research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Green synthesis and crystal structure of 3-(benzo­thia­zol-2-yl)thio­phene

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bFaculty of Foundation Science, College of Printing Industry, Phuc Dien, Bac Tu Liem, Hanoi, Vietnam, cVNU University of Science, Department of Inorganic Chemistry, 19 Le Thanh Tong Street, Hoan Kiem District, Hanoi, Vietnam, and dDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: Luc.VanMeervelt@kuleuven.be

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 26 September 2017; accepted 9 October 2017; online 13 October 2017)

The title compound, C11H7NS2, was prepared in high yield (87%) using a solvent-free microwave-assisted synthesis. The structure shows whole-mol­ecule disorder with occupancies for two orientations (A and B) of 0.4884 (10) and 0.5116 (10), respectively. The thio­phene and benzo­thia­zole rings are almost planar and make dihedral angles of 10.02 (18) and 12.54 (19)° for orientations A and B, respectively. Slipped ππ stacking between the aromatic rings, together with C—H⋯π, C—H⋯S and C—H⋯N inter­actions, result in a herringbone motif in the crystal packing.

1. Chemical context

Thio­phene-containing heterocycles have many applications in pharmacology, such as anti-inflammatory and analgesic agents (Issa et al., 2009[Issa, M. I. F., Mohamed, A. A. R., Seham, E., Omar, M. E., Abd, E. & Siham, M. E. (2009). Eur. J. Med. Chem. 44, 1718-1725.]), electrochromic and electronic devices (Elbing et al., 2008[Elbing, M., Garcia, A., Urban, S., Nguyen, T. Q. & Bazan, G. C. (2008). Macromolecules, 41, 9146-9155.]), and polyelectrolytes-based water-soluble sensing agents for the detection of DNA, proteins and small bioanalytes (Ho et al., 2008[Ho, H. A., Najari, A. & Leclerc, M. (2008). Acc. Chem. Res. 41, 168-178.]; Feng et al., 2008[Feng, F., He, F., An, L., Wang, S., Li, Y. & Zhu, D. (2008). Adv. Mater. 20, 2959-2964.]). Benzo­thia­zole-based compounds have attracted much attention in recent times due to their wide-ranging biological activities, such as anti­cancer, anti­fungal and anti­bacterial activities (Aiello et al., 2008[Aiello, S., Wells, G., Stone, E. L., Kadri, H., Bazzi, R., Bell, D. R., Stevens, M. F., Matthews, C. S., Bradshaw, T. D. & Westwell, A. D. (2008). J. Med. Chem. 51, 5135-5139.]; Cho et al., 2008[Cho, Y., Ioerger, T. R. & Sacchettini, J. C. (2008). J. Med. Chem. 51, 5984-5992.]). In addition, some other 2-amino­benzo­thia­zole derivatives showed anti­bacterial, anti-inflammatory and analgesic properties (Bhoi et al., 2014[Bhoi, M. N., Borad, M. A. & Patel, H. D. (2014). Synth. Commun. 44, 2427-2457.]). A novel poly 3-(benzo­thia­zol-2-yl)thio­phene-based conductive poly­mer has been synthesized by chemical and electrochemical polymerization (Radhakrishnan et al., 2006[Radhakrishnan, S., Parthasarathi, R., Subramanian, V. & Somanathan, N. (2006). J. Comput. Mater. Sci. 37, 318-322.]; Radhakrishnan & Somanathan, 2006[Radhakrishnan, S. & Somanathan, N. (2006). J. Mater. Chem. 16, 2990-3000.]). These polymers were studied for their photoabsorption and photoluminescence characteristics and were investigated in polymeric light-emitting diodes. Some synthetic methods developed for preparing 3-(benzo­thia­zol-2-yl)thio­phene are available using a mixture of thio­phene-3-carbaldehyde and o-amino­thio­phenol refluxed in ethanol (Esashika et al., 2009[Esashika, K., Yoshizawa-Fujita, M., Takeoka, Y. & Rikukawa, M. (2009). Synth. Met. 159, 2184-2187.]) or a mixture of 3-bromo­thio­phene, magnesium turnings and 2-chloro­benzo­thia­zole (Radhakrishnan et al., 2003[Radhakrishnan, S., Subramanian, V., Somanathan, N., Srinivasan, K. S. V. & Ramasami, T. (2003). Mol. Cryst. Liq. Cryst. 390, 113-120.]). 2-Substituted benzo­thia­zoles have been synthesized through condensation of bis­(2-amino­phen­yl) di­sulfides with aryl­aldehydes catalyzed by NaSH under microwave irradiation (Liu et al., 2017[Liu, L., Zhang, F., Wang, H., Zhu, N., Liu, B., Hong, H. & Han, L. (2017). Phosphorus Sulfur Silicon Relat. Elem. 192, 464-468.]). X-ray single-crystal structure determinations of two (1,3-benzo­thia­zol-2-yl)thio­phene derivatives synthesized from phenyl iso­thio­cyanate (Fun et al., 2012[Fun, H.-K., Chia, T. S. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o2529.]) and benzo­thia­zole (Cheng et al., 2016[Cheng, Y., Wu, Y., Tan, G. & You, J. (2016). Angew. Chem. Int. Ed. 55, 12275-12279.]) have been reported, as well as of 4-(1,3-benzo­thia­zol-2-yl)thio­phene-2-sulfonamide complexed with cyclin-dependent kinase 5 (Malmström et al., 2012[Malmström, J., Viklund, J., Slivo, C., Costa, A., Maudet, M., Sandelin, C., Hiller, G., Olsson, L., Aagaard, A., Geschwindner, S., Xue, Y. & Vasänge, M. (2012). Bioorg. Med. Chem. Lett. 22, 5919-5923.]). However, 3-(benzo­thia­zol-2-yl)thio­phene itself has not been studied by crystallographic methods. In this study, we present a solvent-free microwave-assisted synthesis of 3-(benzo­thia­zol-2-yl)thio­phene, starting from thio­phene-3-carbaldehyde and o-amino­thio­phenol, together with its crystal structure determination. The reaction was performed in a short time, without solvent and catalyst, leading to a simple purification protocol and a high yield (87%).

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic space group P21/c with four mol­ecules in the unit cell. The structure exhibits whole-mol­ecule disorder by a rotation of approximately 180° around an axis running close to the S and N atoms of the benzo­thia­zole ring, resulting in two orientations (A and B) of about the same shape (Fig. 1[link]). In addition, orientations A and B both have similar occupancies of 0.4884 (10) and 0.5116 (10), respectively. All the heterocyclic rings are almost planar, with r.m.s. deviations of 0.017 (thio­phene ring S1–C5), 0.004 (thio­phene ring S15–C19), 0.010 (benzo­thia­zole ring C6–N14) and 0.021 Å (benzo­thia­zole ring C20–N28). For orientation A, the angle between the best planes through the thio­phene and benzo­thia­zole rings is 10.02 (18)°. In orientation B, this angle is 12.54 (19)°. The relatively planar structure of the compound results in intra­molecular S⋯H contact distances shorter than the sum of the van der Waals radii of S and H (S7⋯H2 = 2.849 Å and S21⋯H16 = 2.824 Å).

[Figure 1]
Figure 1
View of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii. Orientation A of the disordered compound (occupancy factor 0.488) is shown in orange.

3. Supra­molecular features

The crystal packing of the title compound shows a herringbone motif (Fig. 2[link]). This motif is built up by slipped ππ stacking between the aromatic rings and C—H⋯π inter­actions. The shortest centroid–centroid distances (CgCg) observed in the ππ stacking for orientation B are shown in Fig. 3[link] and are listed in Table 1[link] for both orientations. The stacking mol­ecules inter­act further with neighbouring mol­ecules through C—H⋯π inter­actions (Fig. 3[link] and Table 2[link]). In addition, infinite chains running in the [201] direction are formed through C—H⋯N and C—H⋯S inter­actions (Fig. 4[link] and Table 2[link]). The crystal packing contains no voids. Whole-mol­ecule disorder is usually caused by a packing which is determined by van der Waals inter­actions only or by a lack of directional inter­actions in the packing. However, the crystal packing of the title compound shows several directional inter­actions, and hence the whole-mol­ecule disorder is the consequence of the very similar inter­ations with neighbouring mol­ecules for the two orientations.

Table 1
Selected ππ inter­actions

Cg1 is the centroid of the S15/C16–C19 plane, Cg2 that of the C20/S21/C22/C27/N28 plane, Cg3 that of the C22–C27 plane, Cg4 that of the S1/C2–C5 plane, Cg5 that of the C6/S7/C8/C13/N14 plane and Cg6 that of the C8–C13 plane.

CgI CgJ CgCg (Å) α (°) CgI_Perp (Å) CgJ_Perp (Å)
Cg1 Cg2i 3.888 (3) 12.0 (2) 3.761 (2) −3.7335 (17)
Cg1 Cg3i 3.962 (3) 13.0 (2) 3.774 (2) −3.614 (2)
Cg2 Cg1ii 3.888 (3) 12.0 (2) −3.7335 (17) 3.761 (2)
Cg2 Cg6ii 3.973 (3) 9.4 (2) −3.6796 (17) 3.708 (2)
Cg3 Cg1ii 3.962 (3) 13.0 (2) −3.614 (2) 3.774 (2)
Cg3 Cg6ii 3.799 (3) 10.4 (2) −3.631 (2) 3.720 (2)
Cg4 Cg5ii 3.859 (3) 9.6 (2) −3.5981 (19) 3.7215 (17)
Cg4 Cg6ii 3.882 (3) 10.4 (2) −3.5850 (19) 3.674 (2)
Cg5 Cg4i 3.859 (3) 9.6 (2) 3.7215 (17) −3.5981 (19)
Cg6 Cg2i 3.972 (3) 9.4 (2) 3.708 (2) −3.6796 (17)
Cg6 Cg3i 3.798 (3) 10.4 (2) 3.719 (2) −3.631 (2)
Cg6 Cg4i 3.882 (3) 10.4 (2) 3.673 (2) −3.5851 (19)
Notes: CgI(J) = plane number I(J); CgCg = distance between ring centroids; CgI_Perp = perpendicular distance of CgI on ring J; CgJ_Perp = perpendicular distance of CgJ on ring I. Symmetry codes: (i) x + 1, y, z; (ii) x − 1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S15/C16–C19 plane, Cg3 that of the C22–C27 plane, Cg4 that of the S1/C2–C5 plane and Cg6 that of the C8–C13 plane.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N14i 0.95 2.54 3.355 (6) 144
C26—H26⋯S15ii 0.95 2.87 3.522 (5) 126
C5—H5⋯Cg1iii 0.95 2.86 3.496 (5) 125
C5—H5⋯Cg6iii 0.95 2.93 3.532 (5) 123
C11—H11⋯Cg3iv 0.95 2.90 3.670 (6) 139
C11—H11⋯Cg4iv 0.95 2.90 3.705 (6) 143
C19—H19⋯Cg3iv 0.95 2.74 3.418 (6) 129
C19—H19⋯Cg4iv 0.95 2.73 3.447 (6) 133
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound shown in projection down the c axis. Orientation A of the disordered compound (occupancy factor 0.488) is shown in orange.
[Figure 3]
Figure 3
Slipped ππ stacking between the aromatic rings and C—H⋯π inter­actions for orientation B. [Symmetry codes: (i) −x + 2, y + [{1\over 2}], −z + [{3\over 2}]; (ii) x − 1, y, z; (iii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (iv) x + 1, y, z.]
[Figure 4]
Figure 4
Infinite chain formation through C—H⋯N (blue dashed lines) and C—H⋯S (yellow dashed lines) interactions in the crystal packing of the title compound. Orientation A of the disordered compound (occupancy factor 0.488) is shown in orange. [Symmetry codes: (i) x − 1, −y + [{3\over 2}], z + [{1\over 2}]; (ii) x, −y + [{3\over 2}], z + [{1\over 2}]; (iii) x + 1, −y + [{3\over 2}], z − [{1\over 2}]; (iv) x, −y + [{3\over 2}], z − [{1\over 2}].]

Additional insight into the inter­molecular inter­actions was obtained from an analysis of the Hirshfield surface and two-dimensional fingerprint plots using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). Fig. 5[link] illustrates the Hirshfeld surfaces mapped over dnorm for both orientations. The bright-red spots near atoms H9 and N14 for orientation A and near atoms H26 and S15 for orientation B are indicative for the hydrogen bonds given in Table 2[link]. For orientation A, the red spots near atoms S1 and C12 refer to short C⋯S/S⋯C contacts and in the case of S1 also S⋯S contacts. The red spots for orientation B near atoms N28 and H16 characterize short N⋯H/H⋯N contacts, and near atoms H19 and C24 indicate short H⋯C/C⋯H contacts. The relative distributions from the different inter­atomic contacts to the Hirshfeld surfaces are summarized in Table 3[link]. The largest contributions are contacts in which H atoms are involved. The largest differences between both orientations are observed for H⋯S/S⋯H (9.5%), H⋯H (5.7%), S⋯S (3.3%) and C⋯S/S⋯C (3.1%) contacts, and are caused by the presence of the C26—H26⋯S15ii hydrogen bond in orientation B.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surfaces

Contact Orientation A Orientation B
H⋯H 35.8 30.1
S⋯H/H⋯S 15.9 25.4
C⋯H/H⋯C 20.2 21.8
N⋯H/H⋯N 6.4 7.7
C⋯C 8.0 8.9
C⋯S/S⋯C 6.1 3.0
S⋯S 4.2 0.9
S⋯N/N⋯S 2.3 1.1
C⋯N/N⋯C 1.0 1.1
[Figure 5]
Figure 5
Two views of the Hirshfeld surfaces mapped over dnorm for (a) orientation A in the range −0.151 to 1.099 a.u. and (b) orientation B in the range −0.134 to 0.936 a.u.

4. Database survey

A search of the Cambridge Structral Database (CSD, Version 3.38, last update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 3-(benzo­thia­zol-2-yl)thio­phene derivatives gives two hits: 2-anilino-4-(1,3-benzo­thia­zol-2-yl)-5-(4-chloro­benzo­yl)thio­phene-3-carbo­nitrile (refcode LEGHOW; Fun et al., 2012[Fun, H.-K., Chia, T. S. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o2529.]) and 3-(1,3-benzo­thia­zol-2-yl)-N-(quinolin-8-yl)thio­phene-2-carboxamide (refcode UVUGOJ; Cheng et al., 2016[Cheng, Y., Wu, Y., Tan, G. & You, J. (2016). Angew. Chem. Int. Ed. 55, 12275-12279.]). The substitution of the thio­phene ring in these two compounds has an influence on the angle between the best planes through the thio­phene and benzo­thia­zole rings. In the monosubstituted derivative UVUGOJ, an intra­molecular N—H⋯S hydrogen bond lowers the angle to 5.95°. For the tris­ubstituted derivative LEGHOW, the angle increases to 46.77°.

5. Synthesis and crystallization

The reaction scheme to synthesize the title compound is given in Fig. 6[link]. The reaction mechanism is similar to that described by Mukhopadhyay & Datta (2007[Mukhopadhyay, C. & Datta, A. (2007). Heterocycles, 71, 1837-1842.]) for the synthesis of 2-aryl­benzo­thia­zoles.

[Figure 6]
Figure 6
Reaction scheme for the title compound.

A reaction mixture of thio­phene-3-carbaldehyde (2 mmol) and o-amino­thio­phenol (2 mmol) was heated for 4 min in a domestic microwave (Sanyo EM-S1065, 800 W) at medium power level (400 W). The progress of the reaction was monitored with thin-layer chromatography (TLC) every minute. The mixture was cooled to room temperature and then dissolved in an n-hexa­ne–ethyl acetate mixture (5:1 v/v) to obtain a solid product, which was further crystallized in the same solvent to give 0.38 g (yield 87%) of the title product as pale-yellow crystals (m.p. 386 K). IR (Nicolet Impact 410 FT–IR, KBr, cm−1): 3067 (νCH), 1581 (νC=C), 1634 (νC=N). 1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, δ (ppm), J (Hz)]: 8.36 (dd, 1H, 4J = 1.0, 5J = 2.5, H2), 7.72 (dd, 1H, 2J = 1.0, 5J = 5.0, H4), 7.77 (dd, 1H, 2J = 2.5, 4J = 5.0, H5), 8.02 (dd, 1H, 11J = 1.0, 10J = 8.0, H9), 7.52 (td, 1H, 12J = 1.0, 11J = 7.5, 9J = 8.0, H10), 7.44 (td, 1H, 9J = 1.0, 10J = 7.5, 12J = 8.0, H11), 8.11 (dd, 1H, 10J = 1.0, 11J = 8.0, H12). 13C NMR [Bruker XL-500, 125 MHz, d6-DMSO, δ (ppm)]: 127.54 (C2), 135.17 (C3),126.17 (C4), 128.38 (C5), 162.17 (C6), 134.17 (C7), 153.30 (C8), 122.57 (C9), 126.53 (C10), 125.30 (C11), 122.22 (C12). Calculation for C11H7NS2: M = 217 a.u.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The mol­ecule is disordered over two positions (A and B) by a rotation of approximately 180°. The final occupancy factors are 0.4884 (10) for mol­ecule A and 0.5116 (10) for mol­ecule B. Enhanced rigid-body restraints (RIGU) were applied for all atoms. The H atoms were placed in idealized positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms, with a C—H distance of 0.95 Å. In the final cycles of refinement, 17 outliers were omitted.

Table 4
Experimental details

Crystal data
Chemical formula C11H7NS2
Mr 217.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 6.1368 (4), 13.9799 (9), 11.4609 (7)
β (°) 100.193 (2)
V3) 967.73 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.50
Crystal size (mm) 0.44 × 0.36 × 0.31
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.703, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 19256, 2385, 2255
Rint 0.034
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.172, 1.22
No. of reflections 2385
No. of parameters 254
No. of restraints 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.52
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3-(Benzothiazol-2-yl)thiophene top
Crystal data top
C11H7NS2F(000) = 448
Mr = 217.30Dx = 1.491 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.1368 (4) ÅCell parameters from 9904 reflections
b = 13.9799 (9) Åθ = 2.9–32.6°
c = 11.4609 (7) ŵ = 0.50 mm1
β = 100.193 (2)°T = 100 K
V = 967.73 (11) Å3Block, colorless
Z = 40.44 × 0.36 × 0.31 mm
Data collection top
Bruker APEXII CCD
diffractometer
2255 reflections with I > 2σ(I)
φ and ω scansRint = 0.034
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.3°, θmin = 2.9°
Tmin = 0.703, Tmax = 0.747h = 88
19256 measured reflectionsk = 1818
2385 independent reflectionsl = 1515
Refinement top
Refinement on F2228 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0293P)2 + 2.8579P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.001
2385 reflectionsΔρmax = 0.61 e Å3
254 parametersΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.1359 (2)0.50570 (11)0.64696 (12)0.0370 (3)0.4884 (10)
C20.3260 (9)0.5734 (4)0.5993 (4)0.0304 (8)0.4884 (10)
H20.3320740.5818450.5176970.036*0.4884 (10)
C30.4732 (7)0.6159 (3)0.6887 (4)0.0208 (6)0.4884 (10)
C40.4069 (8)0.5922 (3)0.8006 (4)0.0242 (7)0.4884 (10)
H40.4789970.6178480.8740940.029*0.4884 (10)
C50.2230 (7)0.5268 (3)0.7915 (4)0.0218 (7)0.4884 (10)
H50.1626960.5006590.8553460.026*0.4884 (10)
C60.6552 (7)0.6774 (3)0.6747 (4)0.0202 (6)0.4884 (10)
S70.68433 (19)0.71644 (9)0.53194 (10)0.0230 (2)0.4884 (10)
C80.9176 (7)0.7805 (3)0.5945 (3)0.0188 (6)0.4884 (10)
C91.0540 (8)0.8389 (4)0.5407 (4)0.0256 (7)0.4884 (10)
H91.0263890.8496500.4575690.031*0.4884 (10)
C101.2293 (8)0.8799 (4)0.6130 (4)0.0294 (8)0.4884 (10)
H101.3258610.9194770.5778900.035*0.4884 (10)
C111.2752 (8)0.8670 (4)0.7362 (4)0.0267 (8)0.4884 (10)
H111.3988850.8973360.7833370.032*0.4884 (10)
C121.1363 (8)0.8092 (4)0.7873 (4)0.0246 (7)0.4884 (10)
H121.1639740.7993100.8706160.029*0.4884 (10)
C130.9581 (7)0.7659 (3)0.7183 (4)0.0196 (6)0.4884 (10)
N140.8042 (6)0.7076 (3)0.7618 (3)0.0213 (6)0.4884 (10)
S151.2597 (2)0.90620 (10)0.59226 (10)0.0325 (3)0.5116 (10)
C161.0318 (8)0.8344 (4)0.5615 (4)0.0260 (8)0.5116 (10)
H160.9467880.8257020.4845620.031*0.5116 (10)
C170.9864 (6)0.7905 (3)0.6624 (3)0.0204 (6)0.5116 (10)
C181.1510 (8)0.8185 (3)0.7658 (4)0.0247 (7)0.5116 (10)
H181.1490660.7958290.8438030.030*0.5116 (10)
C191.3063 (8)0.8798 (4)0.7391 (4)0.0255 (8)0.5116 (10)
H191.4254440.9047120.7951890.031*0.5116 (10)
C200.8024 (7)0.7272 (3)0.6680 (4)0.0216 (6)0.5116 (10)
S210.6485 (2)0.68370 (9)0.53382 (10)0.0282 (3)0.5116 (10)
C220.4817 (7)0.6220 (3)0.6160 (4)0.0255 (6)0.5116 (10)
C230.3070 (8)0.5607 (4)0.5775 (5)0.0319 (8)0.5116 (10)
H230.2607740.5441640.4964840.038*0.5116 (10)
C240.2039 (10)0.5250 (4)0.6684 (5)0.0466 (10)0.5116 (10)
H240.0784840.4854730.6433840.056*0.5116 (10)
C250.2579 (7)0.5390 (3)0.7860 (5)0.0269 (7)0.5116 (10)
H250.1758820.5127810.8412940.032*0.5116 (10)
C260.4498 (7)0.5970 (4)0.8198 (4)0.0276 (7)0.5116 (10)
H260.5063960.6063030.9016590.033*0.5116 (10)
C270.5547 (7)0.6395 (3)0.7374 (4)0.0227 (6)0.5116 (10)
N280.7402 (6)0.6993 (3)0.7626 (3)0.0235 (6)0.5116 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0362 (6)0.0388 (7)0.0338 (6)0.0082 (5)0.0007 (5)0.0022 (5)
C20.0364 (15)0.0304 (19)0.0229 (11)0.0075 (11)0.0016 (10)0.0026 (12)
C30.0204 (10)0.0211 (14)0.0209 (10)0.0033 (8)0.0036 (8)0.0010 (10)
C40.0273 (13)0.0233 (16)0.0227 (10)0.0023 (10)0.0062 (9)0.0004 (11)
C50.0224 (13)0.0164 (15)0.0276 (11)0.0063 (10)0.0069 (11)0.0006 (12)
C60.0221 (10)0.0205 (14)0.0180 (10)0.0019 (8)0.0038 (8)0.0019 (10)
S70.0251 (5)0.0246 (5)0.0180 (4)0.0042 (4)0.0004 (4)0.0005 (4)
C80.0206 (11)0.0185 (14)0.0172 (9)0.0014 (8)0.0033 (8)0.0023 (9)
C90.0310 (13)0.0225 (16)0.0257 (12)0.0041 (10)0.0115 (9)0.0031 (11)
C100.0341 (15)0.0267 (19)0.0296 (10)0.0065 (12)0.0116 (10)0.0033 (12)
C110.0245 (14)0.0281 (18)0.0286 (10)0.0022 (11)0.0076 (10)0.0038 (12)
C120.0242 (12)0.0293 (16)0.0205 (12)0.0030 (9)0.0048 (9)0.0046 (11)
C130.0221 (10)0.0188 (14)0.0178 (9)0.0022 (8)0.0029 (8)0.0004 (9)
N140.0224 (10)0.0225 (14)0.0185 (10)0.0005 (9)0.0020 (8)0.0000 (10)
S150.0324 (5)0.0418 (6)0.0241 (4)0.0105 (5)0.0072 (4)0.0022 (5)
C160.0259 (14)0.0317 (17)0.0198 (10)0.0032 (11)0.0026 (10)0.0032 (11)
C170.0209 (10)0.0203 (13)0.0200 (10)0.0019 (8)0.0037 (8)0.0057 (9)
C180.0268 (12)0.0271 (16)0.0198 (11)0.0038 (10)0.0030 (9)0.0034 (11)
C190.0267 (13)0.0279 (16)0.0215 (11)0.0044 (10)0.0033 (11)0.0019 (12)
C200.0200 (10)0.0206 (13)0.0233 (10)0.0012 (8)0.0009 (8)0.0030 (9)
S210.0306 (5)0.0311 (6)0.0203 (4)0.0078 (4)0.0028 (4)0.0016 (4)
C220.0258 (12)0.0208 (14)0.0279 (10)0.0029 (9)0.0006 (9)0.0009 (10)
C230.0302 (14)0.0231 (16)0.0374 (13)0.0065 (10)0.0075 (10)0.0021 (12)
C240.0482 (19)0.044 (2)0.0448 (11)0.0254 (15)0.0000 (10)0.0028 (12)
C250.0213 (13)0.0174 (16)0.0412 (11)0.0018 (10)0.0029 (11)0.0000 (13)
C260.0242 (12)0.0260 (16)0.0327 (12)0.0040 (10)0.0054 (9)0.0013 (11)
C270.0204 (11)0.0207 (14)0.0261 (9)0.0013 (8)0.0017 (8)0.0018 (9)
N280.0234 (11)0.0225 (13)0.0242 (9)0.0012 (9)0.0032 (8)0.0032 (9)
Geometric parameters (Å, º) top
S1—C21.667 (6)S15—C161.707 (5)
C2—H20.9500C16—H160.9500
C2—C31.375 (6)C16—C171.380 (6)
C3—C41.449 (6)C17—C181.468 (6)
C4—H40.9500C18—H180.9500
S1—C51.674 (5)S15—C191.697 (5)
C4—C51.442 (7)C18—C191.357 (7)
C5—H50.9500C19—H190.9500
C3—C61.442 (6)C17—C201.444 (6)
C6—S71.763 (4)C20—S211.764 (4)
S7—C81.733 (4)S21—C221.738 (5)
C8—C91.389 (6)C22—C231.383 (6)
C9—H90.9500C23—H230.9500
C9—C101.363 (7)C23—C241.403 (8)
C10—H100.9500C24—H240.9500
C10—C111.402 (7)C24—C251.344 (8)
C11—H110.9500C25—H250.9500
C11—C121.378 (7)C25—C261.426 (6)
C12—H120.9500C26—H260.9500
C12—C131.372 (6)C26—C271.369 (7)
C8—C131.411 (5)C22—C271.406 (6)
C6—N141.299 (5)C20—N281.273 (6)
C13—N141.404 (6)C27—N281.401 (5)
C3—C2—S1114.0 (4)C18—C19—S15111.1 (3)
C4—C5—S1107.0 (3)C17—C16—S15111.6 (3)
C3—C2—H2123.0C19—S15—C1693.7 (2)
S1—C2—H2123.0C17—C16—H16124.2
N14—C6—C3124.2 (4)S15—C16—H16124.2
C5—C4—C3114.8 (4)N28—C20—C17125.4 (4)
C2—C3—C4108.1 (4)C19—C18—C17113.4 (4)
C6—C3—C4125.4 (4)C20—C17—C18124.0 (4)
C5—C4—H4122.6C16—C17—C18110.2 (4)
C3—C4—H4122.6C19—C18—H18123.3
C2—S1—C596.0 (2)C17—C18—H18123.3
C4—C5—H5126.5S15—C19—H19124.5
S1—C5—H5126.5C18—C19—H19124.5
C2—C3—C6126.4 (4)C16—C17—C20125.8 (4)
C8—S7—C689.31 (19)C22—S21—C2088.5 (2)
C3—C6—S7119.8 (3)C17—C20—S21118.4 (3)
N14—C6—S7116.1 (3)N28—C20—S21116.2 (3)
C9—C8—S7129.7 (3)C23—C22—S21129.2 (4)
C13—C8—S7109.1 (3)C27—C22—S21109.6 (3)
C10—C9—C8116.8 (4)C26—C27—C22120.0 (4)
N14—C13—C8115.5 (4)N28—C27—C22114.4 (4)
C12—C13—C8119.7 (4)C25—C24—C23129.0 (5)
C8—C9—H9121.6C24—C23—H23122.9
C10—C9—H9121.6C22—C23—H23122.9
C12—C11—C10118.3 (4)C22—C23—C24114.1 (5)
C11—C10—H10118.2C23—C24—H24115.5
C9—C10—H10118.2C25—C24—H24115.5
C9—C10—C11123.6 (5)C27—C26—C25121.7 (4)
C13—C12—C11120.3 (4)C26—C25—H25123.2
C12—C11—H11120.8C24—C25—H25123.2
C10—C11—H11120.8C24—C25—C26113.6 (5)
C11—C12—H12119.9C25—C26—H26119.1
C13—C12—H12119.9C27—C26—H26119.1
C9—C8—C13121.2 (4)C20—N28—C27111.3 (4)
C6—N14—C13110.0 (4)C23—C22—C27121.1 (4)
C12—C13—N14124.7 (4)C26—C27—N28125.6 (4)
C5—S1—C2—C31.2 (4)C19—S15—C16—C170.8 (4)
S1—C2—C3—C6179.5 (4)S15—C16—C17—C20178.4 (3)
S1—C2—C3—C43.4 (5)S15—C16—C17—C180.7 (5)
C2—C3—C4—C54.7 (6)C16—C17—C18—C190.1 (6)
C6—C3—C4—C5178.3 (4)C20—C17—C18—C19178.9 (4)
C3—C4—C5—S13.8 (5)C17—C18—C19—S150.5 (5)
C2—S1—C5—C41.5 (4)C16—S15—C19—C180.7 (4)
C2—C3—C6—N14172.3 (5)C16—C17—C20—N28167.9 (5)
C4—C3—C6—N1411.2 (7)C18—C17—C20—N2811.0 (7)
C2—C3—C6—S78.0 (6)C16—C17—C20—S2112.2 (6)
C4—C3—C6—S7168.5 (4)C18—C17—C20—S21168.9 (3)
N14—C6—S7—C80.5 (4)N28—C20—S21—C220.4 (4)
C3—C6—S7—C8179.2 (4)C17—C20—S21—C22179.7 (3)
C6—S7—C8—C9178.7 (4)C20—S21—C22—C23177.2 (5)
C6—S7—C8—C131.2 (3)C20—S21—C22—C270.3 (3)
C13—C8—C9—C100.8 (7)C27—C22—C23—C244.4 (7)
S7—C8—C9—C10179.3 (4)S21—C22—C23—C24178.3 (4)
C8—C9—C10—C110.8 (8)C22—C23—C24—C253.2 (9)
C9—C10—C11—C120.4 (8)C23—C24—C25—C261.3 (9)
C10—C11—C12—C130.0 (8)C24—C25—C26—C274.9 (7)
C11—C12—C13—N14178.5 (4)C25—C26—C27—N28178.3 (4)
C11—C12—C13—C80.1 (7)C25—C26—C27—C223.8 (7)
C9—C8—C13—C120.5 (7)C23—C22—C27—C261.2 (7)
S7—C8—C13—C12179.6 (4)S21—C22—C27—C26179.0 (4)
C9—C8—C13—N14178.2 (4)C23—C22—C27—N28176.9 (4)
S7—C8—C13—N141.7 (5)S21—C22—C27—N280.9 (5)
C3—C6—N14—C13179.9 (4)C17—C20—N28—C27179.1 (4)
S7—C6—N14—C130.3 (5)S21—C20—N28—C271.0 (5)
C12—C13—N14—C6180.0 (4)C26—C27—N28—C20179.2 (4)
C8—C13—N14—C61.3 (5)C22—C27—N28—C201.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S15/C16–C19 plane, Cg3 that of the C22–C27 plane, Cg4 that of the S1/C2–C5 plane and Cg6 that of the C8–C13 plane.
D—H···AD—HH···AD···AD—H···A
C9—H9···N14i0.952.543.355 (6)144
C26—H26···S15ii0.952.873.522 (5)126
C5—H5···Cg1iii0.952.863.496 (5)125
C5—H5···Cg6iii0.952.933.532 (5)123
C11—H11···Cg3iv0.952.903.670 (6)139
C11—H11···Cg4iv0.952.903.705 (6)143
C19—H19···Cg3iv0.952.743.418 (6)129
C19—H19···Cg4iv0.952.733.447 (6)133
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x1, y+3/2, z+1/2; (iii) x+1, y1/2, z+3/2; (iv) x+2, y+1/2, z+3/2.
Selected ππ interactions top
Cg1 is the centroid of the S15/C16–C19 plane, Cg2 that of the C20/S21/C22/C27/N28 plane, Cg3 that of the C22–C27 plane, Cg4 that of the S1/C2–C5 plane, Cg5 that of the C6/S7/C8/C13/N14 plane and Cg6 that of the C8–C13 plane.
CgICgJCg–Cg (Å)Alpha (°)CgI_Perp (Å)CgJ_Perp (Å)
Cg1Cg2i3.888 (3)12.0 (2)3.761 (2)-3.7335 (17)
Cg1Cg3i3.962 (3)13.0 (2)3.774 (2)-3.614 (2)
Cg2Cg1ii3.888 (3)12.0 (2)-3.7335 (17)3.761 (2)
Cg2Cg6ii3.973 (3)9.4 (2)-3.6796 (17)3.708 (2)
Cg3Cg1ii3.962 (3)13.0 (2)-3.614 (2)3.774 (2)
Cg3Cg6ii3.799 (3)10.4 (2)-3.631 (2)3.720 (2)
Cg4Cg5ii3.859 (3)9.6 (2)-3.5981 (19)3.7215 (17)
Cg4Cg6ii3.882 (3)10.4 (2)-3.5850 (19)3.674 (2)
Cg5Cg4i3.859 (3)9.6 (2)3.7215 (17)-3.5981 (19)
Cg6Cg2i3.972 (3)9.4 (2)3.708 (2)-3.6796 (17)
Cg6Cg3i3.798 (3)10.4 (2)3.719 (2)-3.631 (2)
Cg6Cg4i3.882 (3)10.4 (2)3.673 (2)-3.5851 (19)
Notes: CgI(J) = plane number I(J); CgCg = distance between ring centroids; CgI_Perp = perpendicular distance of CgI on ring J; CgJ_Perp = perpendicular distance of CgJ on ring I. Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.
Percentage contributions of interatomic contacts to the Hirshfeld surfaces top
ContactOrientation AOrientation B
H···H35.830.1
S···H/H···S15.925.4
C···H/H···C20.221.8
N···H/H···N6.47.7
C···C8.08.9
C···S/S···C6.13.0
S···S4.20.9
S···N/N···S2.31.1
C···N/N···C1.01.1
 

Funding information

Funding for this research was provided by: VLIR–UOS (award No. ZEIN2014Z182 to LVM).

References

First citationAiello, S., Wells, G., Stone, E. L., Kadri, H., Bazzi, R., Bell, D. R., Stevens, M. F., Matthews, C. S., Bradshaw, T. D. & Westwell, A. D. (2008). J. Med. Chem. 51, 5135–5139.  Web of Science CrossRef PubMed CAS
First citationBhoi, M. N., Borad, M. A. & Patel, H. D. (2014). Synth. Commun. 44, 2427–2457.  Web of Science CrossRef CAS
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCheng, Y., Wu, Y., Tan, G. & You, J. (2016). Angew. Chem. Int. Ed. 55, 12275–12279.  Web of Science CSD CrossRef CAS
First citationCho, Y., Ioerger, T. R. & Sacchettini, J. C. (2008). J. Med. Chem. 51, 5984–5992.  Web of Science CrossRef PubMed CAS
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationElbing, M., Garcia, A., Urban, S., Nguyen, T. Q. & Bazan, G. C. (2008). Macromolecules, 41, 9146–9155.  Web of Science CrossRef CAS
First citationEsashika, K., Yoshizawa-Fujita, M., Takeoka, Y. & Rikukawa, M. (2009). Synth. Met. 159, 2184–2187.  Web of Science CrossRef CAS
First citationFeng, F., He, F., An, L., Wang, S., Li, Y. & Zhu, D. (2008). Adv. Mater. 20, 2959–2964.  Web of Science CrossRef CAS
First citationFun, H.-K., Chia, T. S. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o2529.  CSD CrossRef IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHo, H. A., Najari, A. & Leclerc, M. (2008). Acc. Chem. Res. 41, 168–178.  Web of Science CrossRef PubMed CAS
First citationIssa, M. I. F., Mohamed, A. A. R., Seham, E., Omar, M. E., Abd, E. & Siham, M. E. (2009). Eur. J. Med. Chem. 44, 1718–1725.  Web of Science PubMed
First citationLiu, L., Zhang, F., Wang, H., Zhu, N., Liu, B., Hong, H. & Han, L. (2017). Phosphorus Sulfur Silicon Relat. Elem. 192, 464–468.  Web of Science CrossRef CAS
First citationMalmström, J., Viklund, J., Slivo, C., Costa, A., Maudet, M., Sandelin, C., Hiller, G., Olsson, L., Aagaard, A., Geschwindner, S., Xue, Y. & Vasänge, M. (2012). Bioorg. Med. Chem. Lett. 22, 5919–5923.  Web of Science PubMed
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef
First citationMukhopadhyay, C. & Datta, A. (2007). Heterocycles, 71, 1837–1842.  CrossRef CAS
First citationRadhakrishnan, S., Parthasarathi, R., Subramanian, V. & Somanathan, N. (2006). J. Comput. Mater. Sci. 37, 318–322.  Web of Science CrossRef CAS
First citationRadhakrishnan, S. & Somanathan, N. (2006). J. Mater. Chem. 16, 2990–3000.  Web of Science CrossRef CAS
First citationRadhakrishnan, S., Subramanian, V., Somanathan, N., Srinivasan, K. S. V. & Ramasami, T. (2003). Mol. Cryst. Liq. Cryst. 390, 113–120.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds