research communications
Z)-2-[(Z)-3-methyl-2-({(E)-1-[(R*)-4-methylcyclohex-3-en-1-yl]ethylidene}hydrazinylidene)-4-oxothiazolidin-5-ylidene]acetate
of methyl (aLaboratory of Organic Synthesis and Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech 40001, Morocco, bInstitute of Molecular Chemistry of Reims, CNRS UMR 7312 Bat. Europol Agro, Moulin of the Housse UFR Sciences, PO Box 1039-51687 Reims Cedex 2, France, and cLaboratory of Applied Spectro-Chemistry and the Environment, University Sultan Moulay Slimane, Faculty of Sciences and Technology, PO Box 523, Beni-Mellal, Morocco
*Correspondence e-mail: a.auhmani@uca.ma
The new title 4-thiazolidinone derivative, C16H21N3O3S, was obtained from the reaction of 4-methyl-3-thiosemicarbazone and dimethyl acetylenedicarboxylate (DMAD). The cyclohexylidene ring has an with the stereogenic centre C atom as the flap. Its mean plane makes a dihedral angle of 56.23 (9)° with the thiazolidine ring mean plane. In the crystal, molecules are linked by C—H⋯O hydrogen bonds forming chains propagating in the [001] direction. Within the chains there are offset π–π interactions between the thiazolidine rings of inversion-related molecules [centroid–centroid distance = 3.703 (1) Å]. The chains are linked by further C—H⋯O hydrogen bonds, forming slabs parallel to the ac plane.
Keywords: crystal structure: hydrazine: thiazolidinone; C—H⋯O hydrogen bonds; offset π–π interactions.
CCDC reference: 1577993
1. Chemical context
It has been reported that thiazolidinones exhibit antibacterial (Mayekar & Mulwad, 2008), antifungal (Omar et al. 2010), anticonvulsant (Bhat et al., 2008), antitubercular (Babaoglu et al., 2003), anti-inflammatory (Vigorita et al. 2003), antihistaminic (Agrawal et al., 2000), cardiovascular (Suzuki et al., 1999) and anti-HIV (Rawal et al., 2005) activities.
With the aim of preparing new thiazolidinone derivatives, we report herein on the synthesis (Fig. 1) and of the title compound 3, from 4-methyl-3-thiosemicarbazone 1. Treatment of 1 with dimethyl acetylenedicarboxylate 2 in boiling ethanol for 1 h, afforded the thiazolidin-4-one 3 in 90% yield. Its structure has also been fully characterized by NMR spectroscopy while its relative stereochemistry was determined based mainly on the synthetic pathway and implied by the X-ray diffraction analysis.
2. Structural commentary
The title compound 3, is built up from an thiazolidinone ring linked to cyclohexylidene-hydrazone and methoxy-oxoethylidene units (Fig. 2). The compound crystallizes in the centrosymmetric P, and the stereogenic centre at C8 was assigned as having an R configuration. As expected, the thiazolidine ring and all the atoms attached to it (plane A = S1/C4/C5/N1/C6/N2/N3/O1/C3/C14) are roughly coplanar with an r.m.s. deviation of 0.036 Å. Its mean plane makes a dihedral angle of 56.0 (1)° with the mean plane of the cyclohexylidene ring (C8-C13). The methoxycarbonyl group (C1/O2/O3/C2) is also twisted slightly with respect to plane A, their mean planes being inclined to one another by 11.2 (2)°. The six-membered cyclohexylidene ring has an with atom C8 as the flap: puckering parameters are Q = 0.494 (2) Å, θ = 129.8 (2)° and φ = 180.8 (3)°. The C7=N3 and N2=C6 bond lengths are 1.282 (2) and 1.278 (2) Å, respectively, consistent with C=N double bonding. The C6—N2—N3—C7, C4—C3—C2—O3 and C3—C2—O3—C1 torsion angles are 175.5 (2), −172.4 (2) and 172.5 (2)°, respectively.
3. Supramolecular features
In the crystal, molecules are linked C3—H3⋯O3i hydrogen bonds, forming chains propagating along [001]; see Table 1 and Fig. 3. Within the chains there are weak offset π–π stacking interactions between inversion-related thiazole rings [see Fig. 3; Cg1⋯Cg1(−x + 1, −y + 1, −z) = 3.703 (1) Å,where Cg1 is the centroid of the S1/N1/C4–C6 ring, interplanar distance = 3.468 (1) Å, slippage = 1.298 Å]. The chains are linked by further C—H⋯O hydrogen bonds, forming slabs lying parallel to the ac plane (Table 1, Figs. 4 and 5).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.38, last update May 2017; Groom et al., 2016) using a thiazolidone substituted by methoxy-oxoethyllidene and methylhydrazone as the main skeleton gave eight hits. The most relevant structures are methyl (2-{[1-(4-hydroxyphenyl)ethylidene]hydrazono}-4-oxo-3-phenyl-1,3-thiazolidin-5-ylidene)acetate (AGOMUG; Mohamed, Mague et al., 2013), methyl (2-{[1-(4-methylphenyl)ethylidene]hydrazono}-4-oxo-3-phenyl-1,3-thiazolidin-5-ylidene)acetate (NIPPAF; Mague et al., 2013) and dimethyl 2-[(4-{N-[5-(2-methoxy-2-oxoethylidene)-4-oxo-3-phenyl-1,3-thiazolidin-2-ylidene]ethanehydrazonoyl}phenyl)amino]but-2-enedioate (RIMDIC; Mohamed, Akkurt et al., 2013).
A comparison of the main C—N, N—N, C—S bond lengths in the title compound and the structures extracted from the CSD shows a good correlation. The C=N—N=C torsion angles indicate that in each case the four atoms are nearly planar, viz. 175.5 (2)° in the title compound, 172.1 (2)° in AGOMUG, −178.9 (2) and −165.5 (2)° in NIPPAF and −167.4 (5)° in RIMDIC.
5. Synthesis and crystallization
To a solution of 4-methyl-3-thiosemicarbazone (200 mg, 1.33 mmol) in ethanol (15 ml) was added dimethyl acetylenedicarboxylate (DMAD) (0.24 ml, 1.66 mmol). The mixture was stirred under reflux for 1 h, leading to the corresponding thiazolidinone. After cooling, the mixture was extracted with ethyl acetate (3 × 20 ml). The organic layer was washed with water, dried on anhydrous Na2SO4 and then evaporated under reduced pressure. The obtained residue was chromatographed on a silica gel column using hexane as to give compound 3 (yield 404 mg, 90%). Yellow prismatic crystals were obtained from a petroleum ether solution, by slow evaporation of the solvent at room temperature.
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were placed in calculated positions with C—H = 0.95–1.00 Å, and refined in the riding-model approximation with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1577993
https://doi.org/10.1107/S2056989017014311/su5396sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017014311/su5396Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017014311/su5396Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).C16H21N3O3S | Z = 2 |
Mr = 335.42 | F(000) = 356 |
Triclinic, P1 | Dx = 1.331 Mg m−3 |
a = 9.0982 (2) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 9.9556 (3) Å | Cell parameters from 9903 reflections |
c = 10.5071 (3) Å | θ = 4.9–74.5° |
α = 66.772 (1)° | µ = 1.88 mm−1 |
β = 74.572 (1)° | T = 100 K |
γ = 77.706 (1)° | Prismatic, yellow |
V = 836.76 (4) Å3 | 0.39 × 0.28 × 0.20 mm |
D8 Venture CMOS area detector diffractometer | 3195 reflections with I > 2σ(I) |
Radiation source: microsource | Rint = 0.035 |
φ and ω scans | θmax = 74.5°, θmin = 4.7° |
Absorption correction: numerical (SADABS; Bruker, 2012) | h = −11→11 |
Tmin = 0.733, Tmax = 0.919 | k = −12→12 |
30681 measured reflections | l = −12→13 |
3405 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.048P)2 + 0.6482P] where P = (Fo2 + 2Fc2)/3 |
3405 reflections | (Δ/σ)max = 0.016 |
212 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.40715 (4) | 0.68958 (4) | −0.11410 (4) | 0.01854 (12) | |
O1 | 0.80122 (13) | 0.54559 (13) | −0.29654 (13) | 0.0255 (3) | |
O2 | 0.21903 (13) | 0.59108 (14) | −0.22869 (13) | 0.0262 (3) | |
O3 | 0.31331 (13) | 0.45665 (12) | −0.36926 (12) | 0.0219 (3) | |
N1 | 0.70665 (15) | 0.66298 (14) | −0.13721 (14) | 0.0192 (3) | |
N2 | 0.56362 (16) | 0.77397 (15) | 0.02334 (15) | 0.0222 (3) | |
N3 | 0.40773 (15) | 0.81672 (15) | 0.07586 (15) | 0.0215 (3) | |
C1 | 0.15960 (19) | 0.4245 (2) | −0.3520 (2) | 0.0267 (4) | |
H1A | 0.1267 | 0.3563 | −0.2554 | 0.040* | |
H1B | 0.1594 | 0.3793 | −0.4196 | 0.040* | |
H1C | 0.0887 | 0.5160 | −0.3692 | 0.040* | |
C2 | 0.32641 (18) | 0.53614 (17) | −0.29626 (17) | 0.0194 (3) | |
C3 | 0.48814 (18) | 0.54559 (17) | −0.30630 (17) | 0.0205 (3) | |
H3 | 0.5657 | 0.5084 | −0.3690 | 0.025* | |
C4 | 0.52821 (17) | 0.60574 (17) | −0.22856 (17) | 0.0184 (3) | |
C5 | 0.69402 (18) | 0.59946 (17) | −0.22780 (17) | 0.0193 (3) | |
C6 | 0.56930 (18) | 0.71493 (17) | −0.06627 (17) | 0.0189 (3) | |
C7 | 0.38679 (18) | 0.86854 (17) | 0.17420 (17) | 0.0201 (3) | |
C8 | 0.22330 (18) | 0.90988 (17) | 0.23980 (17) | 0.0200 (3) | |
H8 | 0.2202 | 1.0019 | 0.2579 | 0.024* | |
C9 | 0.1056 (2) | 0.9394 (2) | 0.14898 (19) | 0.0281 (4) | |
H9A | 0.1337 | 1.0203 | 0.0579 | 0.034* | |
H9B | 0.1069 | 0.8502 | 0.1285 | 0.034* | |
C10 | −0.0542 (2) | 0.9808 (2) | 0.22322 (18) | 0.0263 (4) | |
H10 | −0.1269 | 1.0467 | 0.1702 | 0.032* | |
C11 | −0.0941 (2) | 0.92015 (19) | 0.3727 (2) | 0.0259 (4) | |
C12 | 0.01418 (19) | 0.83015 (18) | 0.45599 (18) | 0.0235 (3) | |
H12A | −0.0295 | 0.7375 | 0.5188 | 0.028* | |
H12B | 0.0236 | 0.8805 | 0.5175 | 0.028* | |
C13 | 0.1742 (2) | 0.7892 (2) | 0.38279 (19) | 0.0289 (4) | |
H13A | 0.1778 | 0.6962 | 0.3681 | 0.035* | |
H13B | 0.2474 | 0.7725 | 0.4440 | 0.035* | |
C14 | 0.85481 (18) | 0.66081 (19) | −0.10627 (19) | 0.0243 (4) | |
H14A | 0.9379 | 0.6357 | −0.1775 | 0.036* | |
H14B | 0.8625 | 0.5871 | −0.0124 | 0.036* | |
H14C | 0.8633 | 0.7581 | −0.1082 | 0.036* | |
C15 | 0.51144 (19) | 0.88538 (19) | 0.23429 (18) | 0.0239 (3) | |
H15A | 0.5290 | 0.7966 | 0.3162 | 0.036* | |
H15B | 0.4803 | 0.9709 | 0.2638 | 0.036* | |
H15C | 0.6064 | 0.8996 | 0.1621 | 0.036* | |
C16 | −0.2564 (2) | 0.9523 (2) | 0.4458 (2) | 0.0317 (4) | |
H16A | −0.3170 | 0.8763 | 0.4573 | 0.048* | |
H16B | −0.3016 | 1.0488 | 0.3888 | 0.048* | |
H16C | −0.2564 | 0.9526 | 0.5390 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01467 (19) | 0.0227 (2) | 0.0196 (2) | −0.00267 (14) | −0.00178 (14) | −0.00991 (15) |
O1 | 0.0160 (5) | 0.0333 (6) | 0.0293 (7) | −0.0041 (5) | 0.0009 (5) | −0.0163 (5) |
O2 | 0.0173 (6) | 0.0360 (7) | 0.0308 (7) | −0.0030 (5) | −0.0017 (5) | −0.0198 (5) |
O3 | 0.0184 (5) | 0.0264 (6) | 0.0251 (6) | −0.0044 (4) | −0.0042 (4) | −0.0130 (5) |
N1 | 0.0152 (6) | 0.0218 (6) | 0.0207 (7) | −0.0042 (5) | −0.0028 (5) | −0.0073 (5) |
N2 | 0.0195 (7) | 0.0258 (7) | 0.0221 (7) | −0.0038 (5) | −0.0033 (5) | −0.0097 (6) |
N3 | 0.0195 (7) | 0.0250 (7) | 0.0217 (7) | −0.0035 (5) | −0.0025 (5) | −0.0110 (6) |
C1 | 0.0207 (8) | 0.0324 (9) | 0.0324 (10) | −0.0078 (7) | −0.0060 (7) | −0.0144 (8) |
C2 | 0.0196 (8) | 0.0206 (7) | 0.0179 (8) | −0.0039 (6) | −0.0031 (6) | −0.0063 (6) |
C3 | 0.0170 (7) | 0.0240 (8) | 0.0206 (8) | −0.0040 (6) | −0.0001 (6) | −0.0097 (6) |
C4 | 0.0149 (7) | 0.0197 (7) | 0.0185 (8) | −0.0035 (6) | −0.0002 (6) | −0.0060 (6) |
C5 | 0.0167 (7) | 0.0206 (7) | 0.0191 (8) | −0.0048 (6) | −0.0011 (6) | −0.0057 (6) |
C6 | 0.0172 (7) | 0.0190 (7) | 0.0187 (8) | −0.0036 (6) | −0.0030 (6) | −0.0045 (6) |
C7 | 0.0228 (8) | 0.0196 (7) | 0.0182 (8) | −0.0043 (6) | −0.0052 (6) | −0.0055 (6) |
C8 | 0.0224 (8) | 0.0216 (7) | 0.0184 (8) | −0.0029 (6) | −0.0050 (6) | −0.0092 (6) |
C9 | 0.0258 (9) | 0.0407 (10) | 0.0236 (9) | 0.0015 (7) | −0.0088 (7) | −0.0180 (8) |
C10 | 0.0229 (8) | 0.0360 (9) | 0.0225 (9) | −0.0026 (7) | −0.0083 (7) | −0.0111 (7) |
C11 | 0.0227 (8) | 0.0282 (8) | 0.0349 (10) | −0.0060 (7) | −0.0035 (7) | −0.0197 (8) |
C12 | 0.0267 (8) | 0.0240 (8) | 0.0210 (8) | −0.0058 (6) | −0.0024 (6) | −0.0096 (7) |
C13 | 0.0260 (9) | 0.0283 (9) | 0.0239 (9) | 0.0004 (7) | −0.0038 (7) | −0.0032 (7) |
C14 | 0.0165 (8) | 0.0305 (9) | 0.0277 (9) | −0.0028 (6) | −0.0062 (6) | −0.0114 (7) |
C15 | 0.0232 (8) | 0.0284 (8) | 0.0247 (8) | −0.0027 (6) | −0.0074 (7) | −0.0130 (7) |
C16 | 0.0241 (9) | 0.0427 (10) | 0.0343 (10) | −0.0031 (7) | −0.0046 (7) | −0.0215 (9) |
S1—C4 | 1.7469 (16) | C8—H8 | 1.0000 |
S1—C6 | 1.7736 (16) | C9—C10 | 1.512 (2) |
O1—C5 | 1.212 (2) | C9—H9A | 0.9900 |
O2—C2 | 1.211 (2) | C9—H9B | 0.9900 |
O3—C2 | 1.3403 (19) | C10—C11 | 1.416 (3) |
O3—C1 | 1.4495 (19) | C10—H10 | 0.9500 |
N1—C5 | 1.372 (2) | C11—C12 | 1.415 (2) |
N1—C6 | 1.385 (2) | C11—C16 | 1.504 (2) |
N1—C14 | 1.462 (2) | C12—C13 | 1.509 (2) |
N2—C6 | 1.278 (2) | C12—H12A | 0.9900 |
N2—N3 | 1.4174 (19) | C12—H12B | 0.9900 |
N3—C7 | 1.282 (2) | C13—H13A | 0.9900 |
C1—H1A | 0.9800 | C13—H13B | 0.9900 |
C1—H1B | 0.9800 | C14—H14A | 0.9800 |
C1—H1C | 0.9800 | C14—H14B | 0.9800 |
C2—C3 | 1.467 (2) | C14—H14C | 0.9800 |
C3—C4 | 1.340 (2) | C15—H15A | 0.9800 |
C3—H3 | 0.9500 | C15—H15B | 0.9800 |
C4—C5 | 1.499 (2) | C15—H15C | 0.9800 |
C7—C15 | 1.503 (2) | C16—H16A | 0.9800 |
C7—C8 | 1.508 (2) | C16—H16B | 0.9800 |
C8—C9 | 1.527 (2) | C16—H16C | 0.9800 |
C8—C13 | 1.532 (2) | ||
C4—S1—C6 | 90.05 (7) | C10—C9—H9B | 109.4 |
C2—O3—C1 | 115.77 (13) | C8—C9—H9B | 109.4 |
C5—N1—C6 | 115.69 (13) | H9A—C9—H9B | 108.0 |
C5—N1—C14 | 121.75 (13) | C11—C10—C9 | 119.25 (15) |
C6—N1—C14 | 122.23 (13) | C11—C10—H10 | 120.4 |
C6—N2—N3 | 108.81 (13) | C9—C10—H10 | 120.4 |
C7—N3—N2 | 114.54 (13) | C12—C11—C10 | 122.07 (16) |
O3—C1—H1A | 109.5 | C12—C11—C16 | 118.75 (16) |
O3—C1—H1B | 109.5 | C10—C11—C16 | 119.18 (16) |
H1A—C1—H1B | 109.5 | C11—C12—C13 | 118.89 (15) |
O3—C1—H1C | 109.5 | C11—C12—H12A | 107.6 |
H1A—C1—H1C | 109.5 | C13—C12—H12A | 107.6 |
H1B—C1—H1C | 109.5 | C11—C12—H12B | 107.6 |
O2—C2—O3 | 124.53 (14) | C13—C12—H12B | 107.6 |
O2—C2—C3 | 124.24 (15) | H12A—C12—H12B | 107.0 |
O3—C2—C3 | 111.22 (13) | C12—C13—C8 | 111.68 (14) |
C4—C3—C2 | 121.12 (14) | C12—C13—H13A | 109.3 |
C4—C3—H3 | 119.4 | C8—C13—H13A | 109.3 |
C2—C3—H3 | 119.4 | C12—C13—H13B | 109.3 |
C3—C4—C5 | 120.42 (14) | C8—C13—H13B | 109.3 |
C3—C4—S1 | 127.81 (12) | H13A—C13—H13B | 107.9 |
C5—C4—S1 | 111.70 (11) | N1—C14—H14A | 109.5 |
O1—C5—N1 | 124.96 (14) | N1—C14—H14B | 109.5 |
O1—C5—C4 | 125.02 (15) | H14A—C14—H14B | 109.5 |
N1—C5—C4 | 110.01 (13) | N1—C14—H14C | 109.5 |
N2—C6—N1 | 122.47 (14) | H14A—C14—H14C | 109.5 |
N2—C6—S1 | 125.00 (12) | H14B—C14—H14C | 109.5 |
N1—C6—S1 | 112.53 (11) | C7—C15—H15A | 109.5 |
N3—C7—C15 | 125.43 (15) | C7—C15—H15B | 109.5 |
N3—C7—C8 | 117.47 (14) | H15A—C15—H15B | 109.5 |
C15—C7—C8 | 117.04 (14) | C7—C15—H15C | 109.5 |
C7—C8—C9 | 115.06 (13) | H15A—C15—H15C | 109.5 |
C7—C8—C13 | 109.94 (13) | H15B—C15—H15C | 109.5 |
C9—C8—C13 | 108.72 (14) | C11—C16—H16A | 109.5 |
C7—C8—H8 | 107.6 | C11—C16—H16B | 109.5 |
C9—C8—H8 | 107.6 | H16A—C16—H16B | 109.5 |
C13—C8—H8 | 107.6 | C11—C16—H16C | 109.5 |
C10—C9—C8 | 111.08 (14) | H16A—C16—H16C | 109.5 |
C10—C9—H9A | 109.4 | H16B—C16—H16C | 109.5 |
C8—C9—H9A | 109.4 |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O3i | 0.95 | 2.59 | 3.4133 (19) | 146 |
C1—H1C···O1ii | 0.98 | 2.51 | 3.208 (2) | 128 |
C14—H14A···O2iii | 0.98 | 2.45 | 3.252 (2) | 139 |
C14—H14B···O2iv | 0.98 | 2.48 | 3.409 (2) | 159 |
C15—H15A···O3iv | 0.98 | 2.55 | 3.351 (2) | 139 |
Symmetry codes: (i) −x+1, −y+1, −z−1; (ii) x−1, y, z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z. |
Funding information
Funding for this research was provided by: Cadi Ayyad University.
References
Agrawal, V. K., Sachan, S. & Khadikar, P. V. (2000). Acta Pharm. 50, 281–290. CAS
Babaoglu, K., Page, M. A., Jones, V. C., McNeil, M. R., Dong, C., Naismith, J. H. & Lee, R. E. (2003). Bioorg. Med. Chem. Lett. 13, 3227–3230. Web of Science CrossRef PubMed CAS
Bhat, M. A., Siddiqui, N. & Khan, S. A. (2008). Indian J. Heterocycl. Chem. 17, 287–288. CAS
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Mague, J. T., Akkurt, M., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1401–o1402. CSD CrossRef CAS IUCr Journals
Mayekar, S. A. & Mulwad, V. V. (2008). Indian J. Chem. 47, 1438–1442.
Mohamed, S. K., Akkurt, M., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1844–o1845. CSD CrossRef IUCr Journals
Mohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1553–o1554. CSD CrossRef IUCr Journals
Omar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Soković, M., Ćirić, A. & Glamočlija, J. (2010). Bioorg. Med. Chem. 18, 426–432. Web of Science CrossRef PubMed CAS
Rawal, R. K., Prabhakar, Y. S., Katti, S. B. & De Clercq, E. (2005). Bioorg. Med. Chem. 13, 6771–6776. Web of Science CrossRef PubMed CAS
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals
Suzuki, Y., Akima, M. & Tamura, K. (1999). Gen. Pharmacol. 32, 57–63. Web of Science CrossRef CAS PubMed
Vigorita, M. G., Ottanà, R., Monforte, F., Maccari, R., Monforte, M. T., Trovato, A., Taviano, M. F., Miceli, N., De Luca, G., Alcaro, S. & Ortuso, F. (2003). Bioorg. Med. Chem. 11, 999–1006. Web of Science CrossRef PubMed CAS
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.