research communications
A new lanthanum(III) complex containing acetylacetone and 1H-imidazole
aGraduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181, Japan, bDepartment of Marine Resource Science, Faculity of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku City, Kochi 783-8502, Japan, cKochi University, 2-5-1 Akebono-cho, Kochi 780-8072, Japan, dDepartment of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan, eNenjiang Senior High School, Nenjiang Heihe City, Heilongjiang Province 161400, People's Republic of China, and fDepartment of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, Ikarashi 2-no-cho, Niigata City 950-2181, Japan
*Correspondence e-mail: msato@eng.niigata-u.ac.jp
In the title complex, diaqua(1H-imidazole-κN3)(nitrato-κ2O,O′)bis(4-oxopent-2-en-2-olato-κ2O,O′)lanthanum(III), [La(C5H7O2)2(NO3)(C3H4N2)(H2O)2], the La atom is coordinated by eight O atoms of two acetylacetonate (acac) anions acting as bidentate ligands, two water molecule as monodentate ligands, one nitrate anions as a bidentate ligand and one N atom of an imidazolate (ImH) molecule as a monodentate ligand. Thus, the of the La atom is nine in a monocapped square antiprismatic polyhedron. There are three types of intermolecular hydrogen bonds between ligands, the first involving nitrate–water O⋯H—O interactions running along the [001] direction, the second involving acac–water O⋯H—O interactions along the [010] direction and the third involving an Im–nitrate N—H⋯O interaction along the [100] direction (five interactions of this type). Thus, an overall one-dimensional network structure is generated. The molecular plane of an ImH molecule is almost parallel to that of a nitrate ligand, making an angle of only 6.04 (12)°. Interestingly, the ImH plane is nearly perpendicular to the planes of two neighbouring acac ligands.
Keywords: crystal structure; lanthanum complex; acetylacetone; imidazole.
CCDC reference: 1579078
1. Chemical context
Carboxylic acid-based linkers are often used in metal–organic complexes involving rare earth elements because they can easily build a framework structure due to the oxophilic nature of lanthanide ions. Recently, some imidazole-based metal organic complexes were reported to form such framework structures (Zurawski et al., 2011). A remarkable feature of imidazole-based compounds is the ability to form porous networks, such as zeolitic imidazolate frameworks (ZIFs) (Zurawski et al., 2012; Müller-Buschbaum et al., 2015), which show a good performance for gas adsorption with feasible chemical and thermal stability. For example, ZIF-8 and ZIF-11 have a remarkable chemical resistance to boiling alkaline water and organic solvents, and high thermal stability up to 823 K (Park et al., 2006; Zhong et al., 2014). Another interesting feature of these complexes is that they exhibit luminescence based on f–f transitions of lanthanides assisted by the ligand antenna effect (Rybak et al., 2012). The complexes of rare earth atoms with β-diketonates have been investigated widely because of their simple use as organic ligands (Binnemans, 2005). These ligands can give an increase in luminescence efficiency and intensity, Eu(acac)3 (acac is acetylacetonate) being one such complex (Kuz'mina & Eliseeva, 2006). In addition, Tb(acac)3 is used as an active light-emitting layer in the first LED based on lanthanide complexes (Kido et al., 1990). From the viewpoint of high luminescence efficiency, the luminescence based on the f–d transition of Ce3+ is quite promising due to its allowed electronic transition. However, the emission of Ce3+ in metal–organic complexes have been reported only occasionally, for example, in [Ce(triRNTB)2](CF3SO3)3 [NTB = N-substituted tris(N-alkylbenzimidazol-2-ylmethyl)amine] and ∞3[Ce(Im)3(ImH)]·ImH (Zheng et al., 2007; Meyer et al., 2015). One of the reasons for this is the difficulty of retaining a certain distance between Ce3+ ions in order to avoid caused by between Ce3+ ions. [Ce(triRNTB)2](CF3SO3)3 shows a blue emission accompanied by neighbouring Ce⋯Ce distance of about 17∼18 Å. NTB is a bulky ligand so that it can keep the neighbouring central ions far away. Also, it may be important for the emission of Ce3+ to construct a structure of isolated entities rather than a framework structure, which does not necessarily guarantee a sufficient long metal–metal distance. During the investigation of the synthesis of lanthanide complexes for Ce3+ emission using functional ligands, like imidazole with the antenna effect, as well as β-diketone derivatives, we have synthesized a novel lanthanum complex, although the cerium derivative has not been synthesized yet. This study reports structural data on a newly synthesized lanthanum complex comprising functional ligands of imidazole and acetylacetone.
2. Structural commentary
The title complex crystallizes in the monoclinic P21/c, with one formula unit of [La(C5H7O2)2(NO3)(C3H4N2)(H2O)2]. Each molecule is isolated individually, i.e. the structure is not a framework structure. The central La atom is coordinated by eight O atoms from two acac anions, two water molecules, one nitrate anion and one N atom from one Im ligand (Fig. 1). Thus, the La atom has a monocapped square antiprismatic coordination. The La—O bond lengths can be classified into three categories; the first concerns interactions with a bidentate acac molecule, the second those with a nitrate ion behaving as a bidentate ligand and the third those with a water molecule. All the distances are quite comparable with the corresponding distances reported for acac complexes (Phillips et al., 1968; Antsyshkina et al., 1997; Fukuda et al., 2002) and for nitrate complexes (Al-Karaghouli & Wood, 1972; Frechette et al., 1992; Fukuda et al., 2002). An Im ligand coordinates to the central La atom as a monodentate ligand. The La—N distance is comparable with that of ∞3[Ce(Im)3(ImH)]·ImH (Meyer et al., 2015).
3. Supramolecular features
The discrete complexes are linked by five kinds of hydrogen bonds (Table 1). There are two types of hydrogen bond chains that lie nearly within the ac plane; the first type are the chains parallel to [100] by centrosymmetric pairs of intermolecular O⋯H—N hydrogen bonds between the O atom of a nitrate anion and the H atom of an ImH ligand, and the other type are the chains parallel to [001], formed also by centrosymmetric pairs of intermolecular O⋯H—O hydrogen bonds between the O atom of a nitrate anion and the H atom of a water molecule (O12W) (Fig. 2a). It is notable, as shown in Fig. 2(b), that these hydrogen bonds are both almost parallel to the ac plane. This arises from the fact that the angle difference between the molecular planes of the nitrate and ImH molecules is only 6.04 (12)°. Along the [010] direction, there are three types of hydrogen-bond chains, all of which are the hydrogen bond between the O atom of the acac anion and the H atom of water molecule (Fig. 3). All the ligands coordinating to the central La atom are involved in hydrogen bonding with neighbouring complexes. In this way, all molecules are connected by hydrogen bonds running in every axis direction, leading to a three-dimensional supramolecular network structure. Furthermore, it should be mentionned that the molecular plane of each ImH ligand is almost perpendicular to the molecular planes of the two neighbouring acac anions, making angles of 84.68 (11) and 85.27 (11)°, respectively.
4. Database survey
The crystal structures of other related acac complexes including lanthanide ions have been reported (Berg & Acosta, 1968; Binnemans, 2005; Filotti et al., 1996; Fujinaga et al., 1981; Lim et al., 1996; Phillips et al., 1968; Richardson et al., 1968; Stites et al., 1948). The crystal structures of other related ImH complexes including lanthanide ions have also been reported (Dan et al., 2004; Dechnik et al., 2016; Meyer et al., 2015; Pan et al., 2016; Zhou et al., 2008; Zurawski et al., 2013).
5. Synthesis and crystallization
Colourless plate-like crystals were obtained by slow evaporation from a methanol solution of La(NO3)3·6H2O, acetylacetone and 1H-imidazole (1:5:5 molar ratio). The products were filtered off and dried at room temperature.
6. Refinement
Crystal data, data collection and structure . H atoms bonded to C atoms were positioned geometrically after each cycle in idealized locations and refined as riding on their parent C atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to water O atoms were located in a difference Fourier map, and isotropically refined without any distance restraint and with restraints of Uiso(H) = 1.5Ueq(O).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1579078
https://doi.org/10.1107/S205698901701461X/vn2131sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901701461X/vn2131Isup2.hkl
Data collection: CrystalClear (Rigaku/MSC, 2006); cell
CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).[La(C5H7O2)2(NO3)(C3H4N2)(H2O)2] | F(000) = 1000 |
Mr = 503.24 | Dx = 1.686 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 19036 reflections |
a = 9.8233 (9) Å | θ = 3–27.5° |
b = 12.4719 (12) Å | µ = 2.20 mm−1 |
c = 16.4432 (16) Å | T = 293 K |
β = 100.184 (7)° | Prism, colorless |
V = 1982.8 (3) Å3 | 0.42 × 0.39 × 0.12 mm |
Z = 4 |
XTALAB-MINI diffractometer | 4543 independent reflections |
Radiation source: sealed x-ray tube | 4317 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 10 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
phi or ω oscillation scans | h = −12→12 |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | k = −16→16 |
Tmin = 0.456, Tmax = 0.772 | l = −21→21 |
19723 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.016 | Hydrogen site location: mixed |
wR(F2) = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0179P)2 + 0.8453P] where P = (Fo2 + 2Fc2)/3 |
4543 reflections | (Δ/σ)max < 0.001 |
251 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.49302 (2) | 0.06987 (2) | 0.73872 (2) | 0.02341 (4) | |
C11 | 0.3206 (3) | −0.1406 (2) | 0.94575 (16) | 0.0675 (7) | |
H11A | 0.2657 | −0.1885 | 0.9076 | 0.101* | |
H11B | 0.272 | −0.1238 | 0.9899 | 0.101* | |
H11C | 0.4071 | −0.1742 | 0.9679 | 0.101* | |
C12 | 0.3473 (2) | −0.03887 (17) | 0.90146 (12) | 0.0416 (4) | |
O12 | 0.40186 (14) | −0.05003 (10) | 0.83749 (8) | 0.0404 (3) | |
C13 | 0.3101 (2) | 0.05849 (17) | 0.93181 (13) | 0.0489 (5) | |
H13 | 0.2668 | 0.0566 | 0.9777 | 0.059* | |
C14 | 0.33217 (18) | 0.15900 (16) | 0.89926 (11) | 0.0395 (4) | |
O14 | 0.38770 (15) | 0.17374 (10) | 0.83705 (8) | 0.0454 (3) | |
C15 | 0.2866 (2) | 0.2580 (2) | 0.93995 (16) | 0.0622 (6) | |
H15A | 0.2468 | 0.3083 | 0.8983 | 0.093* | |
H15B | 0.3651 | 0.29 | 0.9745 | 0.093* | |
H15C | 0.2191 | 0.2386 | 0.973 | 0.093* | |
C21 | 0.8806 (3) | 0.2748 (2) | 0.8716 (2) | 0.0910 (11) | |
H21A | 0.8263 | 0.3193 | 0.9011 | 0.136* | |
H21B | 0.8983 | 0.3122 | 0.8235 | 0.136* | |
H21C | 0.9668 | 0.2578 | 0.9067 | 0.136* | |
C22 | 0.80297 (19) | 0.17260 (16) | 0.84555 (12) | 0.0424 (4) | |
O22 | 0.67656 (13) | 0.18282 (10) | 0.81634 (9) | 0.0448 (3) | |
C23 | 0.8740 (2) | 0.07563 (17) | 0.85616 (14) | 0.0456 (5) | |
H23 | 0.9679 | 0.0784 | 0.878 | 0.055* | |
C24 | 0.81648 (19) | −0.02525 (16) | 0.83686 (12) | 0.0425 (4) | |
O24 | 0.69227 (13) | −0.04257 (11) | 0.80450 (9) | 0.0446 (3) | |
C25 | 0.9079 (3) | −0.1227 (2) | 0.8548 (2) | 0.0856 (10) | |
H25A | 0.8662 | −0.1726 | 0.8875 | 0.128* | |
H25B | 0.9968 | −0.1014 | 0.8847 | 0.128* | |
H25C | 0.919 | −0.1561 | 0.8038 | 0.128* | |
N31 | 0.22279 (15) | 0.07647 (12) | 0.67424 (10) | 0.0367 (3) | |
C32 | 0.1625 (2) | 0.07834 (15) | 0.59247 (12) | 0.0411 (4) | |
H32 | 0.2101 | 0.0768 | 0.5484 | 0.049* | |
C33 | 0.0238 (2) | 0.08279 (17) | 0.58553 (14) | 0.0481 (5) | |
H33 | −0.0409 | 0.0853 | 0.5369 | 0.058* | |
N34 | −0.00239 (16) | 0.08292 (14) | 0.66351 (12) | 0.0496 (4) | |
H34 | −0.0826 | 0.0852 | 0.6776 | 0.06* | |
C35 | 0.1190 (2) | 0.07876 (18) | 0.71465 (13) | 0.0483 (5) | |
H35 | 0.1289 | 0.0776 | 0.7719 | 0.058* | |
N41 | 0.62511 (15) | 0.09036 (12) | 0.57886 (9) | 0.0329 (3) | |
O42 | 0.49735 (12) | 0.08624 (10) | 0.57207 (8) | 0.0374 (3) | |
O43 | 0.69523 (14) | 0.08635 (14) | 0.65120 (8) | 0.0545 (4) | |
O44 | 0.68294 (15) | 0.09930 (13) | 0.51860 (8) | 0.0491 (3) | |
O11W | 0.45059 (16) | 0.26240 (10) | 0.68241 (9) | 0.0411 (3) | |
H11X | 0.389 (3) | 0.303 (2) | 0.6897 (16) | 0.062* | |
H11Y | 0.499 (3) | 0.311 (2) | 0.6723 (16) | 0.062* | |
O12W | 0.45109 (17) | −0.10477 (11) | 0.65529 (9) | 0.0453 (3) | |
H12Y | 0.425 (3) | −0.100 (2) | 0.6035 (17) | 0.068* | |
H12X | 0.438 (3) | −0.160 (2) | 0.6658 (17) | 0.068* |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.02352 (5) | 0.02229 (5) | 0.02468 (6) | −0.00018 (3) | 0.00500 (3) | −0.00149 (3) |
C11 | 0.0832 (18) | 0.0650 (15) | 0.0637 (15) | 0.0058 (13) | 0.0387 (14) | 0.0254 (12) |
C12 | 0.0416 (10) | 0.0513 (11) | 0.0344 (9) | 0.0007 (8) | 0.0134 (8) | 0.0079 (8) |
O12 | 0.0528 (8) | 0.0354 (7) | 0.0377 (7) | 0.0031 (6) | 0.0208 (6) | 0.0043 (5) |
C13 | 0.0549 (12) | 0.0635 (14) | 0.0332 (10) | 0.0012 (10) | 0.0214 (9) | −0.0042 (9) |
C14 | 0.0319 (9) | 0.0516 (11) | 0.0362 (9) | −0.0029 (8) | 0.0087 (7) | −0.0183 (8) |
O14 | 0.0577 (9) | 0.0372 (7) | 0.0476 (7) | −0.0012 (6) | 0.0263 (7) | −0.0107 (6) |
C15 | 0.0545 (13) | 0.0666 (15) | 0.0713 (15) | −0.0042 (11) | 0.0267 (12) | −0.0364 (12) |
C21 | 0.0437 (13) | 0.0679 (18) | 0.153 (3) | −0.0129 (12) | −0.0071 (16) | −0.0437 (19) |
C22 | 0.0306 (9) | 0.0505 (11) | 0.0451 (10) | −0.0057 (8) | 0.0042 (8) | −0.0153 (8) |
O22 | 0.0336 (7) | 0.0409 (7) | 0.0553 (8) | −0.0023 (5) | −0.0043 (6) | −0.0132 (6) |
C23 | 0.0250 (8) | 0.0615 (13) | 0.0485 (12) | −0.0006 (8) | 0.0016 (8) | −0.0030 (9) |
C24 | 0.0326 (9) | 0.0486 (11) | 0.0463 (11) | 0.0071 (8) | 0.0069 (8) | 0.0125 (9) |
O24 | 0.0350 (7) | 0.0363 (7) | 0.0592 (9) | 0.0022 (5) | −0.0008 (6) | 0.0087 (6) |
C25 | 0.0454 (13) | 0.0614 (16) | 0.143 (3) | 0.0176 (12) | −0.0008 (16) | 0.0247 (17) |
N31 | 0.0256 (7) | 0.0463 (9) | 0.0378 (8) | −0.0009 (6) | 0.0046 (6) | 0.0008 (6) |
C32 | 0.0393 (10) | 0.0477 (11) | 0.0365 (10) | −0.0002 (8) | 0.0074 (8) | 0.0017 (8) |
C33 | 0.0360 (10) | 0.0576 (13) | 0.0457 (12) | 0.0011 (9) | −0.0067 (9) | −0.0005 (9) |
N34 | 0.0239 (7) | 0.0671 (12) | 0.0586 (11) | −0.0023 (7) | 0.0093 (7) | −0.0053 (8) |
C35 | 0.0340 (10) | 0.0740 (15) | 0.0381 (10) | −0.0028 (9) | 0.0096 (8) | −0.0022 (9) |
N41 | 0.0332 (7) | 0.0373 (8) | 0.0294 (7) | −0.0018 (6) | 0.0085 (6) | −0.0029 (6) |
O42 | 0.0294 (6) | 0.0460 (7) | 0.0364 (7) | 0.0021 (5) | 0.0048 (5) | 0.0011 (5) |
O43 | 0.0291 (7) | 0.1049 (13) | 0.0294 (7) | −0.0024 (7) | 0.0049 (5) | 0.0017 (7) |
O44 | 0.0501 (8) | 0.0691 (9) | 0.0326 (7) | −0.0106 (7) | 0.0198 (6) | −0.0067 (6) |
O11W | 0.0485 (8) | 0.0256 (6) | 0.0502 (8) | 0.0026 (5) | 0.0113 (6) | 0.0023 (5) |
O12W | 0.0726 (10) | 0.0261 (6) | 0.0336 (7) | −0.0018 (6) | −0.0002 (7) | −0.0023 (5) |
La1—O14 | 2.4402 (12) | C22—O22 | 1.256 (2) |
La1—O22 | 2.4597 (12) | C22—C23 | 1.392 (3) |
La1—O12 | 2.4880 (12) | C23—C24 | 1.393 (3) |
La1—O24 | 2.4939 (13) | C23—H23 | 0.93 |
La1—O12W | 2.5682 (13) | C24—O24 | 1.261 (2) |
La1—O11W | 2.5808 (13) | C24—C25 | 1.510 (3) |
La1—O43 | 2.6589 (14) | C25—H25A | 0.96 |
La1—N31 | 2.6800 (15) | C25—H25B | 0.96 |
La1—O42 | 2.7556 (13) | C25—H25C | 0.96 |
C11—C12 | 1.509 (3) | N31—C35 | 1.312 (2) |
C11—H11A | 0.96 | N31—C32 | 1.370 (3) |
C11—H11B | 0.96 | C32—C33 | 1.348 (3) |
C11—H11C | 0.96 | C32—H32 | 0.93 |
C12—O12 | 1.270 (2) | C33—N34 | 1.352 (3) |
C12—C13 | 1.386 (3) | C33—H33 | 0.93 |
C13—C14 | 1.395 (3) | N34—C35 | 1.333 (3) |
C13—H13 | 0.93 | N34—H34 | 0.86 |
C14—O14 | 1.255 (2) | C35—H35 | 0.93 |
C14—C15 | 1.509 (3) | N41—O44 | 1.2311 (19) |
C15—H15A | 0.96 | N41—O42 | 1.2413 (18) |
C15—H15B | 0.96 | N41—O43 | 1.266 (2) |
C15—H15C | 0.96 | O11W—H11X | 0.81 (3) |
C21—C22 | 1.508 (3) | O11W—H11Y | 0.81 (3) |
C21—H21A | 0.96 | O12W—H12Y | 0.85 (3) |
C21—H21B | 0.96 | O12W—H12X | 0.73 (3) |
C21—H21C | 0.96 | ||
O14—La1—O22 | 73.14 (5) | C14—C15—H15B | 109.5 |
O14—La1—O12 | 69.07 (4) | H15A—C15—H15B | 109.5 |
O22—La1—O12 | 108.72 (5) | C14—C15—H15C | 109.5 |
O14—La1—O24 | 113.79 (5) | H15A—C15—H15C | 109.5 |
O22—La1—O24 | 69.51 (5) | H15B—C15—H15C | 109.5 |
O12—La1—O24 | 74.00 (5) | C22—C21—H21A | 109.5 |
O14—La1—O12W | 139.24 (5) | C22—C21—H21B | 109.5 |
O22—La1—O12W | 142.79 (5) | H21A—C21—H21B | 109.5 |
O12—La1—O12W | 78.27 (5) | C22—C21—H21C | 109.5 |
O24—La1—O12W | 78.12 (5) | H21A—C21—H21C | 109.5 |
O14—La1—O11W | 71.54 (5) | H21B—C21—H21C | 109.5 |
O22—La1—O11W | 73.17 (5) | O22—C22—C23 | 125.16 (17) |
O12—La1—O11W | 137.69 (5) | O22—C22—C21 | 116.06 (19) |
O24—La1—O11W | 138.02 (5) | C23—C22—C21 | 118.78 (19) |
O12W—La1—O11W | 126.65 (5) | C22—O22—La1 | 136.44 (12) |
O14—La1—O43 | 139.68 (5) | C22—C23—C24 | 125.62 (18) |
O22—La1—O43 | 71.78 (5) | C22—C23—H23 | 117.2 |
O12—La1—O43 | 142.12 (5) | C24—C23—H23 | 117.2 |
O24—La1—O43 | 70.97 (5) | O24—C24—C23 | 125.06 (18) |
O12W—La1—O43 | 80.85 (5) | O24—C24—C25 | 116.3 (2) |
O11W—La1—O43 | 79.79 (5) | C23—C24—C25 | 118.66 (19) |
O14—La1—N31 | 74.90 (5) | C24—O24—La1 | 135.53 (12) |
O22—La1—N31 | 140.50 (4) | C24—C25—H25A | 109.5 |
O12—La1—N31 | 80.27 (5) | C24—C25—H25B | 109.5 |
O24—La1—N31 | 146.66 (4) | H25A—C25—H25B | 109.5 |
O12W—La1—N31 | 76.15 (5) | C24—C25—H25C | 109.5 |
O11W—La1—N31 | 75.15 (5) | H25A—C25—H25C | 109.5 |
O43—La1—N31 | 124.47 (5) | H25B—C25—H25C | 109.5 |
O14—La1—O42 | 134.63 (4) | C35—N31—C32 | 104.87 (16) |
O22—La1—O42 | 109.56 (4) | C35—N31—La1 | 127.18 (13) |
O12—La1—O42 | 139.84 (4) | C32—N31—La1 | 127.95 (12) |
O24—La1—O42 | 108.91 (4) | C33—C32—N31 | 109.82 (18) |
O12W—La1—O42 | 63.95 (4) | C33—C32—H32 | 125.1 |
O11W—La1—O42 | 66.69 (4) | N31—C32—H32 | 125.1 |
O43—La1—O42 | 46.51 (4) | C32—C33—N34 | 106.18 (18) |
N31—La1—O42 | 78.03 (4) | C32—C33—H33 | 126.9 |
C12—C11—H11A | 109.5 | N34—C33—H33 | 126.9 |
C12—C11—H11B | 109.5 | C35—N34—C33 | 107.42 (17) |
H11A—C11—H11B | 109.5 | C35—N34—H34 | 126.3 |
C12—C11—H11C | 109.5 | C33—N34—H34 | 126.3 |
H11A—C11—H11C | 109.5 | N31—C35—N34 | 111.71 (19) |
H11B—C11—H11C | 109.5 | N31—C35—H35 | 124.1 |
O12—C12—C13 | 124.82 (18) | N34—C35—H35 | 124.1 |
O12—C12—C11 | 116.26 (19) | O44—N41—O42 | 122.31 (15) |
C13—C12—C11 | 118.91 (18) | O44—N41—O43 | 120.53 (15) |
C12—O12—La1 | 136.74 (12) | O42—N41—O43 | 117.15 (14) |
C12—C13—C14 | 125.47 (18) | N41—O42—La1 | 96.13 (10) |
C12—C13—H13 | 117.3 | N41—O43—La1 | 100.21 (10) |
C14—C13—H13 | 117.3 | La1—O11W—H11X | 127.1 (18) |
O14—C14—C13 | 124.32 (17) | La1—O11W—H11Y | 135.3 (18) |
O14—C14—C15 | 116.57 (19) | H11X—O11W—H11Y | 92 (2) |
C13—C14—C15 | 119.11 (18) | La1—O12W—H12Y | 117.7 (18) |
C14—O14—La1 | 139.35 (12) | La1—O12W—H12X | 134 (2) |
C14—C15—H15A | 109.5 | H12Y—O12W—H12X | 106 (3) |
C13—C12—O12—La1 | 6.4 (3) | C23—C24—O24—La1 | 10.7 (3) |
C11—C12—O12—La1 | −174.35 (15) | C25—C24—O24—La1 | −168.80 (18) |
O12—C12—C13—C14 | −3.0 (4) | C35—N31—C32—C33 | 0.6 (2) |
C11—C12—C13—C14 | 177.8 (2) | La1—N31—C32—C33 | −179.32 (13) |
C12—C13—C14—O14 | 0.9 (4) | N31—C32—C33—N34 | −0.4 (2) |
C12—C13—C14—C15 | −179.5 (2) | C32—C33—N34—C35 | 0.1 (2) |
C13—C14—O14—La1 | −2.3 (3) | C32—N31—C35—N34 | −0.6 (2) |
C15—C14—O14—La1 | 178.08 (15) | La1—N31—C35—N34 | 179.36 (12) |
C23—C22—O22—La1 | −14.8 (3) | C33—N34—C35—N31 | 0.3 (3) |
C21—C22—O22—La1 | 166.00 (19) | O44—N41—O42—La1 | −179.37 (15) |
O22—C22—C23—C24 | −0.6 (4) | O43—N41—O42—La1 | −0.25 (16) |
C21—C22—C23—C24 | 178.6 (2) | O44—N41—O43—La1 | 179.40 (14) |
C22—C23—C24—O24 | 2.3 (4) | O42—N41—O43—La1 | 0.26 (17) |
C22—C23—C24—C25 | −178.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N34—H34···O43i | 0.86 | 2.15 | 2.942 (2) | 153 |
O11W—H11X···O24ii | 0.81 (3) | 2.10 (3) | 2.8353 (19) | 152 (2) |
O11W—H11Y···O12ii | 0.81 (3) | 2.00 (3) | 2.8014 (19) | 168 (3) |
O12W—H12Y···O44iii | 0.85 (3) | 2.10 (3) | 2.930 (2) | 167 (3) |
O12W—H12X···O22iv | 0.73 (3) | 2.30 (3) | 3.0025 (19) | 161 (3) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+3/2; (iii) −x+1, −y, −z+1; (iv) −x+1, y−1/2, −z+3/2. |
Funding information
Funding for this research was provided by: Grant-in-Aid for Scientific Research (Nos. 17H03124 and 17H03386) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.
References
Al-Karaghouli, A. R. & Wood, J. S. (1972). Inorg. Chem. 11, 2293–2299. CAS
Antsyshkina, A. S., Palkina, K. K., Kuz'mina, N. E., Orlova, V. T. & Sadikov, G. G. (1997). Russ. J. Inorg. Chem. 42, 1335–1340.
Berg, E. W. & Acosta, J. J. C. (1968). Anal. Chim. Acta, 40, 101–113. CrossRef CAS
Binnemans, K. (2005). Handbook on the Physics and Chemistry of Rare Earths Vol. 35, edited by K. A. Gschneidner, J. C. G. Bunzli & V. K. Percharsky, ch. 225, pp. 107–272. Amsterdam: Elsevier.
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals
Dan, Y. M., Yu, H. G., Long, Q., Hou, A. X., Liu, Y. & Qu, S. S. (2004). Thermochim. Acta, 419, 169–172. CrossRef CAS
Dechnik, J., Mühlbach, F., Dietrich, D., Wehner, T., Gutmann, M., Lühmann, T., Meinel, L., Janiak, C. & Müller-Buschbaum, K. (2016). Eur. J. Inorg. Chem. pp. 4408–4415. CrossRef
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals
Filotti, L., Bugli, G., Ensuque, A. & Bozon-Verduraz, F. (1996). Bull. Soc. Chim. Fr. 133, 1117–1126. CAS
Frechette, M., Butler, I. R., Hynes, R. & Detellier, C. (1992). Inorg. Chem. 31, 1650–1656. CSD CrossRef CAS Web of Science
Fujinaga, T., Kuwamoto, T., Sugiura, K. & Ichiki, S. (1981). Talanta, 28, 295–300. CrossRef PubMed CAS
Fukuda, Y., Nakao, A. & Hayashi, K. (2002). J. Chem. Soc. Dalton Trans. pp. 527–533. Web of Science CSD CrossRef
Kido, J., Nagai, K. & Ohashi, Y. (1990). Chem. Lett. 19, 657–660. CrossRef
Kuz'mina, N. P. & Eliseeva, S. V. (2006). Russ. J. Inorg. Chem. 51, 73–88.
Lim, J. T., Hong, S. T., Lee, J. C. & Lee, I. M. (1996). Bull. Korean Chem. Soc. 17, 1023–1031. CAS
Meyer, L. V., Schönfeld, F., Zurawski, A., Mai, M., Feldmann, C. & Müller-Buschbaum, K. (2015). Dalton Trans. 44, 4070–4079. CSD CrossRef CAS PubMed
Müller-Buschbaum, K., Beuerle, F. & Feldmann, C. (2015). Microporous Mesoporous Mater. 216, 171–199.
Pan, L., Gao, X. H., Lv, X. C., Tan, Z. C. & Cao, H. (2016). J. Mol. Struct. 1117, 57–63. CAS
Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186–10191. PubMed CAS
Phillips, T. II, Sands, D. E. & Wagner, W. F. (1968). Inorg. Chem. 7, 2295–2299. CAS
Richardson, M. F., Wagner, W. F. & Sands, D. E. (1968). Inorg. Chem. 7, 2495–2500. CAS
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
Rybak, J. C., Meyer, L. V., Wagenhöfer, J., Sextl, G. & Müller-Buschbaum, K. (2012). Inorg. Chem. 51, 13204–13213. CAS PubMed
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Stites, J. G., McCarty, C. N. & Quill, L. L. (1948). J. Am. Chem. Soc. 70, 3142–3143. CrossRef CAS Web of Science
Zheng, X. L., Liu, Y., Pan, M., Lü, X. Q., Zhang, J. Y., Zhao, C. Y., Tong, Y. X. & Su, C. Y. (2007). Angew. Chem. Int. Ed. 46, 7399–7403. CAS
Zhong, H. X., Wang, J., Zhang, Y. W., Xu, W. L., Xing, W., Xu, D., Zhang, Y. F. & Zhang, X. B. (2014). Angew. Chem. Int. Ed. 53, 14235–14239. CAS
Zhou, R. S., Cui, X. B., Song, J. F., Xu, X. Y., Xu, J. Q. & Wang, T. G. (2008). J. Solid State Chem. 181, 2099–2107. CAS
Zurawski, A., Mai, M., Baumann, D., Feldmann, C. & Müller-Buschbaum, K. (2011). Chem. Commun. 47, 496–498. CAS
Zurawski, A., Rybak, J. C., Meyer, L. V., Matthes, P. R., Stepanenko, V., Dannenbauer, C., Würthner, F. & Müller-Buschbaum, K. (2012). Dalton Trans. 41, 4067–4078. CAS PubMed
Zurawski, A., Rybak, J. C., Meyer, L. V. & Müller-Buschbaum, K. Z. (2013). Z. Anorg. Allg. Chem. 639, 261–267. CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.