 35816). JJR. is also grateful to COLCIENCIAS for his doctoral scholarship.

References

First citationAakeröy, C. B., Spartz, C. L., Dembowski, S., Dwyre, S. & Desper, J. (2015). IUCrJ, 2, 498–510.  Web of Science CSD CrossRef PubMed IUCr Journals
First citationAlvarez, S. (2013). Dalton Trans. 42, 8617–8636.  Web of Science CrossRef CAS PubMed
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationGeboes, Y., De Proft, F. & Herrebout, W. A. (2017). Acta Cryst. B73, 168–178.  CrossRef IUCr Journals
First citationJin, S., Liu, H., Gao, X. J., Lin, Z., Chen, G. & Wang, D. (2014). J. Mol. Struct. 1075, 124–138.  Web of Science CSD CrossRef CAS
First citationLi, J., Hu, Y.-H., Ge, C.-W., Gong, H.-G. & Gao, H.-K. (2017). Chinese Chem. Lett. https://dx.doi.org/10.1016/j.cclet.2017.06.008
First citationMerz, K. (2006). Cryst. Growth Des. 6, 1615–1619.  Web of Science CSD CrossRef CAS
First citationMurray-Rust, P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 1136.
First citationNayak, A. & Pedireddi, V. R. (2017). J. Mol. Struct. 1130, 251–263.  CSD CrossRef CAS
First citationRivera, A., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o266.  CSD CrossRef IUCr Journals
First citationRivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180–186.  Web of Science CSD CrossRef CAS
First citationRivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 737–740.  CSD CrossRef IUCr Journals
First citationRivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 463–465.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSteiner, T. (2003). Crystallogr. Rev. 9, 177–228.  CrossRef CAS
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
First citationUmezono, S. & Okuno, T. (2017). J. Mol. Struct. 1147, 636–642.  CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds