research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new lanthanum(III) complex containing acetyl­acetone and 1H-imidazole

CROSSMARK_Color_square_no_text.svg

aGraduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181, Japan, bDepartment of Marine Resource Science, Faculity of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku City, Kochi 783-8502, Japan, cKochi University, 2-5-1 Akebono-cho, Kochi 780-8072, Japan, dDepartment of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan, eNenjiang Senior High School, Nenjiang Heihe City, Heilongjiang Province 161400, People's Republic of China, and fDepartment of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, Ikarashi 2-no-cho, Niigata City 950-2181, Japan
*Correspondence e-mail: msato@eng.niigata-u.ac.jp

Edited by A. Van der Lee, Université de Montpellier II, France (Received 8 August 2017; accepted 10 October 2017; online 20 October 2017)

In the title complex, di­aqua­(1H-imidazole-κN3)(nitrato-κ2O,O′)bis­(4-oxo­pent-2-en-2-olato-κ2O,O′)lanthanum(III), [La(C5H7O2)2(NO3)(C3H4N2)(H2O)2], the La atom is coordinated by eight O atoms of two acetyl­acetonate (acac) anions acting as bidentate ligands, two water mol­ecule as monodentate ligands, one nitrate anions as a bidentate ligand and one N atom of an imidazolate (ImH) molecule as a monodentate ligand. Thus, the coordination number of the La atom is nine in a monocapped square anti­prismatic polyhedron. There are three types of inter­molecular hydrogen bonds between ligands, the first involving nitrate–water O⋯H—O inter­actions running along the [001] direction, the second involving acac–water O⋯H—O inter­actions along the [010] direction and the third involving an Im–nitrate N—H⋯O inter­action along the [100] direction (five inter­actions of this type). Thus, an overall one-dimensional network structure is generated. The mol­ecular plane of an ImH molecule is almost parallel to that of a nitrate ligand, making an angle of only 6.04 (12)°. Inter­estingly, the ImH plane is nearly perpendicular to the planes of two neighbouring acac ligands.

1. Chemical context

Carb­oxy­lic acid-based linkers are often used in metal–organic complexes involving rare earth elements because they can easily build a framework structure due to the oxophilic nature of lanthanide ions. Recently, some imidazole-based metal organic complexes were reported to form such framework structures (Zurawski et al., 2011[Zurawski, A., Mai, M., Baumann, D., Feldmann, C. & Müller-Buschbaum, K. (2011). Chem. Commun. 47, 496-498.]). A remarkable feature of imidazole-based compounds is the ability to form porous networks, such as zeolitic imidazolate frameworks (ZIFs) (Zurawski et al., 2012[Zurawski, A., Rybak, J. C., Meyer, L. V., Matthes, P. R., Stepanenko, V., Dannenbauer, C., Würthner, F. & Müller-Buschbaum, K. (2012). Dalton Trans. 41, 4067-4078.]; Müller-Buschbaum et al., 2015[Müller-Buschbaum, K., Beuerle, F. & Feldmann, C. (2015). Microporous Mesoporous Mater. 216, 171-199.]), which show a good performance for gas adsorption with feasible chemical and thermal stability. For example, ZIF-8 and ZIF-11 have a remarkable chemical resistance to boiling alkaline water and organic solvents, and high thermal stability up to 823 K (Park et al., 2006[Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186-10191.]; Zhong et al., 2014[Zhong, H. X., Wang, J., Zhang, Y. W., Xu, W. L., Xing, W., Xu, D., Zhang, Y. F. & Zhang, X. B. (2014). Angew. Chem. Int. Ed. 53, 14235-14239.]). Another inter­esting feature of these complexes is that they exhibit luminescence based on ff transitions of lanthanides assisted by the ligand antenna effect (Rybak et al., 2012[Rybak, J. C., Meyer, L. V., Wagenhöfer, J., Sextl, G. & Müller-Buschbaum, K. (2012). Inorg. Chem. 51, 13204-13213.]). The complexes of rare earth atoms with β-diketonates have been investigated widely because of their simple use as organic ligands (Binnemans, 2005[Binnemans, K. (2005). Handbook on the Physics and Chemistry of Rare Earths Vol. 35, edited by K. A. Gschneidner, J. C. G. Bunzli & V. K. Percharsky, ch. 225, pp. 107-272. Amsterdam: Elsevier.]). These ligands can give an increase in luminescence efficiency and intensity, Eu(acac)3 (acac is acetyl­acetonate) being one such complex (Kuz'mina & Eliseeva, 2006[Kuz'mina, N. P. & Eliseeva, S. V. (2006). Russ. J. Inorg. Chem. 51, 73-88.]). In addition, Tb(acac)3 is used as an active light-emitting layer in the first LED based on lanthanide complexes (Kido et al., 1990[Kido, J., Nagai, K. & Ohashi, Y. (1990). Chem. Lett. 19, 657-660.]). From the viewpoint of high luminescence efficiency, the luminescence based on the fd transition of Ce3+ is quite promising due to its allowed electronic transition. However, the emission of Ce3+ in metal–organic complexes have been reported only occasionally, for example, in [Ce(triRNTB)2](CF3SO3)3 [NTB = N-substituted tris­(N-alkyl­benzimidazol-2-ylmeth­yl)amine] and 3[Ce(Im)3(ImH)]·ImH (Zheng et al., 2007[Zheng, X. L., Liu, Y., Pan, M., Lü, X. Q., Zhang, J. Y., Zhao, C. Y., Tong, Y. X. & Su, C. Y. (2007). Angew. Chem. Int. Ed. 46, 7399-7403.]; Meyer et al., 2015[Meyer, L. V., Schönfeld, F., Zurawski, A., Mai, M., Feldmann, C. & Müller-Buschbaum, K. (2015). Dalton Trans. 44, 4070-4079.]). One of the reasons for this is the difficulty of retaining a certain distance between Ce3+ ions in order to avoid luminescence quenching caused by energy transfer between Ce3+ ions. [Ce(triRNTB)2](CF3SO3)3 shows a blue emission accompanied by neighbouring Ce⋯Ce distance of about 17∼18 Å. NTB is a bulky ligand so that it can keep the neighbouring central ions far away. Also, it may be important for the emission of Ce3+ to construct a structure of isolated entities rather than a framework structure, which does not necessarily guarantee a sufficient long metal–metal distance. During the investigation of the synthesis of lanthanide complexes for Ce3+ emission using functional ligands, like imidazole with the antenna effect, as well as β-diketone derivatives, we have synthesized a novel lanthanum complex, although the cerium derivative has not been synthesized yet. This study reports structural data on a newly synthesized lanthanum complex comprising functional ligands of imidazole and acetyl­acetone.

[Scheme 1]

2. Structural commentary

The title complex crystallizes in the monoclinic space group P21/c, with one formula unit of [La(C5H7O2)2(NO3)(C3H4N2)(H2O)2]. Each mol­ecule is isolated individually, i.e. the structure is not a framework structure. The central La atom is coordinated by eight O atoms from two acac anions, two water mol­ecules, one nitrate anion and one N atom from one Im ligand (Fig. 1[link]). Thus, the La atom has a monocapped square anti­prismatic coordination. The La—O bond lengths can be classified into three categories; the first concerns inter­actions with a bidentate acac mol­ecule, the second those with a nitrate ion behaving as a bidentate ligand and the third those with a water mol­ecule. All the distances are quite comparable with the corresponding distances reported for acac complexes (Phillips et al., 1968[Phillips, T. II, Sands, D. E. & Wagner, W. F. (1968). Inorg. Chem. 7, 2295-2299.]; Antsyshkina et al., 1997[Antsyshkina, A. S., Palkina, K. K., Kuz'mina, N. E., Orlova, V. T. & Sadikov, G. G. (1997). Russ. J. Inorg. Chem. 42, 1335-1340.]; Fukuda et al., 2002[Fukuda, Y., Nakao, A. & Hayashi, K. (2002). J. Chem. Soc. Dalton Trans. pp. 527-533.]) and for nitrate complexes (Al-Karaghouli & Wood, 1972[Al-Karaghouli, A. R. & Wood, J. S. (1972). Inorg. Chem. 11, 2293-2299.]; Frechette et al., 1992[Frechette, M., Butler, I. R., Hynes, R. & Detellier, C. (1992). Inorg. Chem. 31, 1650-1656.]; Fukuda et al., 2002[Fukuda, Y., Nakao, A. & Hayashi, K. (2002). J. Chem. Soc. Dalton Trans. pp. 527-533.]). An Im ligand coordinates to the central La atom as a monodentate ligand. The La—N distance is comparable with that of 3[Ce(Im)3(ImH)]·ImH (Meyer et al., 2015[Meyer, L. V., Schönfeld, F., Zurawski, A., Mai, M., Feldmann, C. & Müller-Buschbaum, K. (2015). Dalton Trans. 44, 4070-4079.]).

[Figure 1]
Figure 1
View of the mol­ecular structure of the title complex, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

3. Supra­molecular features

The discrete complexes are linked by five kinds of hydrogen bonds (Table 1[link]). There are two types of hydrogen bond chains that lie nearly within the ac plane; the first type are the chains parallel to [100] by centrosymmetric pairs of inter­molecular O⋯H—N hydrogen bonds between the O atom of a nitrate anion and the H atom of an ImH ligand, and the other type are the chains parallel to [001], formed also by centrosymmetric pairs of inter­molecular O⋯H—O hydrogen bonds between the O atom of a nitrate anion and the H atom of a water mol­ecule (O12W) (Fig. 2[link]a). It is notable, as shown in Fig. 2[link](b), that these hydrogen bonds are both almost parallel to the ac plane. This arises from the fact that the angle difference between the mol­ecular planes of the nitrate and ImH mol­ecules is only 6.04 (12)°. Along the [010] direction, there are three types of hydrogen-bond chains, all of which are the hydrogen bond between the O atom of the acac anion and the H atom of water mol­ecule (Fig. 3[link]). All the ligands coordinating to the central La atom are involved in hydrogen bonding with neighbouring complexes. In this way, all mol­ecules are connected by hydrogen bonds running in every axis direction, leading to a three-dimensional supra­molecular network structure. Furthermore, it should be mentionned that the mol­ecular plane of each ImH ligand is almost perpendic­ular to the mol­ecular planes of the two neighbouring acac anions, making angles of 84.68 (11) and 85.27 (11)°, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N34—H34⋯O43i 0.86 2.15 2.942 (2) 153
O11W—H11X⋯O24ii 0.81 (3) 2.10 (3) 2.8353 (19) 152 (2)
O11W—H11Y⋯O12ii 0.81 (3) 2.00 (3) 2.8014 (19) 168 (3)
O12W—H12Y⋯O44iii 0.85 (3) 2.10 (3) 2.930 (2) 167 (3)
O12W—H12X⋯O22iv 0.73 (3) 2.30 (3) 3.0025 (19) 161 (3)
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Connection of discrete complexes by inter­molecular hydrogen-bonding (blue dashed lines) chains in the ac plane projected (a) along the b axis and (b) along the a axis. Colour code: La yellow, C grey, N purple and O red. H atoms have been omitted.
[Figure 3]
Figure 3
Connection of discrete complexes by inter­molecular hydrogen-bonding (blue dashed lines) chains in the bc plane. Colour code: La yellow, C grey, N purple and O red. H atoms have been omitted.

4. Database survey

The crystal structures of other related acac complexes including lanthanide ions have been reported (Berg & Acosta, 1968[Berg, E. W. & Acosta, J. J. C. (1968). Anal. Chim. Acta, 40, 101-113.]; Binnemans, 2005[Binnemans, K. (2005). Handbook on the Physics and Chemistry of Rare Earths Vol. 35, edited by K. A. Gschneidner, J. C. G. Bunzli & V. K. Percharsky, ch. 225, pp. 107-272. Amsterdam: Elsevier.]; Filotti et al., 1996[Filotti, L., Bugli, G., Ensuque, A. & Bozon-Verduraz, F. (1996). Bull. Soc. Chim. Fr. 133, 1117-1126.]; Fujinaga et al., 1981[Fujinaga, T., Kuwamoto, T., Sugiura, K. & Ichiki, S. (1981). Talanta, 28, 295-300.]; Lim et al., 1996[Lim, J. T., Hong, S. T., Lee, J. C. & Lee, I. M. (1996). Bull. Korean Chem. Soc. 17, 1023-1031.]; Phillips et al., 1968[Phillips, T. II, Sands, D. E. & Wagner, W. F. (1968). Inorg. Chem. 7, 2295-2299.]; Richardson et al., 1968[Richardson, M. F., Wagner, W. F. & Sands, D. E. (1968). Inorg. Chem. 7, 2495-2500.]; Stites et al., 1948[Stites, J. G., McCarty, C. N. & Quill, L. L. (1948). J. Am. Chem. Soc. 70, 3142-3143.]). The crystal structures of other related ImH complexes including lanthanide ions have also been reported (Dan et al., 2004[Dan, Y. M., Yu, H. G., Long, Q., Hou, A. X., Liu, Y. & Qu, S. S. (2004). Thermochim. Acta, 419, 169-172.]; Dechnik et al., 2016[Dechnik, J., Mühlbach, F., Dietrich, D., Wehner, T., Gutmann, M., Lühmann, T., Meinel, L., Janiak, C. & Müller-Buschbaum, K. (2016). Eur. J. Inorg. Chem. pp. 4408-4415.]; Meyer et al., 2015[Meyer, L. V., Schönfeld, F., Zurawski, A., Mai, M., Feldmann, C. & Müller-Buschbaum, K. (2015). Dalton Trans. 44, 4070-4079.]; Pan et al., 2016[Pan, L., Gao, X. H., Lv, X. C., Tan, Z. C. & Cao, H. (2016). J. Mol. Struct. 1117, 57-63.]; Zhou et al., 2008[Zhou, R. S., Cui, X. B., Song, J. F., Xu, X. Y., Xu, J. Q. & Wang, T. G. (2008). J. Solid State Chem. 181, 2099-2107.]; Zurawski et al., 2013[Zurawski, A., Rybak, J. C., Meyer, L. V. & Müller-Buschbaum, K. Z. (2013). Z. Anorg. Allg. Chem. 639, 261-267.]).

5. Synthesis and crystallization

Colourless plate-like crystals were obtained by slow evaporation from a methanol solution of La(NO3)3·6H2O, acetyl­acetone and 1H-imidazole (1:5:5 molar ratio). The products were filtered off and dried at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C atoms were positioned geometrically after each cycle in idealized locations and refined as riding on their parent C atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to water O atoms were located in a difference Fourier map, and isotropically refined without any distance restraint and with restraints of Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [La(C5H7O2)2(NO3)(C3H4N2)(H2O)2]
Mr 503.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.8233 (9), 12.4719 (12), 16.4432 (16)
β (°) 100.184 (7)
V3) 1982.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.20
Crystal size (mm) 0.42 × 0.39 × 0.12
 
Data collection
Diffractometer XTALAB-MINI
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.456, 0.772
No. of measured, independent and observed [I > 2σ(I)] reflections 19723, 4543, 4317
Rint 0.019
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.040, 1.07
No. of reflections 4543
No. of parameters 251
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.54
Computer programs: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Diaqua(1H-imidazole-κN3)(nitrato-κ2O,O')bis(4-oxopent-2-en-2-olato-κ2O,O')lanthanum(III) top
Crystal data top
[La(C5H7O2)2(NO3)(C3H4N2)(H2O)2]F(000) = 1000
Mr = 503.24Dx = 1.686 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19036 reflections
a = 9.8233 (9) Åθ = 3–27.5°
b = 12.4719 (12) ŵ = 2.20 mm1
c = 16.4432 (16) ÅT = 293 K
β = 100.184 (7)°Prism, colorless
V = 1982.8 (3) Å30.42 × 0.39 × 0.12 mm
Z = 4
Data collection top
XTALAB-MINI
diffractometer
4543 independent reflections
Radiation source: sealed x-ray tube4317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.0°
phi or ω oscillation scansh = 1212
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 1616
Tmin = 0.456, Tmax = 0.772l = 2121
19723 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: mixed
wR(F2) = 0.040H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0179P)2 + 0.8453P]
where P = (Fo2 + 2Fc2)/3
4543 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.54 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.49302 (2)0.06987 (2)0.73872 (2)0.02341 (4)
C110.3206 (3)0.1406 (2)0.94575 (16)0.0675 (7)
H11A0.26570.18850.90760.101*
H11B0.2720.12380.98990.101*
H11C0.40710.17420.96790.101*
C120.3473 (2)0.03887 (17)0.90146 (12)0.0416 (4)
O120.40186 (14)0.05003 (10)0.83749 (8)0.0404 (3)
C130.3101 (2)0.05849 (17)0.93181 (13)0.0489 (5)
H130.26680.05660.97770.059*
C140.33217 (18)0.15900 (16)0.89926 (11)0.0395 (4)
O140.38770 (15)0.17374 (10)0.83705 (8)0.0454 (3)
C150.2866 (2)0.2580 (2)0.93995 (16)0.0622 (6)
H15A0.24680.30830.89830.093*
H15B0.36510.290.97450.093*
H15C0.21910.23860.9730.093*
C210.8806 (3)0.2748 (2)0.8716 (2)0.0910 (11)
H21A0.82630.31930.90110.136*
H21B0.89830.31220.82350.136*
H21C0.96680.25780.90670.136*
C220.80297 (19)0.17260 (16)0.84555 (12)0.0424 (4)
O220.67656 (13)0.18282 (10)0.81634 (9)0.0448 (3)
C230.8740 (2)0.07563 (17)0.85616 (14)0.0456 (5)
H230.96790.07840.8780.055*
C240.81648 (19)0.02525 (16)0.83686 (12)0.0425 (4)
O240.69227 (13)0.04257 (11)0.80450 (9)0.0446 (3)
C250.9079 (3)0.1227 (2)0.8548 (2)0.0856 (10)
H25A0.86620.17260.88750.128*
H25B0.99680.10140.88470.128*
H25C0.9190.15610.80380.128*
N310.22279 (15)0.07647 (12)0.67424 (10)0.0367 (3)
C320.1625 (2)0.07834 (15)0.59247 (12)0.0411 (4)
H320.21010.07680.54840.049*
C330.0238 (2)0.08279 (17)0.58553 (14)0.0481 (5)
H330.04090.08530.53690.058*
N340.00239 (16)0.08292 (14)0.66351 (12)0.0496 (4)
H340.08260.08520.67760.06*
C350.1190 (2)0.07876 (18)0.71465 (13)0.0483 (5)
H350.12890.07760.77190.058*
N410.62511 (15)0.09036 (12)0.57886 (9)0.0329 (3)
O420.49735 (12)0.08624 (10)0.57207 (8)0.0374 (3)
O430.69523 (14)0.08635 (14)0.65120 (8)0.0545 (4)
O440.68294 (15)0.09930 (13)0.51860 (8)0.0491 (3)
O11W0.45059 (16)0.26240 (10)0.68241 (9)0.0411 (3)
H11X0.389 (3)0.303 (2)0.6897 (16)0.062*
H11Y0.499 (3)0.311 (2)0.6723 (16)0.062*
O12W0.45109 (17)0.10477 (11)0.65529 (9)0.0453 (3)
H12Y0.425 (3)0.100 (2)0.6035 (17)0.068*
H12X0.438 (3)0.160 (2)0.6658 (17)0.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02352 (5)0.02229 (5)0.02468 (6)0.00018 (3)0.00500 (3)0.00149 (3)
C110.0832 (18)0.0650 (15)0.0637 (15)0.0058 (13)0.0387 (14)0.0254 (12)
C120.0416 (10)0.0513 (11)0.0344 (9)0.0007 (8)0.0134 (8)0.0079 (8)
O120.0528 (8)0.0354 (7)0.0377 (7)0.0031 (6)0.0208 (6)0.0043 (5)
C130.0549 (12)0.0635 (14)0.0332 (10)0.0012 (10)0.0214 (9)0.0042 (9)
C140.0319 (9)0.0516 (11)0.0362 (9)0.0029 (8)0.0087 (7)0.0183 (8)
O140.0577 (9)0.0372 (7)0.0476 (7)0.0012 (6)0.0263 (7)0.0107 (6)
C150.0545 (13)0.0666 (15)0.0713 (15)0.0042 (11)0.0267 (12)0.0364 (12)
C210.0437 (13)0.0679 (18)0.153 (3)0.0129 (12)0.0071 (16)0.0437 (19)
C220.0306 (9)0.0505 (11)0.0451 (10)0.0057 (8)0.0042 (8)0.0153 (8)
O220.0336 (7)0.0409 (7)0.0553 (8)0.0023 (5)0.0043 (6)0.0132 (6)
C230.0250 (8)0.0615 (13)0.0485 (12)0.0006 (8)0.0016 (8)0.0030 (9)
C240.0326 (9)0.0486 (11)0.0463 (11)0.0071 (8)0.0069 (8)0.0125 (9)
O240.0350 (7)0.0363 (7)0.0592 (9)0.0022 (5)0.0008 (6)0.0087 (6)
C250.0454 (13)0.0614 (16)0.143 (3)0.0176 (12)0.0008 (16)0.0247 (17)
N310.0256 (7)0.0463 (9)0.0378 (8)0.0009 (6)0.0046 (6)0.0008 (6)
C320.0393 (10)0.0477 (11)0.0365 (10)0.0002 (8)0.0074 (8)0.0017 (8)
C330.0360 (10)0.0576 (13)0.0457 (12)0.0011 (9)0.0067 (9)0.0005 (9)
N340.0239 (7)0.0671 (12)0.0586 (11)0.0023 (7)0.0093 (7)0.0053 (8)
C350.0340 (10)0.0740 (15)0.0381 (10)0.0028 (9)0.0096 (8)0.0022 (9)
N410.0332 (7)0.0373 (8)0.0294 (7)0.0018 (6)0.0085 (6)0.0029 (6)
O420.0294 (6)0.0460 (7)0.0364 (7)0.0021 (5)0.0048 (5)0.0011 (5)
O430.0291 (7)0.1049 (13)0.0294 (7)0.0024 (7)0.0049 (5)0.0017 (7)
O440.0501 (8)0.0691 (9)0.0326 (7)0.0106 (7)0.0198 (6)0.0067 (6)
O11W0.0485 (8)0.0256 (6)0.0502 (8)0.0026 (5)0.0113 (6)0.0023 (5)
O12W0.0726 (10)0.0261 (6)0.0336 (7)0.0018 (6)0.0002 (7)0.0023 (5)
Geometric parameters (Å, º) top
La1—O142.4402 (12)C22—O221.256 (2)
La1—O222.4597 (12)C22—C231.392 (3)
La1—O122.4880 (12)C23—C241.393 (3)
La1—O242.4939 (13)C23—H230.93
La1—O12W2.5682 (13)C24—O241.261 (2)
La1—O11W2.5808 (13)C24—C251.510 (3)
La1—O432.6589 (14)C25—H25A0.96
La1—N312.6800 (15)C25—H25B0.96
La1—O422.7556 (13)C25—H25C0.96
C11—C121.509 (3)N31—C351.312 (2)
C11—H11A0.96N31—C321.370 (3)
C11—H11B0.96C32—C331.348 (3)
C11—H11C0.96C32—H320.93
C12—O121.270 (2)C33—N341.352 (3)
C12—C131.386 (3)C33—H330.93
C13—C141.395 (3)N34—C351.333 (3)
C13—H130.93N34—H340.86
C14—O141.255 (2)C35—H350.93
C14—C151.509 (3)N41—O441.2311 (19)
C15—H15A0.96N41—O421.2413 (18)
C15—H15B0.96N41—O431.266 (2)
C15—H15C0.96O11W—H11X0.81 (3)
C21—C221.508 (3)O11W—H11Y0.81 (3)
C21—H21A0.96O12W—H12Y0.85 (3)
C21—H21B0.96O12W—H12X0.73 (3)
C21—H21C0.96
O14—La1—O2273.14 (5)C14—C15—H15B109.5
O14—La1—O1269.07 (4)H15A—C15—H15B109.5
O22—La1—O12108.72 (5)C14—C15—H15C109.5
O14—La1—O24113.79 (5)H15A—C15—H15C109.5
O22—La1—O2469.51 (5)H15B—C15—H15C109.5
O12—La1—O2474.00 (5)C22—C21—H21A109.5
O14—La1—O12W139.24 (5)C22—C21—H21B109.5
O22—La1—O12W142.79 (5)H21A—C21—H21B109.5
O12—La1—O12W78.27 (5)C22—C21—H21C109.5
O24—La1—O12W78.12 (5)H21A—C21—H21C109.5
O14—La1—O11W71.54 (5)H21B—C21—H21C109.5
O22—La1—O11W73.17 (5)O22—C22—C23125.16 (17)
O12—La1—O11W137.69 (5)O22—C22—C21116.06 (19)
O24—La1—O11W138.02 (5)C23—C22—C21118.78 (19)
O12W—La1—O11W126.65 (5)C22—O22—La1136.44 (12)
O14—La1—O43139.68 (5)C22—C23—C24125.62 (18)
O22—La1—O4371.78 (5)C22—C23—H23117.2
O12—La1—O43142.12 (5)C24—C23—H23117.2
O24—La1—O4370.97 (5)O24—C24—C23125.06 (18)
O12W—La1—O4380.85 (5)O24—C24—C25116.3 (2)
O11W—La1—O4379.79 (5)C23—C24—C25118.66 (19)
O14—La1—N3174.90 (5)C24—O24—La1135.53 (12)
O22—La1—N31140.50 (4)C24—C25—H25A109.5
O12—La1—N3180.27 (5)C24—C25—H25B109.5
O24—La1—N31146.66 (4)H25A—C25—H25B109.5
O12W—La1—N3176.15 (5)C24—C25—H25C109.5
O11W—La1—N3175.15 (5)H25A—C25—H25C109.5
O43—La1—N31124.47 (5)H25B—C25—H25C109.5
O14—La1—O42134.63 (4)C35—N31—C32104.87 (16)
O22—La1—O42109.56 (4)C35—N31—La1127.18 (13)
O12—La1—O42139.84 (4)C32—N31—La1127.95 (12)
O24—La1—O42108.91 (4)C33—C32—N31109.82 (18)
O12W—La1—O4263.95 (4)C33—C32—H32125.1
O11W—La1—O4266.69 (4)N31—C32—H32125.1
O43—La1—O4246.51 (4)C32—C33—N34106.18 (18)
N31—La1—O4278.03 (4)C32—C33—H33126.9
C12—C11—H11A109.5N34—C33—H33126.9
C12—C11—H11B109.5C35—N34—C33107.42 (17)
H11A—C11—H11B109.5C35—N34—H34126.3
C12—C11—H11C109.5C33—N34—H34126.3
H11A—C11—H11C109.5N31—C35—N34111.71 (19)
H11B—C11—H11C109.5N31—C35—H35124.1
O12—C12—C13124.82 (18)N34—C35—H35124.1
O12—C12—C11116.26 (19)O44—N41—O42122.31 (15)
C13—C12—C11118.91 (18)O44—N41—O43120.53 (15)
C12—O12—La1136.74 (12)O42—N41—O43117.15 (14)
C12—C13—C14125.47 (18)N41—O42—La196.13 (10)
C12—C13—H13117.3N41—O43—La1100.21 (10)
C14—C13—H13117.3La1—O11W—H11X127.1 (18)
O14—C14—C13124.32 (17)La1—O11W—H11Y135.3 (18)
O14—C14—C15116.57 (19)H11X—O11W—H11Y92 (2)
C13—C14—C15119.11 (18)La1—O12W—H12Y117.7 (18)
C14—O14—La1139.35 (12)La1—O12W—H12X134 (2)
C14—C15—H15A109.5H12Y—O12W—H12X106 (3)
C13—C12—O12—La16.4 (3)C23—C24—O24—La110.7 (3)
C11—C12—O12—La1174.35 (15)C25—C24—O24—La1168.80 (18)
O12—C12—C13—C143.0 (4)C35—N31—C32—C330.6 (2)
C11—C12—C13—C14177.8 (2)La1—N31—C32—C33179.32 (13)
C12—C13—C14—O140.9 (4)N31—C32—C33—N340.4 (2)
C12—C13—C14—C15179.5 (2)C32—C33—N34—C350.1 (2)
C13—C14—O14—La12.3 (3)C32—N31—C35—N340.6 (2)
C15—C14—O14—La1178.08 (15)La1—N31—C35—N34179.36 (12)
C23—C22—O22—La114.8 (3)C33—N34—C35—N310.3 (3)
C21—C22—O22—La1166.00 (19)O44—N41—O42—La1179.37 (15)
O22—C22—C23—C240.6 (4)O43—N41—O42—La10.25 (16)
C21—C22—C23—C24178.6 (2)O44—N41—O43—La1179.40 (14)
C22—C23—C24—O242.3 (4)O42—N41—O43—La10.26 (17)
C22—C23—C24—C25178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N34—H34···O43i0.862.152.942 (2)153
O11W—H11X···O24ii0.81 (3)2.10 (3)2.8353 (19)152 (2)
O11W—H11Y···O12ii0.81 (3)2.00 (3)2.8014 (19)168 (3)
O12W—H12Y···O44iii0.85 (3)2.10 (3)2.930 (2)167 (3)
O12W—H12X···O22iv0.73 (3)2.30 (3)3.0025 (19)161 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y, z+1; (iv) x+1, y1/2, z+3/2.
 

Funding information

Funding for this research was provided by: Grant-in-Aid for Scientific Research (Nos. 17H03124 and 17H03386) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

First citationAl-Karaghouli, A. R. & Wood, J. S. (1972). Inorg. Chem. 11, 2293–2299.  CAS
First citationAntsyshkina, A. S., Palkina, K. K., Kuz'mina, N. E., Orlova, V. T. & Sadikov, G. G. (1997). Russ. J. Inorg. Chem. 42, 1335–1340.
First citationBerg, E. W. & Acosta, J. J. C. (1968). Anal. Chim. Acta, 40, 101–113.  CrossRef CAS
First citationBinnemans, K. (2005). Handbook on the Physics and Chemistry of Rare Earths Vol. 35, edited by K. A. Gschneidner, J. C. G. Bunzli & V. K. Percharsky, ch. 225, pp. 107–272. Amsterdam: Elsevier.
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals
First citationDan, Y. M., Yu, H. G., Long, Q., Hou, A. X., Liu, Y. & Qu, S. S. (2004). Thermochim. Acta, 419, 169–172.  CrossRef CAS
First citationDechnik, J., Mühlbach, F., Dietrich, D., Wehner, T., Gutmann, M., Lühmann, T., Meinel, L., Janiak, C. & Müller-Buschbaum, K. (2016). Eur. J. Inorg. Chem. pp. 4408–4415.  CrossRef
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFilotti, L., Bugli, G., Ensuque, A. & Bozon-Verduraz, F. (1996). Bull. Soc. Chim. Fr. 133, 1117–1126.  CAS
First citationFrechette, M., Butler, I. R., Hynes, R. & Detellier, C. (1992). Inorg. Chem. 31, 1650–1656.  CSD CrossRef CAS Web of Science
First citationFujinaga, T., Kuwamoto, T., Sugiura, K. & Ichiki, S. (1981). Talanta, 28, 295–300.  CrossRef PubMed CAS
First citationFukuda, Y., Nakao, A. & Hayashi, K. (2002). J. Chem. Soc. Dalton Trans. pp. 527–533.  Web of Science CSD CrossRef
First citationKido, J., Nagai, K. & Ohashi, Y. (1990). Chem. Lett. 19, 657–660.  CrossRef
First citationKuz'mina, N. P. & Eliseeva, S. V. (2006). Russ. J. Inorg. Chem. 51, 73–88.
First citationLim, J. T., Hong, S. T., Lee, J. C. & Lee, I. M. (1996). Bull. Korean Chem. Soc. 17, 1023–1031.  CAS
First citationMeyer, L. V., Schönfeld, F., Zurawski, A., Mai, M., Feldmann, C. & Müller-Buschbaum, K. (2015). Dalton Trans. 44, 4070–4079.  CSD CrossRef CAS PubMed
First citationMüller-Buschbaum, K., Beuerle, F. & Feldmann, C. (2015). Microporous Mesoporous Mater. 216, 171–199.
First citationPan, L., Gao, X. H., Lv, X. C., Tan, Z. C. & Cao, H. (2016). J. Mol. Struct. 1117, 57–63.  CAS
First citationPark, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186–10191.  PubMed CAS
First citationPhillips, T. II, Sands, D. E. & Wagner, W. F. (1968). Inorg. Chem. 7, 2295–2299.  CAS
First citationRichardson, M. F., Wagner, W. F. & Sands, D. E. (1968). Inorg. Chem. 7, 2495–2500.  CAS
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
First citationRybak, J. C., Meyer, L. V., Wagenhöfer, J., Sextl, G. & Müller-Buschbaum, K. (2012). Inorg. Chem. 51, 13204–13213.  CAS PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationStites, J. G., McCarty, C. N. & Quill, L. L. (1948). J. Am. Chem. Soc. 70, 3142–3143.  CrossRef CAS Web of Science
First citationZheng, X. L., Liu, Y., Pan, M., Lü, X. Q., Zhang, J. Y., Zhao, C. Y., Tong, Y. X. & Su, C. Y. (2007). Angew. Chem. Int. Ed. 46, 7399–7403.  CAS
First citationZhong, H. X., Wang, J., Zhang, Y. W., Xu, W. L., Xing, W., Xu, D., Zhang, Y. F. & Zhang, X. B. (2014). Angew. Chem. Int. Ed. 53, 14235–14239.  CAS
First citationZhou, R. S., Cui, X. B., Song, J. F., Xu, X. Y., Xu, J. Q. & Wang, T. G. (2008). J. Solid State Chem. 181, 2099–2107.  CAS
First citationZurawski, A., Mai, M., Baumann, D., Feldmann, C. & Müller-Buschbaum, K. (2011). Chem. Commun. 47, 496–498.  CAS
First citationZurawski, A., Rybak, J. C., Meyer, L. V., Matthes, P. R., Stepanenko, V., Dannenbauer, C., Würthner, F. & Müller-Buschbaum, K. (2012). Dalton Trans. 41, 4067–4078.  CAS PubMed
First citationZurawski, A., Rybak, J. C., Meyer, L. V. & Müller-Buschbaum, K. Z. (2013). Z. Anorg. Allg. Chem. 639, 261–267.  CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds