research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl (Z)-2-[(Z)-3-methyl-2-({(E)-1-[(R*)-4-methyl­cyclo­hex-3-en-1-yl]ethyl­­idene}hydrazinyl­­idene)-4-oxo­thia­zolidin-5-yl­­idene]acetate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Organic Synthesis and Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech 40001, Morocco, bInstitute of Molecular Chemistry of Reims, CNRS UMR 7312 Bat. Europol Agro, Moulin of the Housse UFR Sciences, PO Box 1039-51687 Reims Cedex 2, France, and cLaboratory of Applied Spectro-Chemistry and the Environment, University Sultan Moulay Slimane, Faculty of Sciences and Technology, PO Box 523, Beni-Mellal, Morocco
*Correspondence e-mail: a.auhmani@uca.ma

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 2 October 2017; accepted 3 October 2017; online 13 October 2017)

The new title 4-thia­zolidinone derivative, C16H21N3O3S, was obtained from the cyclization reaction of 4-methyl-3-thio­semicarbazone and dimethyl acetyl­enedi­carboxyl­ate (DMAD). The cyclo­hexyl­idene ring has an envelope conformation with the stereogenic centre C atom as the flap. Its mean plane makes a dihedral angle of 56.23 (9)° with the thia­zolidine ring mean plane. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds forming chains propagating in the [001] direction. Within the chains there are offset ππ inter­actions between the thia­zolidine rings of inversion-related mol­ecules [centroid–centroid distance = 3.703 (1) Å]. The chains are linked by further C—H⋯O hydrogen bonds, forming slabs parallel to the ac plane.

1. Chemical context

It has been reported that thia­zolidinones exhibit anti­bacterial (Mayekar & Mulwad, 2008[Mayekar, S. A. & Mulwad, V. V. (2008). Indian J. Chem. 47, 1438-1442.]), anti­fungal (Omar et al. 2010[Omar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Soković, M., Ćirić, A. & Glamočlija, J. (2010). Bioorg. Med. Chem. 18, 426-432.]), anti­convulsant (Bhat et al., 2008[Bhat, M. A., Siddiqui, N. & Khan, S. A. (2008). Indian J. Heterocycl. Chem. 17, 287-288.]), anti­tubercular (Babaoglu et al., 2003[Babaoglu, K., Page, M. A., Jones, V. C., McNeil, M. R., Dong, C., Naismith, J. H. & Lee, R. E. (2003). Bioorg. Med. Chem. Lett. 13, 3227-3230.]), anti-inflammatory (Vigorita et al. 2003[Vigorita, M. G., Ottanà, R., Monforte, F., Maccari, R., Monforte, M. T., Trovato, A., Taviano, M. F., Miceli, N., De Luca, G., Alcaro, S. & Ortuso, F. (2003). Bioorg. Med. Chem. 11, 999-1006.]), anti­histaminic (Agrawal et al., 2000[Agrawal, V. K., Sachan, S. & Khadikar, P. V. (2000). Acta Pharm. 50, 281-290.]), cardiovascular (Suzuki et al., 1999[Suzuki, Y., Akima, M. & Tamura, K. (1999). Gen. Pharmacol. 32, 57-63.]) and anti-HIV (Rawal et al., 2005[Rawal, R. K., Prabhakar, Y. S., Katti, S. B. & De Clercq, E. (2005). Bioorg. Med. Chem. 13, 6771-6776.]) activities.

With the aim of preparing new thia­zolidinone derivatives, we report herein on the synthesis (Fig. 1[link]) and crystal structure of the title compound 3, from 4-methyl-3-thio­semicarbazone 1. Treatment of 1 with dimethyl acetyl­enedi­carboxyl­ate 2 in boiling ethanol for 1 h, afforded the thia­zolidin-4-one 3 in 90% yield. Its structure has also been fully characterized by NMR spectroscopy while its relative stereochemistry was determined based mainly on the synthetic pathway and implied by the X-ray diffraction analysis.

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme for the synthesis of title compound 3.

2. Structural commentary

The title compound 3, is built up from an thia­zolidinone ring linked to cyclo­hexyl­idene-hydrazone and meth­oxy-oxo­ethyl­idene units (Fig. 2[link]). The compound crystallizes in the centrosymmetric space group P[\overline{1}], and the stereogenic centre at C8 was assigned as having an R configuration. As expected, the thia­zolidine ring and all the atoms attached to it (plane A = S1/C4/C5/N1/C6/N2/N3/O1/C3/C14) are roughly coplanar with an r.m.s. deviation of 0.036 Å. Its mean plane makes a dihedral angle of 56.0 (1)° with the mean plane of the cyclo­hexyl­idene ring (C8-C13). The meth­oxy­carbonyl group (C1/O2/O3/C2) is also twisted slightly with respect to plane A, their mean planes being inclined to one another by 11.2 (2)°. The six-membered cyclo­hexyl­idene ring has an envelope conformation with atom C8 as the flap: puckering parameters are Q = 0.494 (2) Å, θ = 129.8 (2)° and φ = 180.8 (3)°. The C7=N3 and N2=C6 bond lengths are 1.282 (2) and 1.278 (2) Å, respectively, consistent with C=N double bonding. The C6—N2—N3—C7, C4—C3—C2—O3 and C3—C2—O3—C1 torsion angles are 175.5 (2), −172.4 (2) and 172.5 (2)°, respectively.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound 3, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked C3—H3⋯O3i hydrogen bonds, forming chains propagating along [001]; see Table 1[link] and Fig. 3[link]. Within the chains there are weak offset ππ stacking inter­actions between inversion-related thia­zole rings [see Fig. 3[link]; Cg1⋯Cg1(−x + 1, −y + 1, −z) = 3.703 (1) Å,where Cg1 is the centroid of the S1/N1/C4–C6 ring, inter­planar distance = 3.468 (1) Å, slippage = 1.298 Å]. The chains are linked by further C—H⋯O hydrogen bonds, forming slabs lying parallel to the ac plane (Table 1[link], Figs. 4[link] and 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.59 3.4133 (19) 146
C1—H1C⋯O1ii 0.98 2.51 3.208 (2) 128
C14—H14A⋯O2iii 0.98 2.45 3.252 (2) 139
C14—H14B⋯O2iv 0.98 2.48 3.409 (2) 159
C15—H15A⋯O3iv 0.98 2.55 3.351 (2) 139
Symmetry codes: (i) -x+1, -y+1, -z-1; (ii) x-1, y, z; (iii) x+1, y, z; (iv) -x+1, -y+1, -z.
[Figure 3]
Figure 3
Partial crystal packing for title compound 3, showing the C3—H3⋯O3i hydrogen bonds and the offset ππ inter­actions between inversion-related mol­ecules, forming chains in the [001] direction (dashed lines; only atom H3 has been included).
[Figure 4]
Figure 4
Packing and hydrogen-bonding inter­actions of the title compound viewed along the b axis. For clarity, only the H atoms involved in the hydrogen bonds (dashed lines) inter­actions have been included.
[Figure 5]
Figure 5
Packing and hydrogen-bonding inter­actions of the title compound, viewed along the a axis. For clarity, only the H atoms involved in hydrogen bonding (dashed lines) have been included.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, last update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using a thia­zolidone substituted by meth­oxy-oxo­ethyll­idene and methyl­hydrazone as the main skeleton gave eight hits. The most relevant structures are methyl (2-{[1-(4-hy­droxy­phen­yl)ethyl­idene]hydrazono}-4-oxo-3-phenyl-1,3-thia­zolidin-5-yl­idene)acetate (AGOMUG; Mohamed, Mague et al., 2013[Mohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1553-o1554.]), methyl (2-{[1-(4-methyl­phen­yl)ethyl­idene]hydrazono}-4-oxo-3-phenyl-1,3-thia­zolidin-5-yl­idene)acetate (NIPPAF; Mague et al., 2013[Mague, J. T., Akkurt, M., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1401-o1402.]) and dimethyl 2-[(4-{N-[5-(2-meth­oxy-2-oxo­ethyl­idene)-4-oxo-3-phenyl-1,3-thia­zolidin-2-yl­idene]ethane­hydrazono­yl}phen­yl)amino]­but-2-enedioate (RIMDIC; Mohamed, Akkurt et al., 2013[Mohamed, S. K., Akkurt, M., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1844-o1845.]).

A comparison of the main C—N, N—N, C—S bond lengths in the title compound and the structures extracted from the CSD shows a good correlation. The C=N—N=C torsion angles indicate that in each case the four atoms are nearly planar, viz. 175.5 (2)° in the title compound, 172.1 (2)° in AGOMUG, −178.9 (2) and −165.5 (2)° in NIPPAF and −167.4 (5)° in RIMDIC.

5. Synthesis and crystallization

To a solution of 4-methyl-3-thio­semicarbazone (200 mg, 1.33 mmol) in ethanol (15 ml) was added dimethyl acetyl­enedi­carboxyl­ate (DMAD) (0.24 ml, 1.66 mmol). The mixture was stirred under reflux for 1 h, leading to the corresponding thia­zolidinone. After cooling, the mixture was extracted with ethyl acetate (3 × 20 ml). The organic layer was washed with water, dried on anhydrous Na2SO4 and then evaporated under reduced pressure. The obtained residue was chromatographed on a silica gel column using hexane as eluent, to give compound 3 (yield 404 mg, 90%). Yellow prismatic crystals were obtained from a petroleum ether solution, by slow evaporation of the solvent at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed in calculated positions with C—H = 0.95–1.00 Å, and refined in the riding-model approximation with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C16H21N3O3S
Mr 335.42
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.0982 (2), 9.9556 (3), 10.5071 (3)
α, β, γ (°) 66.772 (1), 74.572 (1), 77.706 (1)
V3) 836.76 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.88
Crystal size (mm) 0.39 × 0.28 × 0.20
 
Data collection
Diffractometer D8 Venture CMOS area detector
Absorption correction Numerical (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.733, 0.919
No. of measured, independent and observed [I > 2σ(I)] reflections 30681, 3405, 3195
Rint 0.035
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.06
No. of reflections 3405
No. of parameters 212
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.46
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(Z)-2-[(Z)-3-Methyl-2-({(E)-1-[(R*)-4-methylcyclohex-3-en-1-yl]ethylidene}hydrazinylidene)-4-oxothiazolidin-5-ylidene]acetate top
Crystal data top
C16H21N3O3SZ = 2
Mr = 335.42F(000) = 356
Triclinic, P1Dx = 1.331 Mg m3
a = 9.0982 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.9556 (3) ÅCell parameters from 9903 reflections
c = 10.5071 (3) Åθ = 4.9–74.5°
α = 66.772 (1)°µ = 1.88 mm1
β = 74.572 (1)°T = 100 K
γ = 77.706 (1)°Prismatic, yellow
V = 836.76 (4) Å30.39 × 0.28 × 0.20 mm
Data collection top
D8 Venture CMOS area detector
diffractometer
3195 reflections with I > 2σ(I)
Radiation source: microsourceRint = 0.035
φ and ω scansθmax = 74.5°, θmin = 4.7°
Absorption correction: numerical
(SADABS; Bruker, 2012)
h = 1111
Tmin = 0.733, Tmax = 0.919k = 1212
30681 measured reflectionsl = 1213
3405 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.048P)2 + 0.6482P]
where P = (Fo2 + 2Fc2)/3
3405 reflections(Δ/σ)max = 0.016
212 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40715 (4)0.68958 (4)0.11410 (4)0.01854 (12)
O10.80122 (13)0.54559 (13)0.29654 (13)0.0255 (3)
O20.21903 (13)0.59108 (14)0.22869 (13)0.0262 (3)
O30.31331 (13)0.45665 (12)0.36926 (12)0.0219 (3)
N10.70665 (15)0.66298 (14)0.13721 (14)0.0192 (3)
N20.56362 (16)0.77397 (15)0.02334 (15)0.0222 (3)
N30.40773 (15)0.81672 (15)0.07586 (15)0.0215 (3)
C10.15960 (19)0.4245 (2)0.3520 (2)0.0267 (4)
H1A0.12670.35630.25540.040*
H1B0.15940.37930.41960.040*
H1C0.08870.51600.36920.040*
C20.32641 (18)0.53614 (17)0.29626 (17)0.0194 (3)
C30.48814 (18)0.54559 (17)0.30630 (17)0.0205 (3)
H30.56570.50840.36900.025*
C40.52821 (17)0.60574 (17)0.22856 (17)0.0184 (3)
C50.69402 (18)0.59946 (17)0.22780 (17)0.0193 (3)
C60.56930 (18)0.71493 (17)0.06627 (17)0.0189 (3)
C70.38679 (18)0.86854 (17)0.17420 (17)0.0201 (3)
C80.22330 (18)0.90988 (17)0.23980 (17)0.0200 (3)
H80.22021.00190.25790.024*
C90.1056 (2)0.9394 (2)0.14898 (19)0.0281 (4)
H9A0.13371.02030.05790.034*
H9B0.10690.85020.12850.034*
C100.0542 (2)0.9808 (2)0.22322 (18)0.0263 (4)
H100.12691.04670.17020.032*
C110.0941 (2)0.92015 (19)0.3727 (2)0.0259 (4)
C120.01418 (19)0.83015 (18)0.45599 (18)0.0235 (3)
H12A0.02950.73750.51880.028*
H12B0.02360.88050.51750.028*
C130.1742 (2)0.7892 (2)0.38279 (19)0.0289 (4)
H13A0.17780.69620.36810.035*
H13B0.24740.77250.44400.035*
C140.85481 (18)0.66081 (19)0.10627 (19)0.0243 (4)
H14A0.93790.63570.17750.036*
H14B0.86250.58710.01240.036*
H14C0.86330.75810.10820.036*
C150.51144 (19)0.88538 (19)0.23429 (18)0.0239 (3)
H15A0.52900.79660.31620.036*
H15B0.48030.97090.26380.036*
H15C0.60640.89960.16210.036*
C160.2564 (2)0.9523 (2)0.4458 (2)0.0317 (4)
H16A0.31700.87630.45730.048*
H16B0.30161.04880.38880.048*
H16C0.25640.95260.53900.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01467 (19)0.0227 (2)0.0196 (2)0.00267 (14)0.00178 (14)0.00991 (15)
O10.0160 (5)0.0333 (6)0.0293 (7)0.0041 (5)0.0009 (5)0.0163 (5)
O20.0173 (6)0.0360 (7)0.0308 (7)0.0030 (5)0.0017 (5)0.0198 (5)
O30.0184 (5)0.0264 (6)0.0251 (6)0.0044 (4)0.0042 (4)0.0130 (5)
N10.0152 (6)0.0218 (6)0.0207 (7)0.0042 (5)0.0028 (5)0.0073 (5)
N20.0195 (7)0.0258 (7)0.0221 (7)0.0038 (5)0.0033 (5)0.0097 (6)
N30.0195 (7)0.0250 (7)0.0217 (7)0.0035 (5)0.0025 (5)0.0110 (6)
C10.0207 (8)0.0324 (9)0.0324 (10)0.0078 (7)0.0060 (7)0.0144 (8)
C20.0196 (8)0.0206 (7)0.0179 (8)0.0039 (6)0.0031 (6)0.0063 (6)
C30.0170 (7)0.0240 (8)0.0206 (8)0.0040 (6)0.0001 (6)0.0097 (6)
C40.0149 (7)0.0197 (7)0.0185 (8)0.0035 (6)0.0002 (6)0.0060 (6)
C50.0167 (7)0.0206 (7)0.0191 (8)0.0048 (6)0.0011 (6)0.0057 (6)
C60.0172 (7)0.0190 (7)0.0187 (8)0.0036 (6)0.0030 (6)0.0045 (6)
C70.0228 (8)0.0196 (7)0.0182 (8)0.0043 (6)0.0052 (6)0.0055 (6)
C80.0224 (8)0.0216 (7)0.0184 (8)0.0029 (6)0.0050 (6)0.0092 (6)
C90.0258 (9)0.0407 (10)0.0236 (9)0.0015 (7)0.0088 (7)0.0180 (8)
C100.0229 (8)0.0360 (9)0.0225 (9)0.0026 (7)0.0083 (7)0.0111 (7)
C110.0227 (8)0.0282 (8)0.0349 (10)0.0060 (7)0.0035 (7)0.0197 (8)
C120.0267 (8)0.0240 (8)0.0210 (8)0.0058 (6)0.0024 (6)0.0096 (7)
C130.0260 (9)0.0283 (9)0.0239 (9)0.0004 (7)0.0038 (7)0.0032 (7)
C140.0165 (8)0.0305 (9)0.0277 (9)0.0028 (6)0.0062 (6)0.0114 (7)
C150.0232 (8)0.0284 (8)0.0247 (8)0.0027 (6)0.0074 (7)0.0130 (7)
C160.0241 (9)0.0427 (10)0.0343 (10)0.0031 (7)0.0046 (7)0.0215 (9)
Geometric parameters (Å, º) top
S1—C41.7469 (16)C8—H81.0000
S1—C61.7736 (16)C9—C101.512 (2)
O1—C51.212 (2)C9—H9A0.9900
O2—C21.211 (2)C9—H9B0.9900
O3—C21.3403 (19)C10—C111.416 (3)
O3—C11.4495 (19)C10—H100.9500
N1—C51.372 (2)C11—C121.415 (2)
N1—C61.385 (2)C11—C161.504 (2)
N1—C141.462 (2)C12—C131.509 (2)
N2—C61.278 (2)C12—H12A0.9900
N2—N31.4174 (19)C12—H12B0.9900
N3—C71.282 (2)C13—H13A0.9900
C1—H1A0.9800C13—H13B0.9900
C1—H1B0.9800C14—H14A0.9800
C1—H1C0.9800C14—H14B0.9800
C2—C31.467 (2)C14—H14C0.9800
C3—C41.340 (2)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.499 (2)C15—H15C0.9800
C7—C151.503 (2)C16—H16A0.9800
C7—C81.508 (2)C16—H16B0.9800
C8—C91.527 (2)C16—H16C0.9800
C8—C131.532 (2)
C4—S1—C690.05 (7)C10—C9—H9B109.4
C2—O3—C1115.77 (13)C8—C9—H9B109.4
C5—N1—C6115.69 (13)H9A—C9—H9B108.0
C5—N1—C14121.75 (13)C11—C10—C9119.25 (15)
C6—N1—C14122.23 (13)C11—C10—H10120.4
C6—N2—N3108.81 (13)C9—C10—H10120.4
C7—N3—N2114.54 (13)C12—C11—C10122.07 (16)
O3—C1—H1A109.5C12—C11—C16118.75 (16)
O3—C1—H1B109.5C10—C11—C16119.18 (16)
H1A—C1—H1B109.5C11—C12—C13118.89 (15)
O3—C1—H1C109.5C11—C12—H12A107.6
H1A—C1—H1C109.5C13—C12—H12A107.6
H1B—C1—H1C109.5C11—C12—H12B107.6
O2—C2—O3124.53 (14)C13—C12—H12B107.6
O2—C2—C3124.24 (15)H12A—C12—H12B107.0
O3—C2—C3111.22 (13)C12—C13—C8111.68 (14)
C4—C3—C2121.12 (14)C12—C13—H13A109.3
C4—C3—H3119.4C8—C13—H13A109.3
C2—C3—H3119.4C12—C13—H13B109.3
C3—C4—C5120.42 (14)C8—C13—H13B109.3
C3—C4—S1127.81 (12)H13A—C13—H13B107.9
C5—C4—S1111.70 (11)N1—C14—H14A109.5
O1—C5—N1124.96 (14)N1—C14—H14B109.5
O1—C5—C4125.02 (15)H14A—C14—H14B109.5
N1—C5—C4110.01 (13)N1—C14—H14C109.5
N2—C6—N1122.47 (14)H14A—C14—H14C109.5
N2—C6—S1125.00 (12)H14B—C14—H14C109.5
N1—C6—S1112.53 (11)C7—C15—H15A109.5
N3—C7—C15125.43 (15)C7—C15—H15B109.5
N3—C7—C8117.47 (14)H15A—C15—H15B109.5
C15—C7—C8117.04 (14)C7—C15—H15C109.5
C7—C8—C9115.06 (13)H15A—C15—H15C109.5
C7—C8—C13109.94 (13)H15B—C15—H15C109.5
C9—C8—C13108.72 (14)C11—C16—H16A109.5
C7—C8—H8107.6C11—C16—H16B109.5
C9—C8—H8107.6H16A—C16—H16B109.5
C13—C8—H8107.6C11—C16—H16C109.5
C10—C9—C8111.08 (14)H16A—C16—H16C109.5
C10—C9—H9A109.4H16B—C16—H16C109.5
C8—C9—H9A109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.593.4133 (19)146
C1—H1C···O1ii0.982.513.208 (2)128
C14—H14A···O2iii0.982.453.252 (2)139
C14—H14B···O2iv0.982.483.409 (2)159
C15—H15A···O3iv0.982.553.351 (2)139
Symmetry codes: (i) x+1, y+1, z1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y+1, z.
 

Funding information

Funding for this research was provided by: Cadi Ayyad University.

References

First citationAgrawal, V. K., Sachan, S. & Khadikar, P. V. (2000). Acta Pharm. 50, 281–290.  CAS
First citationBabaoglu, K., Page, M. A., Jones, V. C., McNeil, M. R., Dong, C., Naismith, J. H. & Lee, R. E. (2003). Bioorg. Med. Chem. Lett. 13, 3227–3230.  Web of Science CrossRef PubMed CAS
First citationBhat, M. A., Siddiqui, N. & Khan, S. A. (2008). Indian J. Heterocycl. Chem. 17, 287–288.  CAS
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationMague, J. T., Akkurt, M., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1401–o1402.  CSD CrossRef CAS IUCr Journals
First citationMayekar, S. A. & Mulwad, V. V. (2008). Indian J. Chem. 47, 1438–1442.
First citationMohamed, S. K., Akkurt, M., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1844–o1845.  CSD CrossRef IUCr Journals
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1553–o1554.  CSD CrossRef IUCr Journals
First citationOmar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Soković, M., Ćirić, A. & Glamočlija, J. (2010). Bioorg. Med. Chem. 18, 426–432.  Web of Science CrossRef PubMed CAS
First citationRawal, R. K., Prabhakar, Y. S., Katti, S. B. & De Clercq, E. (2005). Bioorg. Med. Chem. 13, 6771–6776.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSuzuki, Y., Akima, M. & Tamura, K. (1999). Gen. Pharmacol. 32, 57–63.  Web of Science CrossRef CAS PubMed
First citationVigorita, M. G., Ottanà, R., Monforte, F., Maccari, R., Monforte, M. T., Trovato, A., Taviano, M. F., Miceli, N., De Luca, G., Alcaro, S. & Ortuso, F. (2003). Bioorg. Med. Chem. 11, 999–1006.  Web of Science CrossRef PubMed CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds