research communications
A two-dimensional copper(I) coordination polymer based on 1-[2-(cyclohexylsulfanyl)ethyl]pyridin-2(1H)-one
aDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr
The reaction of copper(I) iodide with 1-[2-(cyclohexylsulfanyl)ethyl]pyridin-2(1H)-one (L, C13H19NOS) in acetonitrile/dichloromethane results in a crystalline coordination polymer, namely poly[bis{μ2-1-[2-(cyclohexylsulfanyl)ethyl]pyridin-2(1H)-one}tetra-μ3-iodidotetracopper(I)], [Cu4I4L2]n. The comprises two ligand molecules, four copper(I) ions and four iodide ions. Interestingly, the O atoms are bound to the soft copper(I) ions. The stair-step clusters of Cu and I atoms in the are linked repeatedly, giving rise to infinite chains along [100]. Neighbouring infinite chains are linked through the L molecules, forming a two-dimensional brick-wall structure. These two-dimensional networks are stacked alternately along [001]. Additionally, there are intermolecular C—H⋯I hydrogen bonds and C—H⋯π interactions between the ligands.
Keywords: crystal structure; coordination polymer; copper(I) iodide; S/O donors.
CCDC reference: 1581394
1. Chemical context
Copper(I) complexes have been studied continuously over several decades because of their potential applications as sensors, catalysts, and gas storage materials (Lin et al., 2016; Ananthnag et al., 2015; Pal et al., 2015). They exhibit a variety of structures, and other physical properties as a result of the d10 of CuI (Peng et al., 2010; Ford et al., 1999; Kobayashi & Kato, 2017). In addition, the arrangement of donor atoms in the ligands may affect both the structures of the complexes and their physical properties. Copper(I) complexes of flexible ligands with N/S donor atoms have been studied (Jeon et al., 2014; Cho et al., 2015). Mechanochromism, vapochromism and solvatochromism of such complexes have also been reported (Kwon et al., 2017; Kang et al., 2015; Kim et al., 2013). Herein we describe the synthesis and of a copper(I) complex [Cu4I4L2]n of L (C13H19NOS) with O/S donor atoms. CuI—O bonds have been reported previously in copper(I) coordination polymers with phosphine ligands (Darensbourg et al., 1998) but those with an O/S donor ligand set are unique as far as we know.
2. Structural commentary
The 4I4L2]n, comprises four copper(I) ions, four μ3-iodide ions, and two L ligands as shown in Fig. 1. In LA (identified by S1) and LB (identified by S2), the pyridyl and cyclohexyl rings are in anti and gauche conformations with torsion angles of −154.7 (6)° [C6—S1—C7—C8] and 62.3 (7)° [C19—S2—C20—C21], respectively. All of the CuI atoms (Cu1–Cu4) have distorted tetrahedral coordination geometries. The Cu1 and Cu2 atoms are bound by three μ3-iodide anions and one S atom, while Cu3 and Cu4 are coordinated by three μ3-iodide ions and one O atom. The ranges of interatomic distances in the title compound are 2.7082 (15)–2.7444 (14) Å, 2.297 (2)–2.314 (2) Å, 2.6210 (12)–2.7230 (12) Å, and 2.071 (6)–2.087 (6) Å for Cu—Cu, Cu—S, Cu—I, and Cu—O, respectively (Table 1). Interestingly, the O atoms bind to the soft copper(I) cations, implying that the carbonyl O atoms conjugated with pyridyl rings are softer than the hard, ether-like O atoms.
of the title compound, [Cu3. Supramolecular features
The step-like clusters of Cu and I atoms in the L molecules, forming a two-dimensional brick-wall structure parallel to (001) as shown in Fig. 2 (Tzeng & Chang, 2009). Yellow dashed lines display intermolecular C8—H8A⋯I4ii, C12—H12⋯I1iii and C21—H21B⋯I3iv [H⋯I = 3.26, 3.30, and 3.08 Å, respectively] hydrogen bonds between ligands. Red dashed lines display intermolecular C5—H5A⋯Cg1v [H⋯Cg1=3.00 Å] interactions between the ligands (Fig. 2 and Table 2). The two-dimensional brick-wall networks are stacked in an ⋯ababab⋯ fashion along [001] (Fig. 3).
are linked repeatedly, generating infinite chains along [100]. Neighbouring infinite chains are linked by the4. Database survey
Syntheses and properties of the copper(I) complexes of N/S mixed donor atom ligands have been reported (Jeon et al., 2014; Cho et al., 2015). Copper(I) complexes of N/S mixed-donor atom ligands with cyclohexyl group have also been reported (Park et al., 2016, 2017). In addition, a database search (CSD Version 5.27, last update February 2017; Groom et al., 2016) showed the crystal structures of three complexes with infinite stair-step (CuI)n cluster units (Jess et al., 2007; Jess & Näther, 2004; Graham et al., 2000).
5. Synthesis and crystallization
Synthesis of 1-[2-(cyclohexylsulfanyl)ethyl]pyridin-2(1H)-one (L)
Thionyl chloride (2.38 g, 20.0 mmol) was added dropwise to 2-(cyclohexylthio)ethanol (3.21 g, 20 mmol) in chloroform. The mixture was stirred under reflux for 1 h then cooled to 253 K. Chloroform was removed, yielding crude 2-chloroethylcyclohexylsulfide. 2-Hydroxypyridine (1.90 g, 20 mmol) and potassium hydroxide (1.12 g, 20 mmol) were dissolved in 10 ml of tetrahydrofuran and 5 ml of water, and then the solution was added dropwise to the crude chloride. The solution was refluxed for 24 h and cooled. The crude product was extracted by dichloromethane. The dichloromethane layer was dried with anhydrous Na2SO4, and evaporated to give a crude oil. (silica gel, MeCOOEt/n–C6H14 = 30/70 (v/v), Rf = 0.28) (Park et al., 2016). 1H NMR (300 MHz, CDCl3): 7.28 (dd, 2H, py), 6.52 (d, H, py), 6.11 (d, H, py), 4.01 (t, 2H, NCH2), 2.85 (t, 2H, CH2S), 2.51 (d, H, SCH), 2.00–1.13 [m, 10H, (CH2)5]; 13C NMR (39.51 MHz, DMSO): 161.33, 140.03, 139.52, 119.40, 104.86, 49.21, 42.48, 33.15 27.71, 25.44, 25.29.
Preparation of [Cu4I4L2]n
A dichloromethane (5 ml) solution of L (0.006 g, 0.025 mmol) was allowed to mix with an acetonitrile (5 ml) solution of CuI (0.010 g, 0.053 mmol). The colourless precipitate was filtered and washed with a diethyl ether/acetonitrile (5/1 v/v) solution. Single crystals suitable for X-ray analysis were obtained by slow evaporation of dichloromethane from the reaction mixture.
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H groups, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2 groups, and C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for Csp3—H groups.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1581394
https://doi.org/10.1107/S2056989017015377/sj5538sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017015377/sj5538Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[Cu4I4(C13H19NOS)2] | F(000) = 1168 |
Mr = 1236.46 | Dx = 2.445 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5922 (3) Å | Cell parameters from 9858 reflections |
b = 9.1285 (3) Å | θ = 2.4–27.5° |
c = 21.5629 (6) Å | µ = 6.33 mm−1 |
β = 96.754 (1)° | T = 173 K |
V = 1679.53 (9) Å3 | Plate, colourless |
Z = 2 | 0.35 × 0.27 × 0.03 mm |
Bruker APEXII CCD diffractometer | 7376 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.047 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 27.5°, θmin = 1.0° |
Tmin = 0.402, Tmax = 0.746 | h = −11→10 |
29149 measured reflections | k = −11→11 |
7588 independent reflections | l = −27→27 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0224P)2 + 3.3344P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.072 | (Δ/σ)max = 0.001 |
S = 1.10 | Δρmax = 2.35 e Å−3 |
7588 reflections | Δρmin = −0.84 e Å−3 |
362 parameters | Absolute structure: Refined as an inversion twin. |
1 restraint | Absolute structure parameter: 0.07 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.14206 (13) | 0.42954 (11) | 0.71506 (5) | 0.0218 (2) | |
Cu2 | 0.46250 (13) | 0.57157 (12) | 0.77959 (5) | 0.0208 (2) | |
Cu3 | −0.03849 (13) | 0.58815 (13) | 0.78775 (5) | 0.0243 (2) | |
Cu4 | 0.66577 (14) | 0.42199 (11) | 0.71635 (5) | 0.0259 (3) | |
I1 | 0.22291 (6) | 0.45860 (6) | 0.83671 (2) | 0.01699 (11) | |
I2 | 0.38662 (6) | 0.51673 (8) | 0.65893 (3) | 0.01980 (13) | |
I3 | −0.11520 (6) | 0.57738 (7) | 0.66655 (2) | 0.01633 (12) | |
I4 | 0.72270 (6) | 0.46385 (6) | 0.83810 (2) | 0.01796 (12) | |
S1 | 0.0444 (2) | 0.1958 (2) | 0.69520 (9) | 0.0164 (4) | |
S2 | 0.4169 (2) | 0.8155 (2) | 0.79653 (9) | 0.0148 (4) | |
O1 | −0.0391 (7) | −0.1909 (6) | 0.8126 (3) | 0.0204 (13) | |
O2 | 0.6473 (7) | 1.1978 (6) | 0.7028 (3) | 0.0186 (13) | |
N1 | 0.0334 (8) | 0.0164 (9) | 0.8668 (3) | 0.0157 (14) | |
N2 | 0.6273 (7) | 0.9801 (8) | 0.6501 (3) | 0.0148 (14) | |
C1 | 0.1061 (10) | 0.2002 (9) | 0.5753 (4) | 0.0179 (17) | |
H1A | −0.0086 | 0.2068 | 0.5636 | 0.022* | |
H1B | 0.1467 | 0.3007 | 0.5835 | 0.022* | |
C2 | 0.1812 (11) | 0.1344 (10) | 0.5219 (4) | 0.0240 (19) | |
H2A | 0.2965 | 0.1348 | 0.5323 | 0.029* | |
H2B | 0.1551 | 0.1948 | 0.4840 | 0.029* | |
C3 | 0.1253 (11) | −0.0219 (10) | 0.5087 (4) | 0.0264 (19) | |
H3A | 0.1808 | −0.0644 | 0.4752 | 0.032* | |
H3B | 0.0116 | −0.0217 | 0.4941 | 0.032* | |
C4 | 0.1567 (11) | −0.1158 (10) | 0.5679 (4) | 0.0230 (19) | |
H4A | 0.1128 | −0.2151 | 0.5594 | 0.028* | |
H4B | 0.2712 | −0.1257 | 0.5794 | 0.028* | |
C5 | 0.0835 (10) | −0.0479 (9) | 0.6222 (4) | 0.0197 (17) | |
H5A | −0.0321 | −0.0486 | 0.6126 | 0.024* | |
H5B | 0.1115 | −0.1074 | 0.6602 | 0.024* | |
C6 | 0.1398 (9) | 0.1084 (8) | 0.6341 (3) | 0.0128 (15) | |
H6 | 0.2555 | 0.1072 | 0.6470 | 0.015* | |
C7 | 0.1085 (9) | 0.0872 (10) | 0.7639 (4) | 0.0168 (15) | |
H7A | 0.1198 | −0.0167 | 0.7520 | 0.020* | |
H7B | 0.2115 | 0.1227 | 0.7836 | 0.020* | |
C8 | −0.0127 (10) | 0.1007 (9) | 0.8096 (4) | 0.0178 (16) | |
H8A | −0.0249 | 0.2051 | 0.8205 | 0.021* | |
H8B | −0.1151 | 0.0648 | 0.7896 | 0.021* | |
C9 | 0.0908 (10) | 0.0879 (10) | 0.9203 (4) | 0.0204 (17) | |
H9 | 0.1047 | 0.1911 | 0.9199 | 0.024* | |
C10 | 0.1273 (11) | 0.0125 (11) | 0.9735 (4) | 0.026 (2) | |
H10 | 0.1665 | 0.0632 | 1.0106 | 0.031* | |
C11 | 0.1087 (11) | −0.1392 (10) | 0.9752 (4) | 0.026 (2) | |
H11 | 0.1344 | −0.1920 | 1.0130 | 0.031* | |
C12 | 0.0525 (10) | −0.2107 (9) | 0.9212 (4) | 0.0213 (19) | |
H12 | 0.0394 | −0.3140 | 0.9221 | 0.026* | |
C13 | 0.0133 (10) | −0.1352 (9) | 0.8641 (4) | 0.0171 (17) | |
C14 | 0.5272 (11) | 0.8042 (9) | 0.9183 (4) | 0.0205 (18) | |
H14A | 0.5473 | 0.6987 | 0.9122 | 0.025* | |
H14B | 0.4164 | 0.8157 | 0.9258 | 0.025* | |
C15 | 0.6351 (11) | 0.8607 (10) | 0.9755 (4) | 0.025 (2) | |
H15A | 0.6108 | 0.8087 | 1.0135 | 0.030* | |
H15B | 0.7458 | 0.8407 | 0.9699 | 0.030* | |
C16 | 0.6116 (12) | 1.0253 (10) | 0.9833 (4) | 0.025 (2) | |
H16A | 0.5038 | 1.0435 | 0.9934 | 0.030* | |
H16B | 0.6855 | 1.0611 | 1.0188 | 0.030* | |
C17 | 0.6371 (11) | 1.1094 (10) | 0.9256 (4) | 0.0240 (19) | |
H17A | 0.7483 | 1.1007 | 0.9183 | 0.029* | |
H17B | 0.6146 | 1.2143 | 0.9320 | 0.029* | |
C18 | 0.5324 (12) | 1.0535 (9) | 0.8678 (4) | 0.023 (2) | |
H18A | 0.4211 | 1.0728 | 0.8728 | 0.028* | |
H18B | 0.5579 | 1.1067 | 0.8303 | 0.028* | |
C19 | 0.5564 (10) | 0.8896 (9) | 0.8591 (4) | 0.0174 (17) | |
H19 | 0.6658 | 0.8711 | 0.8495 | 0.021* | |
C20 | 0.4537 (9) | 0.9200 (9) | 0.7285 (4) | 0.0182 (17) | |
H20A | 0.3767 | 0.8904 | 0.6930 | 0.022* | |
H20B | 0.4361 | 1.0250 | 0.7368 | 0.022* | |
C21 | 0.6182 (9) | 0.9018 (9) | 0.7097 (4) | 0.0150 (16) | |
H21A | 0.6964 | 0.9424 | 0.7426 | 0.018* | |
H21B | 0.6414 | 0.7966 | 0.7046 | 0.018* | |
C22 | 0.6172 (10) | 0.9017 (10) | 0.5954 (4) | 0.0208 (18) | |
H22 | 0.6056 | 0.7983 | 0.5967 | 0.025* | |
C23 | 0.6234 (10) | 0.9677 (11) | 0.5402 (4) | 0.0247 (19) | |
H23 | 0.6164 | 0.9119 | 0.5028 | 0.030* | |
C24 | 0.6405 (10) | 1.1220 (10) | 0.5384 (4) | 0.024 (2) | |
H24 | 0.6450 | 1.1701 | 0.4996 | 0.029* | |
C25 | 0.6506 (10) | 1.2014 (10) | 0.5922 (4) | 0.0204 (18) | |
H25 | 0.6641 | 1.3046 | 0.5905 | 0.024* | |
C26 | 0.6411 (9) | 1.1320 (9) | 0.6513 (4) | 0.0161 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0283 (6) | 0.0185 (5) | 0.0189 (5) | 0.0022 (4) | 0.0032 (4) | −0.0009 (4) |
Cu2 | 0.0242 (6) | 0.0175 (5) | 0.0204 (5) | 0.0019 (5) | 0.0022 (4) | 0.0004 (4) |
Cu3 | 0.0324 (6) | 0.0188 (5) | 0.0213 (6) | 0.0011 (5) | 0.0015 (5) | −0.0030 (5) |
Cu4 | 0.0350 (7) | 0.0201 (5) | 0.0231 (6) | −0.0005 (5) | 0.0051 (5) | −0.0035 (4) |
I1 | 0.0184 (2) | 0.0185 (2) | 0.0138 (2) | −0.0043 (2) | 0.00072 (19) | 0.0002 (2) |
I2 | 0.0172 (3) | 0.0261 (2) | 0.0159 (3) | −0.0023 (2) | 0.0014 (2) | −0.0020 (2) |
I3 | 0.0174 (3) | 0.0159 (2) | 0.0156 (2) | 0.0027 (2) | 0.0016 (2) | 0.0016 (2) |
I4 | 0.0189 (2) | 0.0196 (2) | 0.0154 (2) | 0.0012 (2) | 0.00160 (19) | 0.0013 (2) |
S1 | 0.0189 (10) | 0.0158 (9) | 0.0146 (10) | 0.0038 (8) | 0.0018 (8) | 0.0016 (7) |
S2 | 0.0158 (10) | 0.0137 (8) | 0.0148 (10) | 0.0001 (7) | 0.0010 (8) | 0.0008 (7) |
O1 | 0.032 (4) | 0.014 (3) | 0.014 (3) | −0.003 (2) | −0.003 (3) | −0.004 (2) |
O2 | 0.019 (3) | 0.016 (3) | 0.021 (3) | −0.002 (2) | 0.005 (2) | −0.001 (3) |
N1 | 0.019 (3) | 0.015 (3) | 0.013 (3) | 0.002 (3) | 0.004 (3) | 0.000 (3) |
N2 | 0.011 (3) | 0.017 (4) | 0.016 (3) | 0.000 (3) | 0.000 (2) | −0.002 (3) |
C1 | 0.023 (4) | 0.017 (4) | 0.012 (4) | 0.001 (3) | −0.002 (3) | 0.005 (3) |
C2 | 0.024 (5) | 0.028 (5) | 0.020 (5) | −0.002 (4) | 0.003 (4) | 0.001 (4) |
C3 | 0.033 (5) | 0.026 (5) | 0.019 (4) | 0.001 (4) | 0.001 (4) | −0.003 (4) |
C4 | 0.030 (5) | 0.018 (4) | 0.020 (5) | 0.001 (4) | −0.001 (4) | −0.005 (3) |
C5 | 0.025 (4) | 0.015 (4) | 0.018 (4) | −0.005 (4) | −0.001 (3) | −0.001 (3) |
C6 | 0.017 (4) | 0.012 (4) | 0.009 (4) | 0.005 (3) | 0.000 (3) | 0.001 (3) |
C7 | 0.016 (4) | 0.019 (4) | 0.016 (4) | 0.005 (3) | 0.002 (3) | 0.002 (3) |
C8 | 0.020 (4) | 0.014 (4) | 0.019 (4) | 0.000 (3) | 0.003 (3) | 0.004 (3) |
C9 | 0.026 (5) | 0.021 (4) | 0.016 (4) | −0.004 (4) | 0.008 (3) | 0.000 (4) |
C10 | 0.032 (5) | 0.034 (5) | 0.011 (4) | −0.002 (5) | −0.002 (4) | −0.003 (4) |
C11 | 0.030 (5) | 0.031 (5) | 0.018 (5) | 0.011 (4) | 0.004 (4) | 0.008 (4) |
C12 | 0.027 (5) | 0.015 (4) | 0.022 (5) | −0.001 (3) | 0.005 (4) | 0.002 (3) |
C13 | 0.015 (4) | 0.014 (4) | 0.023 (5) | −0.001 (3) | 0.006 (3) | 0.002 (3) |
C14 | 0.028 (5) | 0.016 (4) | 0.017 (4) | 0.001 (3) | 0.001 (4) | −0.002 (3) |
C15 | 0.030 (5) | 0.025 (4) | 0.017 (5) | 0.004 (4) | −0.006 (4) | 0.003 (4) |
C16 | 0.030 (5) | 0.025 (4) | 0.020 (5) | −0.009 (4) | 0.001 (4) | −0.008 (4) |
C17 | 0.030 (5) | 0.024 (4) | 0.016 (4) | 0.000 (4) | −0.001 (4) | −0.002 (3) |
C18 | 0.036 (6) | 0.017 (5) | 0.013 (4) | 0.000 (3) | −0.006 (4) | 0.002 (3) |
C19 | 0.015 (4) | 0.021 (4) | 0.017 (4) | −0.004 (3) | 0.005 (3) | −0.002 (3) |
C20 | 0.018 (4) | 0.018 (4) | 0.019 (4) | −0.001 (3) | 0.001 (3) | 0.006 (3) |
C21 | 0.015 (4) | 0.016 (4) | 0.013 (4) | 0.000 (3) | −0.002 (3) | 0.004 (3) |
C22 | 0.019 (4) | 0.021 (4) | 0.022 (5) | −0.002 (4) | 0.001 (4) | −0.006 (4) |
C23 | 0.022 (4) | 0.034 (5) | 0.019 (4) | 0.004 (4) | 0.006 (3) | −0.004 (4) |
C24 | 0.027 (5) | 0.030 (5) | 0.015 (4) | −0.010 (4) | 0.003 (4) | 0.005 (4) |
C25 | 0.018 (4) | 0.020 (4) | 0.022 (5) | 0.000 (3) | −0.001 (4) | 0.006 (4) |
C26 | 0.009 (4) | 0.020 (4) | 0.019 (4) | 0.001 (3) | 0.004 (3) | 0.000 (3) |
Cu1—S1 | 2.314 (2) | C5—C6 | 1.519 (11) |
Cu1—I1 | 2.6467 (12) | C5—H5A | 0.9900 |
Cu1—I2 | 2.6669 (12) | C5—H5B | 0.9900 |
Cu1—I3 | 2.6939 (12) | C6—H6 | 1.0000 |
Cu1—Cu3 | 2.7444 (14) | C7—C8 | 1.520 (10) |
Cu2—S2 | 2.297 (2) | C7—H7A | 0.9900 |
Cu2—I4 | 2.6256 (12) | C7—H7B | 0.9900 |
Cu2—I2 | 2.6544 (12) | C8—H8A | 0.9900 |
Cu2—Cu4 | 2.7082 (15) | C8—H8B | 0.9900 |
Cu2—I1 | 2.7230 (12) | C9—C10 | 1.343 (12) |
Cu3—O1i | 2.087 (6) | C9—H9 | 0.9500 |
Cu3—I3 | 2.6210 (12) | C10—C11 | 1.395 (14) |
Cu3—I1 | 2.6458 (12) | C10—H10 | 0.9500 |
Cu3—I4ii | 2.6833 (12) | C11—C12 | 1.374 (13) |
Cu4—O2iii | 2.071 (6) | C11—H11 | 0.9500 |
Cu4—I4 | 2.6412 (13) | C12—C13 | 1.415 (12) |
Cu4—I3iv | 2.6800 (13) | C12—H12 | 0.9500 |
Cu4—I2 | 2.7084 (13) | C14—C19 | 1.541 (11) |
I3—Cu4ii | 2.6800 (13) | C14—C15 | 1.541 (12) |
I4—Cu3iv | 2.6834 (12) | C14—H14A | 0.9900 |
S1—C7 | 1.814 (8) | C14—H14B | 0.9900 |
S1—C6 | 1.816 (8) | C15—C16 | 1.528 (13) |
S2—C20 | 1.808 (8) | C15—H15A | 0.9900 |
S2—C19 | 1.826 (9) | C15—H15B | 0.9900 |
O1—C13 | 1.256 (10) | C16—C17 | 1.500 (12) |
O1—Cu3iii | 2.087 (6) | C16—H16A | 0.9900 |
O2—C26 | 1.259 (10) | C16—H16B | 0.9900 |
O2—Cu4i | 2.071 (6) | C17—C18 | 1.535 (12) |
N1—C9 | 1.367 (11) | C17—H17A | 0.9900 |
N1—C13 | 1.395 (11) | C17—H17B | 0.9900 |
N1—C8 | 1.467 (10) | C18—C19 | 1.525 (11) |
N2—C22 | 1.374 (11) | C18—H18A | 0.9900 |
N2—C26 | 1.391 (11) | C18—H18B | 0.9900 |
N2—C21 | 1.481 (10) | C19—H19 | 1.0000 |
C1—C2 | 1.509 (12) | C20—C21 | 1.525 (11) |
C1—C6 | 1.520 (10) | C20—H20A | 0.9900 |
C1—H1A | 0.9900 | C20—H20B | 0.9900 |
C1—H1B | 0.9900 | C21—H21A | 0.9900 |
C2—C3 | 1.522 (13) | C21—H21B | 0.9900 |
C2—H2A | 0.9900 | C22—C23 | 1.341 (12) |
C2—H2B | 0.9900 | C22—H22 | 0.9500 |
C3—C4 | 1.535 (12) | C23—C24 | 1.417 (15) |
C3—H3A | 0.9900 | C23—H23 | 0.9500 |
C3—H3B | 0.9900 | C24—C25 | 1.362 (13) |
C4—C5 | 1.524 (11) | C24—H24 | 0.9500 |
C4—H4A | 0.9900 | C25—C26 | 1.433 (12) |
C4—H4B | 0.9900 | C25—H25 | 0.9500 |
S1—Cu1—I1 | 108.85 (6) | C5—C6—C1 | 110.5 (7) |
S1—Cu1—I2 | 118.63 (7) | C5—C6—S1 | 112.0 (6) |
I1—Cu1—I2 | 106.91 (4) | C1—C6—S1 | 107.7 (5) |
S1—Cu1—I3 | 97.29 (7) | C5—C6—H6 | 108.8 |
I1—Cu1—I3 | 116.26 (4) | C1—C6—H6 | 108.8 |
I2—Cu1—I3 | 109.18 (4) | S1—C6—H6 | 108.8 |
S1—Cu1—Cu3 | 112.03 (7) | C8—C7—S1 | 108.7 (5) |
I1—Cu1—Cu3 | 58.75 (3) | C8—C7—H7A | 110.0 |
I2—Cu1—Cu3 | 129.07 (5) | S1—C7—H7A | 110.0 |
I3—Cu1—Cu3 | 57.62 (3) | C8—C7—H7B | 110.0 |
S2—Cu2—I4 | 115.97 (7) | S1—C7—H7B | 110.0 |
S2—Cu2—I2 | 108.17 (7) | H7A—C7—H7B | 108.3 |
I4—Cu2—I2 | 119.84 (4) | N1—C8—C7 | 111.4 (6) |
S2—Cu2—Cu4 | 134.49 (7) | N1—C8—H8A | 109.4 |
I4—Cu2—Cu4 | 59.34 (4) | C7—C8—H8A | 109.4 |
I2—Cu2—Cu4 | 60.66 (4) | N1—C8—H8B | 109.4 |
S2—Cu2—I1 | 98.23 (6) | C7—C8—H8B | 109.4 |
I4—Cu2—I1 | 106.68 (4) | H8A—C8—H8B | 108.0 |
I2—Cu2—I1 | 105.09 (4) | C10—C9—N1 | 120.1 (9) |
Cu4—Cu2—I1 | 127.12 (5) | C10—C9—H9 | 119.9 |
O1i—Cu3—I3 | 106.53 (17) | N1—C9—H9 | 119.9 |
O1i—Cu3—I1 | 110.92 (18) | C9—C10—C11 | 121.0 (9) |
I3—Cu3—I1 | 118.90 (4) | C9—C10—H10 | 119.5 |
O1i—Cu3—I4ii | 106.23 (18) | C11—C10—H10 | 119.5 |
I3—Cu3—I4ii | 105.84 (4) | C12—C11—C10 | 118.7 (9) |
I1—Cu3—I4ii | 107.65 (4) | C12—C11—H11 | 120.7 |
O1i—Cu3—Cu1 | 132.47 (18) | C10—C11—H11 | 120.7 |
I3—Cu3—Cu1 | 60.23 (3) | C11—C12—C13 | 122.0 (8) |
I1—Cu3—Cu1 | 58.78 (3) | C11—C12—H12 | 119.0 |
I4ii—Cu3—Cu1 | 121.23 (5) | C13—C12—H12 | 119.0 |
O2iii—Cu4—I4 | 106.57 (17) | O1—C13—N1 | 117.8 (8) |
O2iii—Cu4—I3iv | 120.84 (17) | O1—C13—C12 | 126.5 (7) |
I4—Cu4—I3iv | 105.37 (4) | N1—C13—C12 | 115.6 (8) |
O2iii—Cu4—Cu2 | 121.72 (17) | C19—C14—C15 | 110.6 (7) |
I4—Cu4—Cu2 | 58.77 (3) | C19—C14—H14A | 109.5 |
I3iv—Cu4—Cu2 | 117.37 (5) | C15—C14—H14A | 109.5 |
O2iii—Cu4—I2 | 101.65 (17) | C19—C14—H14B | 109.5 |
I4—Cu4—I2 | 117.31 (4) | C15—C14—H14B | 109.5 |
I3iv—Cu4—I2 | 105.88 (4) | H14A—C14—H14B | 108.1 |
Cu2—Cu4—I2 | 58.69 (4) | C16—C15—C14 | 110.0 (8) |
Cu3—I1—Cu1 | 62.47 (3) | C16—C15—H15A | 109.7 |
Cu3—I1—Cu2 | 107.56 (4) | C14—C15—H15A | 109.7 |
Cu1—I1—Cu2 | 73.38 (4) | C16—C15—H15B | 109.7 |
Cu2—I2—Cu1 | 74.17 (4) | C14—C15—H15B | 109.7 |
Cu2—I2—Cu4 | 60.65 (3) | H15A—C15—H15B | 108.2 |
Cu1—I2—Cu4 | 113.57 (4) | C17—C16—C15 | 112.1 (8) |
Cu3—I3—Cu4ii | 74.12 (4) | C17—C16—H16A | 109.2 |
Cu3—I3—Cu1 | 62.16 (4) | C15—C16—H16A | 109.2 |
Cu4ii—I3—Cu1 | 99.33 (4) | C17—C16—H16B | 109.2 |
Cu2—I4—Cu4 | 61.89 (4) | C15—C16—H16B | 109.2 |
Cu2—I4—Cu3iv | 107.19 (4) | H16A—C16—H16B | 107.9 |
Cu4—I4—Cu3iv | 73.74 (4) | C16—C17—C18 | 112.0 (8) |
C7—S1—C6 | 103.4 (4) | C16—C17—H17A | 109.2 |
C7—S1—Cu1 | 106.5 (3) | C18—C17—H17A | 109.2 |
C6—S1—Cu1 | 110.8 (3) | C16—C17—H17B | 109.2 |
C20—S2—C19 | 104.0 (4) | C18—C17—H17B | 109.2 |
C20—S2—Cu2 | 109.5 (3) | H17A—C17—H17B | 107.9 |
C19—S2—Cu2 | 111.5 (3) | C19—C18—C17 | 110.5 (8) |
C13—O1—Cu3iii | 127.4 (5) | C19—C18—H18A | 109.5 |
C26—O2—Cu4i | 126.2 (5) | C17—C18—H18A | 109.5 |
C9—N1—C13 | 122.6 (8) | C19—C18—H18B | 109.5 |
C9—N1—C8 | 119.6 (8) | C17—C18—H18B | 109.5 |
C13—N1—C8 | 117.8 (7) | H18A—C18—H18B | 108.1 |
C22—N2—C26 | 122.1 (7) | C18—C19—C14 | 110.9 (7) |
C22—N2—C21 | 119.3 (7) | C18—C19—S2 | 111.6 (7) |
C26—N2—C21 | 118.6 (7) | C14—C19—S2 | 105.6 (6) |
C2—C1—C6 | 111.1 (7) | C18—C19—H19 | 109.6 |
C2—C1—H1A | 109.4 | C14—C19—H19 | 109.6 |
C6—C1—H1A | 109.4 | S2—C19—H19 | 109.6 |
C2—C1—H1B | 109.4 | C21—C20—S2 | 114.5 (6) |
C6—C1—H1B | 109.4 | C21—C20—H20A | 108.6 |
H1A—C1—H1B | 108.0 | S2—C20—H20A | 108.6 |
C1—C2—C3 | 111.3 (7) | C21—C20—H20B | 108.6 |
C1—C2—H2A | 109.4 | S2—C20—H20B | 108.6 |
C3—C2—H2A | 109.4 | H20A—C20—H20B | 107.6 |
C1—C2—H2B | 109.4 | N2—C21—C20 | 108.9 (6) |
C3—C2—H2B | 109.4 | N2—C21—H21A | 109.9 |
H2A—C2—H2B | 108.0 | C20—C21—H21A | 109.9 |
C2—C3—C4 | 110.3 (7) | N2—C21—H21B | 109.9 |
C2—C3—H3A | 109.6 | C20—C21—H21B | 109.9 |
C4—C3—H3A | 109.6 | H21A—C21—H21B | 108.3 |
C2—C3—H3B | 109.6 | C23—C22—N2 | 121.5 (9) |
C4—C3—H3B | 109.6 | C23—C22—H22 | 119.2 |
H3A—C3—H3B | 108.1 | N2—C22—H22 | 119.2 |
C5—C4—C3 | 111.3 (7) | C22—C23—C24 | 119.1 (9) |
C5—C4—H4A | 109.4 | C22—C23—H23 | 120.4 |
C3—C4—H4A | 109.4 | C24—C23—H23 | 120.4 |
C5—C4—H4B | 109.4 | C25—C24—C23 | 120.1 (8) |
C3—C4—H4B | 109.4 | C25—C24—H24 | 120.0 |
H4A—C4—H4B | 108.0 | C23—C24—H24 | 120.0 |
C6—C5—C4 | 111.1 (7) | C24—C25—C26 | 121.2 (8) |
C6—C5—H5A | 109.4 | C24—C25—H25 | 119.4 |
C4—C5—H5A | 109.4 | C26—C25—H25 | 119.4 |
C6—C5—H5B | 109.4 | O2—C26—N2 | 119.0 (7) |
C4—C5—H5B | 109.4 | O2—C26—C25 | 125.0 (8) |
H5A—C5—H5B | 108.0 | N2—C26—C25 | 116.0 (7) |
C6—C1—C2—C3 | 57.6 (10) | C19—C14—C15—C16 | 56.2 (10) |
C1—C2—C3—C4 | −56.0 (10) | C14—C15—C16—C17 | −55.8 (11) |
C2—C3—C4—C5 | 54.9 (10) | C15—C16—C17—C18 | 55.6 (11) |
C3—C4—C5—C6 | −55.4 (10) | C16—C17—C18—C19 | −55.2 (11) |
C4—C5—C6—C1 | 56.1 (9) | C17—C18—C19—C14 | 55.8 (10) |
C4—C5—C6—S1 | 176.2 (6) | C17—C18—C19—S2 | 173.2 (6) |
C2—C1—C6—C5 | −57.2 (9) | C15—C14—C19—C18 | −57.1 (10) |
C2—C1—C6—S1 | −179.8 (6) | C15—C14—C19—S2 | −178.1 (6) |
C7—S1—C6—C5 | 63.5 (6) | C20—S2—C19—C18 | 58.8 (7) |
Cu1—S1—C6—C5 | 177.3 (5) | Cu2—S2—C19—C18 | 176.7 (6) |
C7—S1—C6—C1 | −174.7 (6) | C20—S2—C19—C14 | 179.3 (5) |
Cu1—S1—C6—C1 | −60.9 (6) | Cu2—S2—C19—C14 | −62.8 (6) |
C6—S1—C7—C8 | −154.7 (6) | C19—S2—C20—C21 | 62.3 (7) |
Cu1—S1—C7—C8 | 88.4 (6) | Cu2—S2—C20—C21 | −57.0 (6) |
C9—N1—C8—C7 | 104.3 (8) | C22—N2—C21—C20 | −101.2 (8) |
C13—N1—C8—C7 | −77.0 (9) | C26—N2—C21—C20 | 76.9 (8) |
S1—C7—C8—N1 | −179.3 (6) | S2—C20—C21—N2 | 174.1 (5) |
C13—N1—C9—C10 | −1.3 (13) | C26—N2—C22—C23 | 1.4 (12) |
C8—N1—C9—C10 | 177.3 (8) | C21—N2—C22—C23 | 179.4 (8) |
N1—C9—C10—C11 | 0.4 (14) | N2—C22—C23—C24 | −0.1 (13) |
C9—C10—C11—C12 | 0.2 (15) | C22—C23—C24—C25 | 0.0 (13) |
C10—C11—C12—C13 | 0.1 (14) | C23—C24—C25—C26 | −1.2 (13) |
Cu3iii—O1—C13—N1 | 165.9 (5) | Cu4i—O2—C26—N2 | −179.4 (5) |
Cu3iii—O1—C13—C12 | −15.3 (13) | Cu4i—O2—C26—C25 | 1.9 (12) |
C9—N1—C13—O1 | −179.5 (7) | C22—N2—C26—O2 | 178.8 (7) |
C8—N1—C13—O1 | 1.9 (11) | C21—N2—C26—O2 | 0.8 (10) |
C9—N1—C13—C12 | 1.6 (12) | C22—N2—C26—C25 | −2.4 (11) |
C8—N1—C13—C12 | −177.1 (7) | C21—N2—C26—C25 | 179.6 (7) |
C11—C12—C13—O1 | −179.8 (9) | C24—C25—C26—O2 | −179.0 (8) |
C11—C12—C13—N1 | −0.9 (13) | C24—C25—C26—N2 | 2.3 (12) |
Symmetry codes: (i) x, y+1, z; (ii) x−1, y, z; (iii) x, y−1, z; (iv) x+1, y, z. |
Cg1 is the centroid of the N2/C22–C26 ring |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···I4ii | 0.99 | 3.26 | 4.107 (8) | 145 |
C12—H12···I1iii | 0.95 | 3.30 | 3.899 (8) | 123 |
C21—H21B···I3iv | 0.99 | 3.08 | 3.923 (8) | 144 |
C5—H5A···Cg1v | 0.99 | 3.00 | 3.948 (9) | 162 |
Symmetry codes: (ii) x−1, y, z; (iii) x, y−1, z; (iv) x+1, y, z; (v) x−1, y−1, z. |
Funding information
This research was supported by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317 and 2017R1D1A3A03000534).
References
Ananthnag, G. S., Mague, J. T. & Balakrishna, M. S. (2015). Inorg. Chem. 54, 10985–10992. CSD CrossRef CAS PubMed
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cho, S., Jeon, Y., Lee, S., Kim, J. & Kim, T. H. (2015). Chem. Eur. J. 21, 1439–1443. Web of Science CSD CrossRef CAS PubMed
Darensbourg, D. J., Larkins, D. L. & Reibenspies, J. H. (1998). Inorg. Chem. 37, 6125–6128. Web of Science CSD CrossRef PubMed CAS
Ford, P. C., Cariati, E. & Bourassa, J. (1999). Chem. Rev. 99, 3625–3648. Web of Science CrossRef PubMed CAS
Graham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). Inorg. Chem. 39, 5121–5132. Web of Science CSD CrossRef PubMed CAS
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Jeon, Y., Cheon, S., Cho, S., Lee, K. Y., Kim, T. H. & Kim, J. (2014). Cryst. Growth Des. 14, 2105–2109. Web of Science CrossRef CAS
Jess, I. & Näther, C. (2004). Eur. J. Inorg. Chem. 14, 2868–2876.
Jess, I., Taborsky, P., Pospíšil, J. & Näther, C. (2007). Dalton Trans. 22, 2263–2270.
Kang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183–5187. Web of Science CSD CrossRef CAS
Kim, T. H., Lee, S., Jeon, Y., Shin, Y. W. & Kim, J. (2013). Inorg. Chem. Commun. 33, 114–117. CSD CrossRef CAS
Kobayashi, A. & Kato, M. (2017). Chem. Lett. 46, 154–162. CrossRef CAS
Kwon, E., Kim, J., Lee, K. Y. & Kim, T. H. (2017). Inorg. Chem. 56, 943–949. CSD CrossRef CAS PubMed
Lin, X.-M., Niu, J.-L., Wen, P.-X., Pang, Y., Hu, L. & Cai, Y. (2016). Cryst. Growth Des. 16, 4705–4710. CSD CrossRef CAS
Pal, T. K., De, D., Neogi, S., Pachfule, P., Senthilkumar, S., Xu, Q. & Bharadwaj, P. K. (2015). Chem. Eur. J. 21, 19064–19070. CSD CrossRef CAS PubMed
Park, H., Kwon, E., Chiang, H., Im, H., Lee, K. Y., Kim, J. & Kim, T. H. (2017). Inorg. Chem. 56, 8287–8294. CSD CrossRef CAS PubMed
Park, H., Kwon, E., Kang, G., Kim, J. & Kim, T. H. (2016). Bull. Korean Chem. Soc. 37, 1163–1165. CrossRef CAS
Peng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1–18. Web of Science CrossRef CAS
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Tzeng, B.-C. & Chang, T.-Y. (2009). Cryst. Growth Des. 9, 5343–5350. CSD CrossRef CAS
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.