research communications
Green synthesis and
of 3-(benzothiazol-2-yl)thiopheneaFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bFaculty of Foundation Science, College of Printing Industry, Phuc Dien, Bac Tu Liem, Hanoi, Vietnam, cVNU University of Science, Department of Inorganic Chemistry, 19 Le Thanh Tong Street, Hoan Kiem District, Hanoi, Vietnam, and dDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: Luc.VanMeervelt@kuleuven.be
The title compound, C11H7NS2, was prepared in high yield (87%) using a solvent-free microwave-assisted synthesis. The structure shows whole-molecule disorder with occupancies for two orientations (A and B) of 0.4884 (10) and 0.5116 (10), respectively. The thiophene and benzothiazole rings are almost planar and make dihedral angles of 10.02 (18) and 12.54 (19)° for orientations A and B, respectively. Slipped π–π stacking between the aromatic rings, together with C—H⋯π, C—H⋯S and C—H⋯N interactions, result in a herringbone motif in the crystal packing.
Keywords: crystal structure; thiophene; benzothiazole; microwave-assisted synthesis; solvent-free; whole-molecule disorder.
CCDC reference: 1578811
1. Chemical context
Thiophene-containing heterocycles have many applications in pharmacology, such as anti-inflammatory and analgesic agents (Issa et al., 2009), electrochromic and electronic devices (Elbing et al., 2008), and polyelectrolytes-based water-soluble sensing agents for the detection of DNA, proteins and small bioanalytes (Ho et al., 2008; Feng et al., 2008). Benzothiazole-based compounds have attracted much attention in recent times due to their wide-ranging biological activities, such as anticancer, antifungal and antibacterial activities (Aiello et al., 2008; Cho et al., 2008). In addition, some other 2-aminobenzothiazole derivatives showed antibacterial, anti-inflammatory and analgesic properties (Bhoi et al., 2014). A novel poly 3-(benzothiazol-2-yl)thiophene-based conductive polymer has been synthesized by chemical and electrochemical polymerization (Radhakrishnan et al., 2006; Radhakrishnan & Somanathan, 2006). These polymers were studied for their photoabsorption and characteristics and were investigated in polymeric light-emitting diodes. Some synthetic methods developed for preparing 3-(benzothiazol-2-yl)thiophene are available using a mixture of thiophene-3-carbaldehyde and o-aminothiophenol refluxed in ethanol (Esashika et al., 2009) or a mixture of 3-bromothiophene, magnesium turnings and 2-chlorobenzothiazole (Radhakrishnan et al., 2003). 2-Substituted benzothiazoles have been synthesized through condensation of bis(2-aminophenyl) disulfides with arylaldehydes catalyzed by NaSH under microwave irradiation (Liu et al., 2017). X-ray single-crystal structure determinations of two (1,3-benzothiazol-2-yl)thiophene derivatives synthesized from phenyl isothiocyanate (Fun et al., 2012) and benzothiazole (Cheng et al., 2016) have been reported, as well as of 4-(1,3-benzothiazol-2-yl)thiophene-2-sulfonamide complexed with cyclin-dependent kinase 5 (Malmström et al., 2012). However, 3-(benzothiazol-2-yl)thiophene itself has not been studied by crystallographic methods. In this study, we present a solvent-free microwave-assisted synthesis of 3-(benzothiazol-2-yl)thiophene, starting from thiophene-3-carbaldehyde and o-aminothiophenol, together with its determination. The reaction was performed in a short time, without solvent and catalyst, leading to a simple purification protocol and a high yield (87%).
2. Structural commentary
The title compound crystallizes in the monoclinic P21/c with four molecules in the The structure exhibits whole-molecule disorder by a rotation of approximately 180° around an axis running close to the S and N atoms of the benzothiazole ring, resulting in two orientations (A and B) of about the same shape (Fig. 1). In addition, orientations A and B both have similar occupancies of 0.4884 (10) and 0.5116 (10), respectively. All the heterocyclic rings are almost planar, with r.m.s. deviations of 0.017 (thiophene ring S1–C5), 0.004 (thiophene ring S15–C19), 0.010 (benzothiazole ring C6–N14) and 0.021 Å (benzothiazole ring C20–N28). For orientation A, the angle between the best planes through the thiophene and benzothiazole rings is 10.02 (18)°. In orientation B, this angle is 12.54 (19)°. The relatively planar structure of the compound results in intramolecular S⋯H contact distances shorter than the sum of the van der Waals radii of S and H (S7⋯H2 = 2.849 Å and S21⋯H16 = 2.824 Å).
3. Supramolecular features
The crystal packing of the title compound shows a herringbone motif (Fig. 2). This motif is built up by slipped π–π stacking between the aromatic rings and C—H⋯π interactions. The shortest centroid–centroid distances (Cg⋯Cg) observed in the π–π stacking for orientation B are shown in Fig. 3 and are listed in Table 1 for both orientations. The stacking molecules interact further with neighbouring molecules through C—H⋯π interactions (Fig. 3 and Table 2). In addition, infinite chains running in the [201] direction are formed through C—H⋯N and C—H⋯S interactions (Fig. 4 and Table 2). The crystal packing contains no voids. Whole-molecule disorder is usually caused by a packing which is determined by van der Waals interactions only or by a lack of directional interactions in the packing. However, the crystal packing of the title compound shows several directional interactions, and hence the whole-molecule disorder is the consequence of the very similar interations with neighbouring molecules for the two orientations.
|
Additional insight into the intermolecular interactions was obtained from an analysis of the Hirshfield surface and two-dimensional fingerprint plots using CrystalExplorer (McKinnon et al., 2007; Spackman & Jayatilaka, 2009). Fig. 5 illustrates the Hirshfeld surfaces mapped over dnorm for both orientations. The bright-red spots near atoms H9 and N14 for orientation A and near atoms H26 and S15 for orientation B are indicative for the hydrogen bonds given in Table 2. For orientation A, the red spots near atoms S1 and C12 refer to short C⋯S/S⋯C contacts and in the case of S1 also S⋯S contacts. The red spots for orientation B near atoms N28 and H16 characterize short N⋯H/H⋯N contacts, and near atoms H19 and C24 indicate short H⋯C/C⋯H contacts. The relative distributions from the different interatomic contacts to the Hirshfeld surfaces are summarized in Table 3. The largest contributions are contacts in which H atoms are involved. The largest differences between both orientations are observed for H⋯S/S⋯H (9.5%), H⋯H (5.7%), S⋯S (3.3%) and C⋯S/S⋯C (3.1%) contacts, and are caused by the presence of the C26—H26⋯S15ii hydrogen bond in orientation B.
|
4. Database survey
A search of the Cambridge Structral Database (CSD, Version 3.38, last update May 2017; Groom et al., 2016) for 3-(benzothiazol-2-yl)thiophene derivatives gives two hits: 2-anilino-4-(1,3-benzothiazol-2-yl)-5-(4-chlorobenzoyl)thiophene-3-carbonitrile (refcode LEGHOW; Fun et al., 2012) and 3-(1,3-benzothiazol-2-yl)-N-(quinolin-8-yl)thiophene-2-carboxamide (refcode UVUGOJ; Cheng et al., 2016). The substitution of the thiophene ring in these two compounds has an influence on the angle between the best planes through the thiophene and benzothiazole rings. In the monosubstituted derivative UVUGOJ, an intramolecular N—H⋯S hydrogen bond lowers the angle to 5.95°. For the trisubstituted derivative LEGHOW, the angle increases to 46.77°.
5. Synthesis and crystallization
The reaction scheme to synthesize the title compound is given in Fig. 6. The is similar to that described by Mukhopadhyay & Datta (2007) for the synthesis of 2-arylbenzothiazoles.
A reaction mixture of thiophene-3-carbaldehyde (2 mmol) and o-aminothiophenol (2 mmol) was heated for 4 min in a domestic microwave (Sanyo EM-S1065, 800 W) at medium power level (400 W). The progress of the reaction was monitored with (TLC) every minute. The mixture was cooled to room temperature and then dissolved in an n-hexane–ethyl acetate mixture (5:1 v/v) to obtain a solid product, which was further crystallized in the same solvent to give 0.38 g (yield 87%) of the title product as pale-yellow crystals (m.p. 386 K). IR (Nicolet Impact 410 FT–IR, KBr, cm−1): 3067 (νCH), 1581 (νC=C), 1634 (νC=N). 1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, δ (ppm), J (Hz)]: 8.36 (dd, 1H, 4J = 1.0, 5J = 2.5, H2), 7.72 (dd, 1H, 2J = 1.0, 5J = 5.0, H4), 7.77 (dd, 1H, 2J = 2.5, 4J = 5.0, H5), 8.02 (dd, 1H, 11J = 1.0, 10J = 8.0, H9), 7.52 (td, 1H, 12J = 1.0, 11J = 7.5, 9J = 8.0, H10), 7.44 (td, 1H, 9J = 1.0, 10J = 7.5, 12J = 8.0, H11), 8.11 (dd, 1H, 10J = 1.0, 11J = 8.0, H12). 13C NMR [Bruker XL-500, 125 MHz, d6-DMSO, δ (ppm)]: 127.54 (C2), 135.17 (C3),126.17 (C4), 128.38 (C5), 162.17 (C6), 134.17 (C7), 153.30 (C8), 122.57 (C9), 126.53 (C10), 125.30 (C11), 122.22 (C12). Calculation for C11H7NS2: M = 217 a.u.
6. Refinement
Crystal data, data collection and structure . The molecule is disordered over two positions (A and B) by a rotation of approximately 180°. The final occupancy factors are 0.4884 (10) for molecule A and 0.5116 (10) for molecule B. Enhanced rigid-body restraints (RIGU) were applied for all atoms. The H atoms were placed in idealized positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms, with a C—H distance of 0.95 Å. In the final cycles of 17 outliers were omitted.
details are summarized in Table 4
|
Supporting information
CCDC reference: 1578811
https://doi.org/10.1107/S2056989017014530/tx2001sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017014530/tx2001Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C11H7NS2 | F(000) = 448 |
Mr = 217.30 | Dx = 1.491 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.1368 (4) Å | Cell parameters from 9904 reflections |
b = 13.9799 (9) Å | θ = 2.9–32.6° |
c = 11.4609 (7) Å | µ = 0.50 mm−1 |
β = 100.193 (2)° | T = 100 K |
V = 967.73 (11) Å3 | Block, colorless |
Z = 4 | 0.44 × 0.36 × 0.31 mm |
Bruker APEXII CCD diffractometer | 2255 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.034 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 28.3°, θmin = 2.9° |
Tmin = 0.703, Tmax = 0.747 | h = −8→8 |
19256 measured reflections | k = −18→18 |
2385 independent reflections | l = −15→15 |
Refinement on F2 | 228 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.076 | H-atom parameters constrained |
wR(F2) = 0.172 | w = 1/[σ2(Fo2) + (0.0293P)2 + 2.8579P] where P = (Fo2 + 2Fc2)/3 |
S = 1.22 | (Δ/σ)max = 0.001 |
2385 reflections | Δρmax = 0.61 e Å−3 |
254 parameters | Δρmin = −0.51 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.1359 (2) | 0.50570 (11) | 0.64696 (12) | 0.0370 (3) | 0.4884 (10) |
C2 | 0.3260 (9) | 0.5734 (4) | 0.5993 (4) | 0.0304 (8) | 0.4884 (10) |
H2 | 0.332074 | 0.581845 | 0.517697 | 0.036* | 0.4884 (10) |
C3 | 0.4732 (7) | 0.6159 (3) | 0.6887 (4) | 0.0208 (6) | 0.4884 (10) |
C4 | 0.4069 (8) | 0.5922 (3) | 0.8006 (4) | 0.0242 (7) | 0.4884 (10) |
H4 | 0.478997 | 0.617848 | 0.874094 | 0.029* | 0.4884 (10) |
C5 | 0.2230 (7) | 0.5268 (3) | 0.7915 (4) | 0.0218 (7) | 0.4884 (10) |
H5 | 0.162696 | 0.500659 | 0.855346 | 0.026* | 0.4884 (10) |
C6 | 0.6552 (7) | 0.6774 (3) | 0.6747 (4) | 0.0202 (6) | 0.4884 (10) |
S7 | 0.68433 (19) | 0.71644 (9) | 0.53194 (10) | 0.0230 (2) | 0.4884 (10) |
C8 | 0.9176 (7) | 0.7805 (3) | 0.5945 (3) | 0.0188 (6) | 0.4884 (10) |
C9 | 1.0540 (8) | 0.8389 (4) | 0.5407 (4) | 0.0256 (7) | 0.4884 (10) |
H9 | 1.026389 | 0.849650 | 0.457569 | 0.031* | 0.4884 (10) |
C10 | 1.2293 (8) | 0.8799 (4) | 0.6130 (4) | 0.0294 (8) | 0.4884 (10) |
H10 | 1.325861 | 0.919477 | 0.577890 | 0.035* | 0.4884 (10) |
C11 | 1.2752 (8) | 0.8670 (4) | 0.7362 (4) | 0.0267 (8) | 0.4884 (10) |
H11 | 1.398885 | 0.897336 | 0.783337 | 0.032* | 0.4884 (10) |
C12 | 1.1363 (8) | 0.8092 (4) | 0.7873 (4) | 0.0246 (7) | 0.4884 (10) |
H12 | 1.163974 | 0.799310 | 0.870616 | 0.029* | 0.4884 (10) |
C13 | 0.9581 (7) | 0.7659 (3) | 0.7183 (4) | 0.0196 (6) | 0.4884 (10) |
N14 | 0.8042 (6) | 0.7076 (3) | 0.7618 (3) | 0.0213 (6) | 0.4884 (10) |
S15 | 1.2597 (2) | 0.90620 (10) | 0.59226 (10) | 0.0325 (3) | 0.5116 (10) |
C16 | 1.0318 (8) | 0.8344 (4) | 0.5615 (4) | 0.0260 (8) | 0.5116 (10) |
H16 | 0.946788 | 0.825702 | 0.484562 | 0.031* | 0.5116 (10) |
C17 | 0.9864 (6) | 0.7905 (3) | 0.6624 (3) | 0.0204 (6) | 0.5116 (10) |
C18 | 1.1510 (8) | 0.8185 (3) | 0.7658 (4) | 0.0247 (7) | 0.5116 (10) |
H18 | 1.149066 | 0.795829 | 0.843803 | 0.030* | 0.5116 (10) |
C19 | 1.3063 (8) | 0.8798 (4) | 0.7391 (4) | 0.0255 (8) | 0.5116 (10) |
H19 | 1.425444 | 0.904712 | 0.795189 | 0.031* | 0.5116 (10) |
C20 | 0.8024 (7) | 0.7272 (3) | 0.6680 (4) | 0.0216 (6) | 0.5116 (10) |
S21 | 0.6485 (2) | 0.68370 (9) | 0.53382 (10) | 0.0282 (3) | 0.5116 (10) |
C22 | 0.4817 (7) | 0.6220 (3) | 0.6160 (4) | 0.0255 (6) | 0.5116 (10) |
C23 | 0.3070 (8) | 0.5607 (4) | 0.5775 (5) | 0.0319 (8) | 0.5116 (10) |
H23 | 0.260774 | 0.544164 | 0.496484 | 0.038* | 0.5116 (10) |
C24 | 0.2039 (10) | 0.5250 (4) | 0.6684 (5) | 0.0466 (10) | 0.5116 (10) |
H24 | 0.078484 | 0.485473 | 0.643384 | 0.056* | 0.5116 (10) |
C25 | 0.2579 (7) | 0.5390 (3) | 0.7860 (5) | 0.0269 (7) | 0.5116 (10) |
H25 | 0.175882 | 0.512781 | 0.841294 | 0.032* | 0.5116 (10) |
C26 | 0.4498 (7) | 0.5970 (4) | 0.8198 (4) | 0.0276 (7) | 0.5116 (10) |
H26 | 0.506396 | 0.606303 | 0.901659 | 0.033* | 0.5116 (10) |
C27 | 0.5547 (7) | 0.6395 (3) | 0.7374 (4) | 0.0227 (6) | 0.5116 (10) |
N28 | 0.7402 (6) | 0.6993 (3) | 0.7626 (3) | 0.0235 (6) | 0.5116 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0362 (6) | 0.0388 (7) | 0.0338 (6) | −0.0082 (5) | 0.0007 (5) | 0.0022 (5) |
C2 | 0.0364 (15) | 0.0304 (19) | 0.0229 (11) | −0.0075 (11) | 0.0016 (10) | −0.0026 (12) |
C3 | 0.0204 (10) | 0.0211 (14) | 0.0209 (10) | 0.0033 (8) | 0.0036 (8) | −0.0010 (10) |
C4 | 0.0273 (13) | 0.0233 (16) | 0.0227 (10) | 0.0023 (10) | 0.0062 (9) | −0.0004 (11) |
C5 | 0.0224 (13) | 0.0164 (15) | 0.0276 (11) | 0.0063 (10) | 0.0069 (11) | −0.0006 (12) |
C6 | 0.0221 (10) | 0.0205 (14) | 0.0180 (10) | 0.0019 (8) | 0.0038 (8) | −0.0019 (10) |
S7 | 0.0251 (5) | 0.0246 (5) | 0.0180 (4) | −0.0042 (4) | 0.0004 (4) | 0.0005 (4) |
C8 | 0.0206 (11) | 0.0185 (14) | 0.0172 (9) | 0.0014 (8) | 0.0033 (8) | −0.0023 (9) |
C9 | 0.0310 (13) | 0.0225 (16) | 0.0257 (12) | −0.0041 (10) | 0.0115 (9) | −0.0031 (11) |
C10 | 0.0341 (15) | 0.0267 (19) | 0.0296 (10) | −0.0065 (12) | 0.0116 (10) | −0.0033 (12) |
C11 | 0.0245 (14) | 0.0281 (18) | 0.0286 (10) | −0.0022 (11) | 0.0076 (10) | −0.0038 (12) |
C12 | 0.0242 (12) | 0.0293 (16) | 0.0205 (12) | −0.0030 (9) | 0.0048 (9) | −0.0046 (11) |
C13 | 0.0221 (10) | 0.0188 (14) | 0.0178 (9) | 0.0022 (8) | 0.0029 (8) | −0.0004 (9) |
N14 | 0.0224 (10) | 0.0225 (14) | 0.0185 (10) | 0.0005 (9) | 0.0020 (8) | 0.0000 (10) |
S15 | 0.0324 (5) | 0.0418 (6) | 0.0241 (4) | −0.0105 (5) | 0.0072 (4) | −0.0022 (5) |
C16 | 0.0259 (14) | 0.0317 (17) | 0.0198 (10) | −0.0032 (11) | 0.0026 (10) | −0.0032 (11) |
C17 | 0.0209 (10) | 0.0203 (13) | 0.0200 (10) | 0.0019 (8) | 0.0037 (8) | −0.0057 (9) |
C18 | 0.0268 (12) | 0.0271 (16) | 0.0198 (11) | −0.0038 (10) | 0.0030 (9) | −0.0034 (11) |
C19 | 0.0267 (13) | 0.0279 (16) | 0.0215 (11) | −0.0044 (10) | 0.0033 (11) | −0.0019 (12) |
C20 | 0.0200 (10) | 0.0206 (13) | 0.0233 (10) | 0.0012 (8) | 0.0009 (8) | −0.0030 (9) |
S21 | 0.0306 (5) | 0.0311 (6) | 0.0203 (4) | −0.0078 (4) | −0.0028 (4) | 0.0016 (4) |
C22 | 0.0258 (12) | 0.0208 (14) | 0.0279 (10) | −0.0029 (9) | −0.0006 (9) | −0.0009 (10) |
C23 | 0.0302 (14) | 0.0231 (16) | 0.0374 (13) | −0.0065 (10) | −0.0075 (10) | 0.0021 (12) |
C24 | 0.0482 (19) | 0.044 (2) | 0.0448 (11) | −0.0254 (15) | 0.0000 (10) | −0.0028 (12) |
C25 | 0.0213 (13) | 0.0174 (16) | 0.0412 (11) | 0.0018 (10) | 0.0029 (11) | 0.0000 (13) |
C26 | 0.0242 (12) | 0.0260 (16) | 0.0327 (12) | −0.0040 (10) | 0.0054 (9) | −0.0013 (11) |
C27 | 0.0204 (11) | 0.0207 (14) | 0.0261 (9) | 0.0013 (8) | 0.0017 (8) | −0.0018 (9) |
N28 | 0.0234 (11) | 0.0225 (13) | 0.0242 (9) | −0.0012 (9) | 0.0032 (8) | −0.0032 (9) |
S1—C2 | 1.667 (6) | S15—C16 | 1.707 (5) |
C2—H2 | 0.9500 | C16—H16 | 0.9500 |
C2—C3 | 1.375 (6) | C16—C17 | 1.380 (6) |
C3—C4 | 1.449 (6) | C17—C18 | 1.468 (6) |
C4—H4 | 0.9500 | C18—H18 | 0.9500 |
S1—C5 | 1.674 (5) | S15—C19 | 1.697 (5) |
C4—C5 | 1.442 (7) | C18—C19 | 1.357 (7) |
C5—H5 | 0.9500 | C19—H19 | 0.9500 |
C3—C6 | 1.442 (6) | C17—C20 | 1.444 (6) |
C6—S7 | 1.763 (4) | C20—S21 | 1.764 (4) |
S7—C8 | 1.733 (4) | S21—C22 | 1.738 (5) |
C8—C9 | 1.389 (6) | C22—C23 | 1.383 (6) |
C9—H9 | 0.9500 | C23—H23 | 0.9500 |
C9—C10 | 1.363 (7) | C23—C24 | 1.403 (8) |
C10—H10 | 0.9500 | C24—H24 | 0.9500 |
C10—C11 | 1.402 (7) | C24—C25 | 1.344 (8) |
C11—H11 | 0.9500 | C25—H25 | 0.9500 |
C11—C12 | 1.378 (7) | C25—C26 | 1.426 (6) |
C12—H12 | 0.9500 | C26—H26 | 0.9500 |
C12—C13 | 1.372 (6) | C26—C27 | 1.369 (7) |
C8—C13 | 1.411 (5) | C22—C27 | 1.406 (6) |
C6—N14 | 1.299 (5) | C20—N28 | 1.273 (6) |
C13—N14 | 1.404 (6) | C27—N28 | 1.401 (5) |
C3—C2—S1 | 114.0 (4) | C18—C19—S15 | 111.1 (3) |
C4—C5—S1 | 107.0 (3) | C17—C16—S15 | 111.6 (3) |
C3—C2—H2 | 123.0 | C19—S15—C16 | 93.7 (2) |
S1—C2—H2 | 123.0 | C17—C16—H16 | 124.2 |
N14—C6—C3 | 124.2 (4) | S15—C16—H16 | 124.2 |
C5—C4—C3 | 114.8 (4) | N28—C20—C17 | 125.4 (4) |
C2—C3—C4 | 108.1 (4) | C19—C18—C17 | 113.4 (4) |
C6—C3—C4 | 125.4 (4) | C20—C17—C18 | 124.0 (4) |
C5—C4—H4 | 122.6 | C16—C17—C18 | 110.2 (4) |
C3—C4—H4 | 122.6 | C19—C18—H18 | 123.3 |
C2—S1—C5 | 96.0 (2) | C17—C18—H18 | 123.3 |
C4—C5—H5 | 126.5 | S15—C19—H19 | 124.5 |
S1—C5—H5 | 126.5 | C18—C19—H19 | 124.5 |
C2—C3—C6 | 126.4 (4) | C16—C17—C20 | 125.8 (4) |
C8—S7—C6 | 89.31 (19) | C22—S21—C20 | 88.5 (2) |
C3—C6—S7 | 119.8 (3) | C17—C20—S21 | 118.4 (3) |
N14—C6—S7 | 116.1 (3) | N28—C20—S21 | 116.2 (3) |
C9—C8—S7 | 129.7 (3) | C23—C22—S21 | 129.2 (4) |
C13—C8—S7 | 109.1 (3) | C27—C22—S21 | 109.6 (3) |
C10—C9—C8 | 116.8 (4) | C26—C27—C22 | 120.0 (4) |
N14—C13—C8 | 115.5 (4) | N28—C27—C22 | 114.4 (4) |
C12—C13—C8 | 119.7 (4) | C25—C24—C23 | 129.0 (5) |
C8—C9—H9 | 121.6 | C24—C23—H23 | 122.9 |
C10—C9—H9 | 121.6 | C22—C23—H23 | 122.9 |
C12—C11—C10 | 118.3 (4) | C22—C23—C24 | 114.1 (5) |
C11—C10—H10 | 118.2 | C23—C24—H24 | 115.5 |
C9—C10—H10 | 118.2 | C25—C24—H24 | 115.5 |
C9—C10—C11 | 123.6 (5) | C27—C26—C25 | 121.7 (4) |
C13—C12—C11 | 120.3 (4) | C26—C25—H25 | 123.2 |
C12—C11—H11 | 120.8 | C24—C25—H25 | 123.2 |
C10—C11—H11 | 120.8 | C24—C25—C26 | 113.6 (5) |
C11—C12—H12 | 119.9 | C25—C26—H26 | 119.1 |
C13—C12—H12 | 119.9 | C27—C26—H26 | 119.1 |
C9—C8—C13 | 121.2 (4) | C20—N28—C27 | 111.3 (4) |
C6—N14—C13 | 110.0 (4) | C23—C22—C27 | 121.1 (4) |
C12—C13—N14 | 124.7 (4) | C26—C27—N28 | 125.6 (4) |
C5—S1—C2—C3 | 1.2 (4) | C19—S15—C16—C17 | 0.8 (4) |
S1—C2—C3—C6 | 179.5 (4) | S15—C16—C17—C20 | 178.4 (3) |
S1—C2—C3—C4 | −3.4 (5) | S15—C16—C17—C18 | −0.7 (5) |
C2—C3—C4—C5 | 4.7 (6) | C16—C17—C18—C19 | 0.1 (6) |
C6—C3—C4—C5 | −178.3 (4) | C20—C17—C18—C19 | −178.9 (4) |
C3—C4—C5—S1 | −3.8 (5) | C17—C18—C19—S15 | 0.5 (5) |
C2—S1—C5—C4 | 1.5 (4) | C16—S15—C19—C18 | −0.7 (4) |
C2—C3—C6—N14 | −172.3 (5) | C16—C17—C20—N28 | −167.9 (5) |
C4—C3—C6—N14 | 11.2 (7) | C18—C17—C20—N28 | 11.0 (7) |
C2—C3—C6—S7 | 8.0 (6) | C16—C17—C20—S21 | 12.2 (6) |
C4—C3—C6—S7 | −168.5 (4) | C18—C17—C20—S21 | −168.9 (3) |
N14—C6—S7—C8 | −0.5 (4) | N28—C20—S21—C22 | 0.4 (4) |
C3—C6—S7—C8 | 179.2 (4) | C17—C20—S21—C22 | −179.7 (3) |
C6—S7—C8—C9 | −178.7 (4) | C20—S21—C22—C23 | −177.2 (5) |
C6—S7—C8—C13 | 1.2 (3) | C20—S21—C22—C27 | 0.3 (3) |
C13—C8—C9—C10 | 0.8 (7) | C27—C22—C23—C24 | 4.4 (7) |
S7—C8—C9—C10 | −179.3 (4) | S21—C22—C23—C24 | −178.3 (4) |
C8—C9—C10—C11 | −0.8 (8) | C22—C23—C24—C25 | −3.2 (9) |
C9—C10—C11—C12 | 0.4 (8) | C23—C24—C25—C26 | −1.3 (9) |
C10—C11—C12—C13 | 0.0 (8) | C24—C25—C26—C27 | 4.9 (7) |
C11—C12—C13—N14 | −178.5 (4) | C25—C26—C27—N28 | 178.3 (4) |
C11—C12—C13—C8 | 0.1 (7) | C25—C26—C27—C22 | −3.8 (7) |
C9—C8—C13—C12 | −0.5 (7) | C23—C22—C27—C26 | −1.2 (7) |
S7—C8—C13—C12 | 179.6 (4) | S21—C22—C27—C26 | −179.0 (4) |
C9—C8—C13—N14 | 178.2 (4) | C23—C22—C27—N28 | 176.9 (4) |
S7—C8—C13—N14 | −1.7 (5) | S21—C22—C27—N28 | −0.9 (5) |
C3—C6—N14—C13 | 179.9 (4) | C17—C20—N28—C27 | 179.1 (4) |
S7—C6—N14—C13 | −0.3 (5) | S21—C20—N28—C27 | −1.0 (5) |
C12—C13—N14—C6 | 180.0 (4) | C26—C27—N28—C20 | 179.2 (4) |
C8—C13—N14—C6 | 1.3 (5) | C22—C27—N28—C20 | 1.2 (5) |
Cg1 is the centroid of the S15/C16–C19 plane, Cg3 that of the C22–C27 plane, Cg4 that of the S1/C2–C5 plane and Cg6 that of the C8–C13 plane. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···N14i | 0.95 | 2.54 | 3.355 (6) | 144 |
C26—H26···S15ii | 0.95 | 2.87 | 3.522 (5) | 126 |
C5—H5···Cg1iii | 0.95 | 2.86 | 3.496 (5) | 125 |
C5—H5···Cg6iii | 0.95 | 2.93 | 3.532 (5) | 123 |
C11—H11···Cg3iv | 0.95 | 2.90 | 3.670 (6) | 139 |
C11—H11···Cg4iv | 0.95 | 2.90 | 3.705 (6) | 143 |
C19—H19···Cg3iv | 0.95 | 2.74 | 3.418 (6) | 129 |
C19—H19···Cg4iv | 0.95 | 2.73 | 3.447 (6) | 133 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x−1, −y+3/2, z+1/2; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+2, y+1/2, −z+3/2. |
Cg1 is the centroid of the S15/C16–C19 plane, Cg2 that of the C20/S21/C22/C27/N28 plane, Cg3 that of the C22–C27 plane, Cg4 that of the S1/C2–C5 plane, Cg5 that of the C6/S7/C8/C13/N14 plane and Cg6 that of the C8–C13 plane. |
CgI | CgJ | Cg–Cg (Å) | Alpha (°) | CgI_Perp (Å) | CgJ_Perp (Å) |
Cg1 | Cg2i | 3.888 (3) | 12.0 (2) | 3.761 (2) | -3.7335 (17) |
Cg1 | Cg3i | 3.962 (3) | 13.0 (2) | 3.774 (2) | -3.614 (2) |
Cg2 | Cg1ii | 3.888 (3) | 12.0 (2) | -3.7335 (17) | 3.761 (2) |
Cg2 | Cg6ii | 3.973 (3) | 9.4 (2) | -3.6796 (17) | 3.708 (2) |
Cg3 | Cg1ii | 3.962 (3) | 13.0 (2) | -3.614 (2) | 3.774 (2) |
Cg3 | Cg6ii | 3.799 (3) | 10.4 (2) | -3.631 (2) | 3.720 (2) |
Cg4 | Cg5ii | 3.859 (3) | 9.6 (2) | -3.5981 (19) | 3.7215 (17) |
Cg4 | Cg6ii | 3.882 (3) | 10.4 (2) | -3.5850 (19) | 3.674 (2) |
Cg5 | Cg4i | 3.859 (3) | 9.6 (2) | 3.7215 (17) | -3.5981 (19) |
Cg6 | Cg2i | 3.972 (3) | 9.4 (2) | 3.708 (2) | -3.6796 (17) |
Cg6 | Cg3i | 3.798 (3) | 10.4 (2) | 3.719 (2) | -3.631 (2) |
Cg6 | Cg4i | 3.882 (3) | 10.4 (2) | 3.673 (2) | -3.5851 (19) |
Notes: CgI(J) = plane number I(J); Cg–Cg = distance between ring centroids; CgI_Perp = perpendicular distance of CgI on ring J; CgJ_Perp = perpendicular distance of CgJ on ring I. Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z. |
Contact | Orientation A | Orientation B |
H···H | 35.8 | 30.1 |
S···H/H···S | 15.9 | 25.4 |
C···H/H···C | 20.2 | 21.8 |
N···H/H···N | 6.4 | 7.7 |
C···C | 8.0 | 8.9 |
C···S/S···C | 6.1 | 3.0 |
S···S | 4.2 | 0.9 |
S···N/N···S | 2.3 | 1.1 |
C···N/N···C | 1.0 | 1.1 |
Funding information
Funding for this research was provided by: VLIR–UOS (award No. ZEIN2014Z182 to LVM).
References
Aiello, S., Wells, G., Stone, E. L., Kadri, H., Bazzi, R., Bell, D. R., Stevens, M. F., Matthews, C. S., Bradshaw, T. D. & Westwell, A. D. (2008). J. Med. Chem. 51, 5135–5139. Web of Science CrossRef PubMed CAS
Bhoi, M. N., Borad, M. A. & Patel, H. D. (2014). Synth. Commun. 44, 2427–2457. Web of Science CrossRef CAS
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheng, Y., Wu, Y., Tan, G. & You, J. (2016). Angew. Chem. Int. Ed. 55, 12275–12279. Web of Science CSD CrossRef CAS
Cho, Y., Ioerger, T. R. & Sacchettini, J. C. (2008). J. Med. Chem. 51, 5984–5992. Web of Science CrossRef PubMed CAS
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals
Elbing, M., Garcia, A., Urban, S., Nguyen, T. Q. & Bazan, G. C. (2008). Macromolecules, 41, 9146–9155. Web of Science CrossRef CAS
Esashika, K., Yoshizawa-Fujita, M., Takeoka, Y. & Rikukawa, M. (2009). Synth. Met. 159, 2184–2187. Web of Science CrossRef CAS
Feng, F., He, F., An, L., Wang, S., Li, Y. & Zhu, D. (2008). Adv. Mater. 20, 2959–2964. Web of Science CrossRef CAS
Fun, H.-K., Chia, T. S. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o2529. CSD CrossRef IUCr Journals
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Ho, H. A., Najari, A. & Leclerc, M. (2008). Acc. Chem. Res. 41, 168–178. Web of Science CrossRef PubMed CAS
Issa, M. I. F., Mohamed, A. A. R., Seham, E., Omar, M. E., Abd, E. & Siham, M. E. (2009). Eur. J. Med. Chem. 44, 1718–1725. Web of Science PubMed
Liu, L., Zhang, F., Wang, H., Zhu, N., Liu, B., Hong, H. & Han, L. (2017). Phosphorus Sulfur Silicon Relat. Elem. 192, 464–468. Web of Science CrossRef CAS
Malmström, J., Viklund, J., Slivo, C., Costa, A., Maudet, M., Sandelin, C., Hiller, G., Olsson, L., Aagaard, A., Geschwindner, S., Xue, Y. & Vasänge, M. (2012). Bioorg. Med. Chem. Lett. 22, 5919–5923. Web of Science PubMed
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef
Mukhopadhyay, C. & Datta, A. (2007). Heterocycles, 71, 1837–1842. CrossRef CAS
Radhakrishnan, S., Parthasarathi, R., Subramanian, V. & Somanathan, N. (2006). J. Comput. Mater. Sci. 37, 318–322. Web of Science CrossRef CAS
Radhakrishnan, S. & Somanathan, N. (2006). J. Mater. Chem. 16, 2990–3000. Web of Science CrossRef CAS
Radhakrishnan, S., Subramanian, V., Somanathan, N., Srinivasan, K. S. V. & Ramasami, T. (2003). Mol. Cryst. Liq. Cryst. 390, 113–120. Web of Science CrossRef CAS
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.