research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A two-dimensional copper(I) coordination polymer based on 1-[2-(cyclo­hexyl­sulfan­yl)eth­yl]pyridin-2(1H)-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 16 October 2017; accepted 23 October 2017; online 27 October 2017)

The reaction of copper(I) iodide with 1-[2-(cyclo­hexyl­sulfan­yl)eth­yl]pyridin-2(1H)-one (L, C13H19NOS) in aceto­nitrile/di­chloro­methane results in a crystalline coordination polymer, namely poly[bis­{μ2-1-[2-(cyclo­hexyl­sulfan­yl)eth­yl]pyridin-2(1H)-one}tetra-μ3-iodido­tetra­copper(I)], [Cu4I4L2]n. The asymmetric unit comprises two ligand mol­ecules, four copper(I) ions and four iodide ions. Inter­estingly, the O atoms are bound to the soft copper(I) ions. The stair-step clusters of Cu and I atoms in the asymmetric unit are linked repeatedly, giving rise to infinite chains along [100]. Neighbouring infinite chains are linked through the L mol­ecules, forming a two-dimensional brick-wall structure. These two-dimensional networks are stacked alternately along [001]. Additionally, there are inter­molecular C—H⋯I hydrogen bonds and C—H⋯π inter­actions between the ligands.

1. Chemical context

Copper(I) complexes have been studied continuously over several decades because of their potential applications as sensors, catalysts, and gas storage materials (Lin et al., 2016[Lin, X.-M., Niu, J.-L., Wen, P.-X., Pang, Y., Hu, L. & Cai, Y. (2016). Cryst. Growth Des. 16, 4705-4710.]; Ananthnag et al., 2015[Ananthnag, G. S., Mague, J. T. & Balakrishna, M. S. (2015). Inorg. Chem. 54, 10985-10992.]; Pal et al., 2015[Pal, T. K., De, D., Neogi, S., Pachfule, P., Senthilkumar, S., Xu, Q. & Bharadwaj, P. K. (2015). Chem. Eur. J. 21, 19064-19070.]). They exhibit a variety of structures, photoluminescence, and other physical properties as a result of the d10 electron configuration of CuI (Peng et al., 2010[Peng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1-18.]; Ford et al., 1999[Ford, P. C., Cariati, E. & Bourassa, J. (1999). Chem. Rev. 99, 3625-3648.]; Kobayashi & Kato, 2017[Kobayashi, A. & Kato, M. (2017). Chem. Lett. 46, 154-162.]). In addition, the arrangement of donor atoms in the ligands may affect both the structures of the complexes and their physical properties. Copper(I) complexes of flexible ligands with N/S donor atoms have been studied (Jeon et al., 2014[Jeon, Y., Cheon, S., Cho, S., Lee, K. Y., Kim, T. H. & Kim, J. (2014). Cryst. Growth Des. 14, 2105-2109.]; Cho et al., 2015[Cho, S., Jeon, Y., Lee, S., Kim, J. & Kim, T. H. (2015). Chem. Eur. J. 21, 1439-1443.]). Mechanochromism, vapochromism and solvatochromism of such complexes have also been reported (Kwon et al., 2017[Kwon, E., Kim, J., Lee, K. Y. & Kim, T. H. (2017). Inorg. Chem. 56, 943-949.]; Kang et al., 2015[Kang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183-5187.]; Kim et al., 2013[Kim, T. H., Lee, S., Jeon, Y., Shin, Y. W. & Kim, J. (2013). Inorg. Chem. Commun. 33, 114-117.]). Herein we describe the synthesis and crystal structure of a copper(I) complex [Cu4I4L2]n of L (C13H19NOS) with O/S donor atoms. CuI—O bonds have been reported previously in copper(I) coordination polymers with phosphine ligands (Darensbourg et al., 1998[Darensbourg, D. J., Larkins, D. L. & Reibenspies, J. H. (1998). Inorg. Chem. 37, 6125-6128.]) but those with an O/S donor ligand set are unique as far as we know.

2. Structural commentary

The asymmetric unit of the title compound, [Cu4I4L2]n, comprises four copper(I) ions, four μ3-iodide ions, and two L ligands as shown in Fig. 1[link]. In LA (identified by S1) and LB (identified by S2), the pyridyl and cyclo­hexyl rings are in anti and gauche conformations with torsion angles of −154.7 (6)° [C6—S1—C7—C8] and 62.3 (7)° [C19—S2—C20—C21], respectively. All of the CuI atoms (Cu1–Cu4) have distorted tetra­hedral coordination geometries. The Cu1 and Cu2 atoms are bound by three μ3-iodide anions and one S atom, while Cu3 and Cu4 are coordinated by three μ3-iodide ions and one O atom. The ranges of inter­atomic distances in the title compound are 2.7082 (15)–2.7444 (14) Å, 2.297 (2)–2.314 (2) Å, 2.6210 (12)–2.7230 (12) Å, and 2.071 (6)–2.087 (6) Å for Cu—Cu, Cu—S, Cu—I, and Cu—O, respectively (Table 1[link]). Inter­estingly, the O atoms bind to the soft copper(I) cations, implying that the carbonyl O atoms conjugated with pyridyl rings are softer than the hard, ether-like O atoms.

[Scheme 1]

Table 1
Selected bond lengths (Å)

Cu1—S1 2.314 (2) Cu2—I1 2.7230 (12)
Cu1—I1 2.6467 (12) Cu3—O1i 2.087 (6)
Cu1—I2 2.6669 (12) Cu3—I3 2.6210 (12)
Cu1—I3 2.6939 (12) Cu3—I1 2.6458 (12)
Cu1—Cu3 2.7444 (14) Cu3—I4ii 2.6833 (12)
Cu2—S2 2.297 (2) Cu4—O2iii 2.071 (6)
Cu2—I4 2.6256 (12) Cu4—I4 2.6412 (13)
Cu2—I2 2.6544 (12) Cu4—I3iv 2.6800 (13)
Cu2—Cu4 2.7082 (15) Cu4—I2 2.7084 (13)
Symmetry codes: (i) x, y+1, z; (ii) x-1, y, z; (iii) x, y-1, z; (iv) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

3. Supra­molecular features

The step-like clusters of Cu and I atoms in the asymmetric unit are linked repeatedly, generating infinite chains along [100]. Neighbouring infinite chains are linked by the L mol­ecules, forming a two-dimensional brick-wall structure parallel to (001) as shown in Fig. 2[link] (Tzeng & Chang, 2009[Tzeng, B.-C. & Chang, T.-Y. (2009). Cryst. Growth Des. 9, 5343-5350.]). Yellow dashed lines display inter­molecular C8—H8A⋯I4ii, C12—H12⋯I1iii and C21—H21B⋯I3iv [H⋯I = 3.26, 3.30, and 3.08 Å, respectively] hydrogen bonds between ligands. Red dashed lines display inter­molecular C5—H5ACg1v [H⋯Cg1=3.00 Å] inter­actions between the ligands (Fig. 2[link] and Table 2[link]). The two-dimensional brick-wall networks are stacked in an ⋯ababab⋯ fashion along [001] (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N2/C22–C26 ring

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯I4ii 0.99 3.26 4.107 (8) 145
C12—H12⋯I1iii 0.95 3.30 3.899 (8) 123
C21—H21B⋯I3iv 0.99 3.08 3.923 (8) 144
C5—H5ACg1v 0.99 3.00 3.948 (9) 162
Symmetry codes: (ii) x-1, y, z; (iii) x, y-1, z; (iv) x+1, y, z; (v) x-1, y-1, z.
[Figure 2]
Figure 2
A packing diagram showing the inter­molecular C—H⋯I hydrogen bonds (yellow dashed lines) and C—H⋯π inter­actions (red dashed lines) between ligands. H atoms have been omitted for clarity.
[Figure 3]
Figure 3
The two-dimensional brick-wall networks are stacked in an ⋯ababab⋯ fashion along [001]. All H atoms have been omitted for clarity.

4. Database survey

Syntheses and properties of the copper(I) complexes of N/S mixed donor atom ligands have been reported (Jeon et al., 2014[Jeon, Y., Cheon, S., Cho, S., Lee, K. Y., Kim, T. H. & Kim, J. (2014). Cryst. Growth Des. 14, 2105-2109.]; Cho et al., 2015[Cho, S., Jeon, Y., Lee, S., Kim, J. & Kim, T. H. (2015). Chem. Eur. J. 21, 1439-1443.]). Copper(I) complexes of N/S mixed-donor atom ligands with cyclo­hexyl group have also been reported (Park et al., 2016[Park, H., Kwon, E., Kang, G., Kim, J. & Kim, T. H. (2016). Bull. Korean Chem. Soc. 37, 1163-1165.], 2017[Park, H., Kwon, E., Chiang, H., Im, H., Lee, K. Y., Kim, J. & Kim, T. H. (2017). Inorg. Chem. 56, 8287-8294.]). In addition, a database search (CSD Version 5.27, last update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed the crystal structures of three complexes with infinite stair-step (CuI)n cluster units (Jess et al., 2007[Jess, I., Taborsky, P., Pospíšil, J. & Näther, C. (2007). Dalton Trans. 22, 2263-2270.]; Jess & Näther, 2004[Jess, I. & Näther, C. (2004). Eur. J. Inorg. Chem. 14, 2868-2876.]; Graham et al., 2000[Graham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). Inorg. Chem. 39, 5121-5132.]).

5. Synthesis and crystallization

Synthesis of 1-[2-(cyclo­hexyl­sulfan­yl)eth­yl]pyridin-2(1H)-one (L)

Thionyl chloride (2.38 g, 20.0 mmol) was added dropwise to 2-(cyclo­hexyl­thio)­ethanol (3.21 g, 20 mmol) in chloro­form. The mixture was stirred under reflux for 1 h then cooled to 253 K. Chloro­form was removed, yielding crude 2-chloro­ethyl­cyclo­hexyl­sulfide. 2-Hy­droxy­pyridine (1.90 g, 20 mmol) and potassium hydroxide (1.12 g, 20 mmol) were dissolved in 10 ml of tetra­hydro­furan and 5 ml of water, and then the solution was added dropwise to the crude chloride. The solution was refluxed for 24 h and cooled. The crude product was extracted by di­chloro­methane. The di­chloro­methane layer was dried with anhydrous Na2SO4, and evaporated to give a crude oil. Column chromatography (silica gel, MeCOOEt/n–C6H14 = 30/70 (v/v), Rf = 0.28) (Park et al., 2016[Park, H., Kwon, E., Kang, G., Kim, J. & Kim, T. H. (2016). Bull. Korean Chem. Soc. 37, 1163-1165.]). 1H NMR (300 MHz, CDCl3): 7.28 (dd, 2H, py), 6.52 (d, H, py), 6.11 (d, H, py), 4.01 (t, 2H, NCH2), 2.85 (t, 2H, CH2S), 2.51 (d, H, SCH), 2.00–1.13 [m, 10H, (CH2)5]; 13C NMR (39.51 MHz, DMSO): 161.33, 140.03, 139.52, 119.40, 104.86, 49.21, 42.48, 33.15 27.71, 25.44, 25.29.

Preparation of [Cu4I4L2]n

A di­chloro­methane (5 ml) solution of L (0.006 g, 0.025 mmol) was allowed to mix with an aceto­nitrile (5 ml) solution of CuI (0.010 g, 0.053 mmol). The colourless precipitate was filtered and washed with a diethyl ether/aceto­nitrile (5/1 v/v) solution. Single crystals suitable for X-ray analysis were obtained by slow evaporation of di­chloro­methane from the reaction mixture.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H groups, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2 groups, and C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for Csp3—H groups.

Table 3
Experimental details

Crystal data
Chemical formula [Cu4I4(C13H19NOS)2]
Mr 1236.46
Crystal system, space group Monoclinic, P21
Temperature (K) 173
a, b, c (Å) 8.5922 (3), 9.1285 (3), 21.5629 (6)
β (°) 96.754 (1)
V3) 1679.53 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.33
Crystal size (mm) 0.35 × 0.27 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.402, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 29149, 7588, 7376
Rint 0.047
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.072, 1.10
No. of reflections 7588
No. of parameters 362
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.35, −0.84
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.07 (3)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Poly[bis{µ2-1-[2-(cyclohexylsulfanyl)ethyl]pyridin-2(1H)-one}tetra-µ3-iodidotetracopper(I)] top
Crystal data top
[Cu4I4(C13H19NOS)2]F(000) = 1168
Mr = 1236.46Dx = 2.445 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.5922 (3) ÅCell parameters from 9858 reflections
b = 9.1285 (3) Åθ = 2.4–27.5°
c = 21.5629 (6) ŵ = 6.33 mm1
β = 96.754 (1)°T = 173 K
V = 1679.53 (9) Å3Plate, colourless
Z = 20.35 × 0.27 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
7376 reflections with I > 2σ(I)
φ and ω scansRint = 0.047
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 27.5°, θmin = 1.0°
Tmin = 0.402, Tmax = 0.746h = 1110
29149 measured reflectionsk = 1111
7588 independent reflectionsl = 2727
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0224P)2 + 3.3344P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.001
S = 1.10Δρmax = 2.35 e Å3
7588 reflectionsΔρmin = 0.84 e Å3
362 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 0.07 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.14206 (13)0.42954 (11)0.71506 (5)0.0218 (2)
Cu20.46250 (13)0.57157 (12)0.77959 (5)0.0208 (2)
Cu30.03849 (13)0.58815 (13)0.78775 (5)0.0243 (2)
Cu40.66577 (14)0.42199 (11)0.71635 (5)0.0259 (3)
I10.22291 (6)0.45860 (6)0.83671 (2)0.01699 (11)
I20.38662 (6)0.51673 (8)0.65893 (3)0.01980 (13)
I30.11520 (6)0.57738 (7)0.66655 (2)0.01633 (12)
I40.72270 (6)0.46385 (6)0.83810 (2)0.01796 (12)
S10.0444 (2)0.1958 (2)0.69520 (9)0.0164 (4)
S20.4169 (2)0.8155 (2)0.79653 (9)0.0148 (4)
O10.0391 (7)0.1909 (6)0.8126 (3)0.0204 (13)
O20.6473 (7)1.1978 (6)0.7028 (3)0.0186 (13)
N10.0334 (8)0.0164 (9)0.8668 (3)0.0157 (14)
N20.6273 (7)0.9801 (8)0.6501 (3)0.0148 (14)
C10.1061 (10)0.2002 (9)0.5753 (4)0.0179 (17)
H1A0.00860.20680.56360.022*
H1B0.14670.30070.58350.022*
C20.1812 (11)0.1344 (10)0.5219 (4)0.0240 (19)
H2A0.29650.13480.53230.029*
H2B0.15510.19480.48400.029*
C30.1253 (11)0.0219 (10)0.5087 (4)0.0264 (19)
H3A0.18080.06440.47520.032*
H3B0.01160.02170.49410.032*
C40.1567 (11)0.1158 (10)0.5679 (4)0.0230 (19)
H4A0.11280.21510.55940.028*
H4B0.27120.12570.57940.028*
C50.0835 (10)0.0479 (9)0.6222 (4)0.0197 (17)
H5A0.03210.04860.61260.024*
H5B0.11150.10740.66020.024*
C60.1398 (9)0.1084 (8)0.6341 (3)0.0128 (15)
H60.25550.10720.64700.015*
C70.1085 (9)0.0872 (10)0.7639 (4)0.0168 (15)
H7A0.11980.01670.75200.020*
H7B0.21150.12270.78360.020*
C80.0127 (10)0.1007 (9)0.8096 (4)0.0178 (16)
H8A0.02490.20510.82050.021*
H8B0.11510.06480.78960.021*
C90.0908 (10)0.0879 (10)0.9203 (4)0.0204 (17)
H90.10470.19110.91990.024*
C100.1273 (11)0.0125 (11)0.9735 (4)0.026 (2)
H100.16650.06321.01060.031*
C110.1087 (11)0.1392 (10)0.9752 (4)0.026 (2)
H110.13440.19201.01300.031*
C120.0525 (10)0.2107 (9)0.9212 (4)0.0213 (19)
H120.03940.31400.92210.026*
C130.0133 (10)0.1352 (9)0.8641 (4)0.0171 (17)
C140.5272 (11)0.8042 (9)0.9183 (4)0.0205 (18)
H14A0.54730.69870.91220.025*
H14B0.41640.81570.92580.025*
C150.6351 (11)0.8607 (10)0.9755 (4)0.025 (2)
H15A0.61080.80871.01350.030*
H15B0.74580.84070.96990.030*
C160.6116 (12)1.0253 (10)0.9833 (4)0.025 (2)
H16A0.50381.04350.99340.030*
H16B0.68551.06111.01880.030*
C170.6371 (11)1.1094 (10)0.9256 (4)0.0240 (19)
H17A0.74831.10070.91830.029*
H17B0.61461.21430.93200.029*
C180.5324 (12)1.0535 (9)0.8678 (4)0.023 (2)
H18A0.42111.07280.87280.028*
H18B0.55791.10670.83030.028*
C190.5564 (10)0.8896 (9)0.8591 (4)0.0174 (17)
H190.66580.87110.84950.021*
C200.4537 (9)0.9200 (9)0.7285 (4)0.0182 (17)
H20A0.37670.89040.69300.022*
H20B0.43611.02500.73680.022*
C210.6182 (9)0.9018 (9)0.7097 (4)0.0150 (16)
H21A0.69640.94240.74260.018*
H21B0.64140.79660.70460.018*
C220.6172 (10)0.9017 (10)0.5954 (4)0.0208 (18)
H220.60560.79830.59670.025*
C230.6234 (10)0.9677 (11)0.5402 (4)0.0247 (19)
H230.61640.91190.50280.030*
C240.6405 (10)1.1220 (10)0.5384 (4)0.024 (2)
H240.64501.17010.49960.029*
C250.6506 (10)1.2014 (10)0.5922 (4)0.0204 (18)
H250.66411.30460.59050.024*
C260.6411 (9)1.1320 (9)0.6513 (4)0.0161 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0283 (6)0.0185 (5)0.0189 (5)0.0022 (4)0.0032 (4)0.0009 (4)
Cu20.0242 (6)0.0175 (5)0.0204 (5)0.0019 (5)0.0022 (4)0.0004 (4)
Cu30.0324 (6)0.0188 (5)0.0213 (6)0.0011 (5)0.0015 (5)0.0030 (5)
Cu40.0350 (7)0.0201 (5)0.0231 (6)0.0005 (5)0.0051 (5)0.0035 (4)
I10.0184 (2)0.0185 (2)0.0138 (2)0.0043 (2)0.00072 (19)0.0002 (2)
I20.0172 (3)0.0261 (2)0.0159 (3)0.0023 (2)0.0014 (2)0.0020 (2)
I30.0174 (3)0.0159 (2)0.0156 (2)0.0027 (2)0.0016 (2)0.0016 (2)
I40.0189 (2)0.0196 (2)0.0154 (2)0.0012 (2)0.00160 (19)0.0013 (2)
S10.0189 (10)0.0158 (9)0.0146 (10)0.0038 (8)0.0018 (8)0.0016 (7)
S20.0158 (10)0.0137 (8)0.0148 (10)0.0001 (7)0.0010 (8)0.0008 (7)
O10.032 (4)0.014 (3)0.014 (3)0.003 (2)0.003 (3)0.004 (2)
O20.019 (3)0.016 (3)0.021 (3)0.002 (2)0.005 (2)0.001 (3)
N10.019 (3)0.015 (3)0.013 (3)0.002 (3)0.004 (3)0.000 (3)
N20.011 (3)0.017 (4)0.016 (3)0.000 (3)0.000 (2)0.002 (3)
C10.023 (4)0.017 (4)0.012 (4)0.001 (3)0.002 (3)0.005 (3)
C20.024 (5)0.028 (5)0.020 (5)0.002 (4)0.003 (4)0.001 (4)
C30.033 (5)0.026 (5)0.019 (4)0.001 (4)0.001 (4)0.003 (4)
C40.030 (5)0.018 (4)0.020 (5)0.001 (4)0.001 (4)0.005 (3)
C50.025 (4)0.015 (4)0.018 (4)0.005 (4)0.001 (3)0.001 (3)
C60.017 (4)0.012 (4)0.009 (4)0.005 (3)0.000 (3)0.001 (3)
C70.016 (4)0.019 (4)0.016 (4)0.005 (3)0.002 (3)0.002 (3)
C80.020 (4)0.014 (4)0.019 (4)0.000 (3)0.003 (3)0.004 (3)
C90.026 (5)0.021 (4)0.016 (4)0.004 (4)0.008 (3)0.000 (4)
C100.032 (5)0.034 (5)0.011 (4)0.002 (5)0.002 (4)0.003 (4)
C110.030 (5)0.031 (5)0.018 (5)0.011 (4)0.004 (4)0.008 (4)
C120.027 (5)0.015 (4)0.022 (5)0.001 (3)0.005 (4)0.002 (3)
C130.015 (4)0.014 (4)0.023 (5)0.001 (3)0.006 (3)0.002 (3)
C140.028 (5)0.016 (4)0.017 (4)0.001 (3)0.001 (4)0.002 (3)
C150.030 (5)0.025 (4)0.017 (5)0.004 (4)0.006 (4)0.003 (4)
C160.030 (5)0.025 (4)0.020 (5)0.009 (4)0.001 (4)0.008 (4)
C170.030 (5)0.024 (4)0.016 (4)0.000 (4)0.001 (4)0.002 (3)
C180.036 (6)0.017 (5)0.013 (4)0.000 (3)0.006 (4)0.002 (3)
C190.015 (4)0.021 (4)0.017 (4)0.004 (3)0.005 (3)0.002 (3)
C200.018 (4)0.018 (4)0.019 (4)0.001 (3)0.001 (3)0.006 (3)
C210.015 (4)0.016 (4)0.013 (4)0.000 (3)0.002 (3)0.004 (3)
C220.019 (4)0.021 (4)0.022 (5)0.002 (4)0.001 (4)0.006 (4)
C230.022 (4)0.034 (5)0.019 (4)0.004 (4)0.006 (3)0.004 (4)
C240.027 (5)0.030 (5)0.015 (4)0.010 (4)0.003 (4)0.005 (4)
C250.018 (4)0.020 (4)0.022 (5)0.000 (3)0.001 (4)0.006 (4)
C260.009 (4)0.020 (4)0.019 (4)0.001 (3)0.004 (3)0.000 (3)
Geometric parameters (Å, º) top
Cu1—S12.314 (2)C5—C61.519 (11)
Cu1—I12.6467 (12)C5—H5A0.9900
Cu1—I22.6669 (12)C5—H5B0.9900
Cu1—I32.6939 (12)C6—H61.0000
Cu1—Cu32.7444 (14)C7—C81.520 (10)
Cu2—S22.297 (2)C7—H7A0.9900
Cu2—I42.6256 (12)C7—H7B0.9900
Cu2—I22.6544 (12)C8—H8A0.9900
Cu2—Cu42.7082 (15)C8—H8B0.9900
Cu2—I12.7230 (12)C9—C101.343 (12)
Cu3—O1i2.087 (6)C9—H90.9500
Cu3—I32.6210 (12)C10—C111.395 (14)
Cu3—I12.6458 (12)C10—H100.9500
Cu3—I4ii2.6833 (12)C11—C121.374 (13)
Cu4—O2iii2.071 (6)C11—H110.9500
Cu4—I42.6412 (13)C12—C131.415 (12)
Cu4—I3iv2.6800 (13)C12—H120.9500
Cu4—I22.7084 (13)C14—C191.541 (11)
I3—Cu4ii2.6800 (13)C14—C151.541 (12)
I4—Cu3iv2.6834 (12)C14—H14A0.9900
S1—C71.814 (8)C14—H14B0.9900
S1—C61.816 (8)C15—C161.528 (13)
S2—C201.808 (8)C15—H15A0.9900
S2—C191.826 (9)C15—H15B0.9900
O1—C131.256 (10)C16—C171.500 (12)
O1—Cu3iii2.087 (6)C16—H16A0.9900
O2—C261.259 (10)C16—H16B0.9900
O2—Cu4i2.071 (6)C17—C181.535 (12)
N1—C91.367 (11)C17—H17A0.9900
N1—C131.395 (11)C17—H17B0.9900
N1—C81.467 (10)C18—C191.525 (11)
N2—C221.374 (11)C18—H18A0.9900
N2—C261.391 (11)C18—H18B0.9900
N2—C211.481 (10)C19—H191.0000
C1—C21.509 (12)C20—C211.525 (11)
C1—C61.520 (10)C20—H20A0.9900
C1—H1A0.9900C20—H20B0.9900
C1—H1B0.9900C21—H21A0.9900
C2—C31.522 (13)C21—H21B0.9900
C2—H2A0.9900C22—C231.341 (12)
C2—H2B0.9900C22—H220.9500
C3—C41.535 (12)C23—C241.417 (15)
C3—H3A0.9900C23—H230.9500
C3—H3B0.9900C24—C251.362 (13)
C4—C51.524 (11)C24—H240.9500
C4—H4A0.9900C25—C261.433 (12)
C4—H4B0.9900C25—H250.9500
S1—Cu1—I1108.85 (6)C5—C6—C1110.5 (7)
S1—Cu1—I2118.63 (7)C5—C6—S1112.0 (6)
I1—Cu1—I2106.91 (4)C1—C6—S1107.7 (5)
S1—Cu1—I397.29 (7)C5—C6—H6108.8
I1—Cu1—I3116.26 (4)C1—C6—H6108.8
I2—Cu1—I3109.18 (4)S1—C6—H6108.8
S1—Cu1—Cu3112.03 (7)C8—C7—S1108.7 (5)
I1—Cu1—Cu358.75 (3)C8—C7—H7A110.0
I2—Cu1—Cu3129.07 (5)S1—C7—H7A110.0
I3—Cu1—Cu357.62 (3)C8—C7—H7B110.0
S2—Cu2—I4115.97 (7)S1—C7—H7B110.0
S2—Cu2—I2108.17 (7)H7A—C7—H7B108.3
I4—Cu2—I2119.84 (4)N1—C8—C7111.4 (6)
S2—Cu2—Cu4134.49 (7)N1—C8—H8A109.4
I4—Cu2—Cu459.34 (4)C7—C8—H8A109.4
I2—Cu2—Cu460.66 (4)N1—C8—H8B109.4
S2—Cu2—I198.23 (6)C7—C8—H8B109.4
I4—Cu2—I1106.68 (4)H8A—C8—H8B108.0
I2—Cu2—I1105.09 (4)C10—C9—N1120.1 (9)
Cu4—Cu2—I1127.12 (5)C10—C9—H9119.9
O1i—Cu3—I3106.53 (17)N1—C9—H9119.9
O1i—Cu3—I1110.92 (18)C9—C10—C11121.0 (9)
I3—Cu3—I1118.90 (4)C9—C10—H10119.5
O1i—Cu3—I4ii106.23 (18)C11—C10—H10119.5
I3—Cu3—I4ii105.84 (4)C12—C11—C10118.7 (9)
I1—Cu3—I4ii107.65 (4)C12—C11—H11120.7
O1i—Cu3—Cu1132.47 (18)C10—C11—H11120.7
I3—Cu3—Cu160.23 (3)C11—C12—C13122.0 (8)
I1—Cu3—Cu158.78 (3)C11—C12—H12119.0
I4ii—Cu3—Cu1121.23 (5)C13—C12—H12119.0
O2iii—Cu4—I4106.57 (17)O1—C13—N1117.8 (8)
O2iii—Cu4—I3iv120.84 (17)O1—C13—C12126.5 (7)
I4—Cu4—I3iv105.37 (4)N1—C13—C12115.6 (8)
O2iii—Cu4—Cu2121.72 (17)C19—C14—C15110.6 (7)
I4—Cu4—Cu258.77 (3)C19—C14—H14A109.5
I3iv—Cu4—Cu2117.37 (5)C15—C14—H14A109.5
O2iii—Cu4—I2101.65 (17)C19—C14—H14B109.5
I4—Cu4—I2117.31 (4)C15—C14—H14B109.5
I3iv—Cu4—I2105.88 (4)H14A—C14—H14B108.1
Cu2—Cu4—I258.69 (4)C16—C15—C14110.0 (8)
Cu3—I1—Cu162.47 (3)C16—C15—H15A109.7
Cu3—I1—Cu2107.56 (4)C14—C15—H15A109.7
Cu1—I1—Cu273.38 (4)C16—C15—H15B109.7
Cu2—I2—Cu174.17 (4)C14—C15—H15B109.7
Cu2—I2—Cu460.65 (3)H15A—C15—H15B108.2
Cu1—I2—Cu4113.57 (4)C17—C16—C15112.1 (8)
Cu3—I3—Cu4ii74.12 (4)C17—C16—H16A109.2
Cu3—I3—Cu162.16 (4)C15—C16—H16A109.2
Cu4ii—I3—Cu199.33 (4)C17—C16—H16B109.2
Cu2—I4—Cu461.89 (4)C15—C16—H16B109.2
Cu2—I4—Cu3iv107.19 (4)H16A—C16—H16B107.9
Cu4—I4—Cu3iv73.74 (4)C16—C17—C18112.0 (8)
C7—S1—C6103.4 (4)C16—C17—H17A109.2
C7—S1—Cu1106.5 (3)C18—C17—H17A109.2
C6—S1—Cu1110.8 (3)C16—C17—H17B109.2
C20—S2—C19104.0 (4)C18—C17—H17B109.2
C20—S2—Cu2109.5 (3)H17A—C17—H17B107.9
C19—S2—Cu2111.5 (3)C19—C18—C17110.5 (8)
C13—O1—Cu3iii127.4 (5)C19—C18—H18A109.5
C26—O2—Cu4i126.2 (5)C17—C18—H18A109.5
C9—N1—C13122.6 (8)C19—C18—H18B109.5
C9—N1—C8119.6 (8)C17—C18—H18B109.5
C13—N1—C8117.8 (7)H18A—C18—H18B108.1
C22—N2—C26122.1 (7)C18—C19—C14110.9 (7)
C22—N2—C21119.3 (7)C18—C19—S2111.6 (7)
C26—N2—C21118.6 (7)C14—C19—S2105.6 (6)
C2—C1—C6111.1 (7)C18—C19—H19109.6
C2—C1—H1A109.4C14—C19—H19109.6
C6—C1—H1A109.4S2—C19—H19109.6
C2—C1—H1B109.4C21—C20—S2114.5 (6)
C6—C1—H1B109.4C21—C20—H20A108.6
H1A—C1—H1B108.0S2—C20—H20A108.6
C1—C2—C3111.3 (7)C21—C20—H20B108.6
C1—C2—H2A109.4S2—C20—H20B108.6
C3—C2—H2A109.4H20A—C20—H20B107.6
C1—C2—H2B109.4N2—C21—C20108.9 (6)
C3—C2—H2B109.4N2—C21—H21A109.9
H2A—C2—H2B108.0C20—C21—H21A109.9
C2—C3—C4110.3 (7)N2—C21—H21B109.9
C2—C3—H3A109.6C20—C21—H21B109.9
C4—C3—H3A109.6H21A—C21—H21B108.3
C2—C3—H3B109.6C23—C22—N2121.5 (9)
C4—C3—H3B109.6C23—C22—H22119.2
H3A—C3—H3B108.1N2—C22—H22119.2
C5—C4—C3111.3 (7)C22—C23—C24119.1 (9)
C5—C4—H4A109.4C22—C23—H23120.4
C3—C4—H4A109.4C24—C23—H23120.4
C5—C4—H4B109.4C25—C24—C23120.1 (8)
C3—C4—H4B109.4C25—C24—H24120.0
H4A—C4—H4B108.0C23—C24—H24120.0
C6—C5—C4111.1 (7)C24—C25—C26121.2 (8)
C6—C5—H5A109.4C24—C25—H25119.4
C4—C5—H5A109.4C26—C25—H25119.4
C6—C5—H5B109.4O2—C26—N2119.0 (7)
C4—C5—H5B109.4O2—C26—C25125.0 (8)
H5A—C5—H5B108.0N2—C26—C25116.0 (7)
C6—C1—C2—C357.6 (10)C19—C14—C15—C1656.2 (10)
C1—C2—C3—C456.0 (10)C14—C15—C16—C1755.8 (11)
C2—C3—C4—C554.9 (10)C15—C16—C17—C1855.6 (11)
C3—C4—C5—C655.4 (10)C16—C17—C18—C1955.2 (11)
C4—C5—C6—C156.1 (9)C17—C18—C19—C1455.8 (10)
C4—C5—C6—S1176.2 (6)C17—C18—C19—S2173.2 (6)
C2—C1—C6—C557.2 (9)C15—C14—C19—C1857.1 (10)
C2—C1—C6—S1179.8 (6)C15—C14—C19—S2178.1 (6)
C7—S1—C6—C563.5 (6)C20—S2—C19—C1858.8 (7)
Cu1—S1—C6—C5177.3 (5)Cu2—S2—C19—C18176.7 (6)
C7—S1—C6—C1174.7 (6)C20—S2—C19—C14179.3 (5)
Cu1—S1—C6—C160.9 (6)Cu2—S2—C19—C1462.8 (6)
C6—S1—C7—C8154.7 (6)C19—S2—C20—C2162.3 (7)
Cu1—S1—C7—C888.4 (6)Cu2—S2—C20—C2157.0 (6)
C9—N1—C8—C7104.3 (8)C22—N2—C21—C20101.2 (8)
C13—N1—C8—C777.0 (9)C26—N2—C21—C2076.9 (8)
S1—C7—C8—N1179.3 (6)S2—C20—C21—N2174.1 (5)
C13—N1—C9—C101.3 (13)C26—N2—C22—C231.4 (12)
C8—N1—C9—C10177.3 (8)C21—N2—C22—C23179.4 (8)
N1—C9—C10—C110.4 (14)N2—C22—C23—C240.1 (13)
C9—C10—C11—C120.2 (15)C22—C23—C24—C250.0 (13)
C10—C11—C12—C130.1 (14)C23—C24—C25—C261.2 (13)
Cu3iii—O1—C13—N1165.9 (5)Cu4i—O2—C26—N2179.4 (5)
Cu3iii—O1—C13—C1215.3 (13)Cu4i—O2—C26—C251.9 (12)
C9—N1—C13—O1179.5 (7)C22—N2—C26—O2178.8 (7)
C8—N1—C13—O11.9 (11)C21—N2—C26—O20.8 (10)
C9—N1—C13—C121.6 (12)C22—N2—C26—C252.4 (11)
C8—N1—C13—C12177.1 (7)C21—N2—C26—C25179.6 (7)
C11—C12—C13—O1179.8 (9)C24—C25—C26—O2179.0 (8)
C11—C12—C13—N10.9 (13)C24—C25—C26—N22.3 (12)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2/C22–C26 ring
D—H···AD—HH···AD···AD—H···A
C8—H8A···I4ii0.993.264.107 (8)145
C12—H12···I1iii0.953.303.899 (8)123
C21—H21B···I3iv0.993.083.923 (8)144
C5—H5A···Cg1v0.993.003.948 (9)162
Symmetry codes: (ii) x1, y, z; (iii) x, y1, z; (iv) x+1, y, z; (v) x1, y1, z.
 

Funding information

This research was supported by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317 and 2017R1D1A3A03000534).

References

First citationAnanthnag, G. S., Mague, J. T. & Balakrishna, M. S. (2015). Inorg. Chem. 54, 10985–10992.  CSD CrossRef CAS PubMed
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCho, S., Jeon, Y., Lee, S., Kim, J. & Kim, T. H. (2015). Chem. Eur. J. 21, 1439–1443.  Web of Science CSD CrossRef CAS PubMed
First citationDarensbourg, D. J., Larkins, D. L. & Reibenspies, J. H. (1998). Inorg. Chem. 37, 6125–6128.  Web of Science CSD CrossRef PubMed CAS
First citationFord, P. C., Cariati, E. & Bourassa, J. (1999). Chem. Rev. 99, 3625–3648.  Web of Science CrossRef PubMed CAS
First citationGraham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). Inorg. Chem. 39, 5121–5132.  Web of Science CSD CrossRef PubMed CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationJeon, Y., Cheon, S., Cho, S., Lee, K. Y., Kim, T. H. & Kim, J. (2014). Cryst. Growth Des. 14, 2105–2109.  Web of Science CrossRef CAS
First citationJess, I. & Näther, C. (2004). Eur. J. Inorg. Chem. 14, 2868–2876.
First citationJess, I., Taborsky, P., Pospíšil, J. & Näther, C. (2007). Dalton Trans. 22, 2263–2270.
First citationKang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183–5187.  Web of Science CSD CrossRef CAS
First citationKim, T. H., Lee, S., Jeon, Y., Shin, Y. W. & Kim, J. (2013). Inorg. Chem. Commun. 33, 114–117.  CSD CrossRef CAS
First citationKobayashi, A. & Kato, M. (2017). Chem. Lett. 46, 154–162.  CrossRef CAS
First citationKwon, E., Kim, J., Lee, K. Y. & Kim, T. H. (2017). Inorg. Chem. 56, 943–949.  CSD CrossRef CAS PubMed
First citationLin, X.-M., Niu, J.-L., Wen, P.-X., Pang, Y., Hu, L. & Cai, Y. (2016). Cryst. Growth Des. 16, 4705–4710.  CSD CrossRef CAS
First citationPal, T. K., De, D., Neogi, S., Pachfule, P., Senthilkumar, S., Xu, Q. & Bharadwaj, P. K. (2015). Chem. Eur. J. 21, 19064–19070.  CSD CrossRef CAS PubMed
First citationPark, H., Kwon, E., Chiang, H., Im, H., Lee, K. Y., Kim, J. & Kim, T. H. (2017). Inorg. Chem. 56, 8287–8294.  CSD CrossRef CAS PubMed
First citationPark, H., Kwon, E., Kang, G., Kim, J. & Kim, T. H. (2016). Bull. Korean Chem. Soc. 37, 1163–1165.  CrossRef CAS
First citationPeng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1–18.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationTzeng, B.-C. & Chang, T.-Y. (2009). Cryst. Growth Des. 9, 5343–5350.  CSD CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds