research communications
Synthesis and 6H4(CH2NHCH2Ph)-2-κ2C,N}(μ-I)]2
of [Pd{CThe binuclear title complex, di-μ-iodido-bis({2-[(benzylamino-κN)methyl]phenyl-κC1}palladium(II)), [Pd2I2(C14H14N)2], was prepared by reaction of [Pd{C6H4(CH2NHCH2Ph)-2}(μ-OAc)]2 with NaI. It crystallizes with one discrete molecule in the The molecule presents an iodide-bridged dimeric structure with a cisoid arrangement with respect to the C,N-cyclopalladated ligands. Both PdII atoms have a slightly distorted square-planar coordination environment. Weak intermolecular contacts of the type C—H⋯Pd seem to have a significant influence on the arrangement of the molecules along the b axis in the crystal.
Keywords: crystal structure; iodide bridge; C,N-cyclopalladated complex.
CCDC reference: 1577834
1. Chemical context
Cyclopalladated complexes (Dupont et al., 2005) have important applications in (Bravo et al., 2002), as chiral resolving agents (Gugger et al., 2008), drugs (Cutillas et al., 2013), or new materials (Jayabharathi et al., 2011).
Over the past few years, our group has been interested in the synthesis, reactivity and applications in organic synthesis of orthopalladated derivatives of dibenzylamine. We have reported the first general method for the cyclopalladation of primary and secondary 2. The acetato-bridged complexes were transformed into the corresponding halido-bridged complexes by anion metathesis reactions, which were used for further reactivity studies (Vicente et al., 1997).
by using Pd(OAc)Herein we report the synthesis and 6H4(CH2NHCH2Ph)-2}(μ-I)]2. This is a rare example of a cyclopalladated complex containing bridging iodido ligands and one of the few C^N-cyclopalladated iodido-bridged complexes characterized by X-ray diffraction.
of a iodido-bridged complex [Pd{C2. Structural commentary
The complex crystallizes in the centrosymmetric monoclinic P21/n with one molecule in the The molecular structure can be described as a nearly planar dipalladium subunit of the type (C–N)Pd(μ-I)2Pd(C–N) (Fig. 1). Both palladium atoms adopt a slightly distorted square-planar coordination environment, the mean deviations of the Pd—N—C—I—I planes being larger for Pd2 (0.0868 Å) than for Pd1 (0.0301 Å). The highest deviation from the average coordination plane occurs for C22 (0.1261 Å). The more distorted square-planar geometry of Pd2 is further evidenced by the smaller dihedral angle between the planes N1—Pd1—C2 and I1—Pd1—I2 [5.53 (16)°] compared to that of N2—Pd2—C22 and I1—Pd2—I2 [8.29 (16)°]. The structural differences around both PdII atoms are consistent with the presence of two N—H stretching bands at 3261 and 3201 cm−1 in the infrared spectrum of the solid.
In contrast to the unsymmetrical dimers with a cisoid arrangement of the ligands observed in the title compound [Pd{C6H4(CH2NHCH2Ph)-2}(μ-I)]2, the dibromido analogue [Pd{C6H4(CH2NHCH2Ph)-2}(μ-Br)]2 (Vicente et al., 1999) shows a centrosymmetric dimer with a transoid disposition of the chelating ligands involving the amino groups.
Owing to the cisoid arrangement of the C,N-cyclopalladated ligands, one of the iodine atoms of the Pd2I2 unit is trans to two carbon atoms (I1) whereas the other is trans to two nitrogen atoms (I2). Consequently, the Pd—I bond lengths of the I atoms trans to N [2.5959 (5) and 2.5801 (4) Å] are shorter than those of the I atoms trans to C [2.7504 (5) and 2.7030 (5) Å] because of the greater trans influence of the aryl ligands compared to that of the amino ligands. Similar values for these bond lengths and also for the C—Pd [1.986 (5), 1.991 (4) Å] and N—Pd [2.104 (4), 2.809 (4) Å] bond lengths have been found in the five structures of iodido-bridged cyclopalladated complexes reported so far (see Database survey). Selected torsion angles are collated in Table 1.
|
One of the methylenic hydrogen atoms of the cyclopalladated dibenzylamine moiety coordinating to Pd1 participates in the formation of a non-classical intramolecular C—H⋯I hydrogen bond (Fig. 1, Table 2).
|
3. Supramolecular features
There are no hydrogen-bonding interactions involving the two NH groups. The most remarkable intermolecular interaction observed in the b axis (Fig. 2). Although the Pd—H bond length [2.760 (2) Å] is slightly shorter than the sum of the van der Waals radii of Pd and H (2.83 Å) (Bondi, 1964), it seems to direct the arrangement of the molecules in the In this context it is interesting to compare the arrangement of the molecules in this complex with that of the dibromido analogue [Pd{C6H4(CH2NHCH2Ph)-2}(μ-Br)]2 (Vicente et al., 1999), which is formed by stacking of nearly co-planar complex palladium dimers, where the empty space is filled by solvent molecules (CH2Cl2). Such a disposition appears to be normal in dimeric halido-bridging cyclometalated complexes of d8 elements (Aullón et al., 1998) and hence contrasts with the unusual structure observed in the title compound [Pd{C6H4(CH2NHCH2Ph)-2}(μ-I)]2.
is a weak hydrogen bond between the arylic hydrogen placed in position 3 of the phenylene ring attached to Pd2 (H16) and the Pd2 atom of the adjacent molecule. This interaction gives rise to the formation of a chain arrangement of molecules along the4. Database survey
A search in the Cambridge Structural Database (Groom et al., 2016) gave only six reports of binuclear iodido-bridged orthopalladated complexes with different bidentate C—N ligands: N,N-dimethylbenzylamine (Gül & Nelson, 2000), azobenzene derivatives (Ghedini et al., 1999; Crispini et al., 1993), (Praefcke et al., 1995) and ferrocenyloxazoline derivatives (Donde & Overman, 1999; Anderson et al., 2005), with the following bond lengths ranges: Pd—I: 2.591 (3)–2.581 (5) Å (trans to N), 2.724 (4)– 2.694 (5) Å (trans to C); C—Pd: 1.964 (8)–2.113 (2) Å; N—Pd, 2.008 (8)–2.065 (5) Å].
5. Synthesis and crystallization
To a suspension of the complex [Pd{C6H4(CH2NHCH2Ph)-2}(μ-OAc)]2 (Vicente et al., 1999) (800 mg, 1.106 mmol) in acetone (30 ml) solid NaI (1000 mg, 6.022 mmol) was added and the resulting mixture was stirred for 3 h. The solution was filtered through a plug of MgSO4, and the filtrate was concentrated to ca 5 ml. Diethyl ether was added (25 ml), the solvent was partially removed (to ca 5 ml), and n-pentane was added (25 ml) to precipitate the title complex as an orange solid, which was collected and air-dried. Single crystals of the compound suitable for X-ray analysis were obtained by slow diffusion of n-pentane into a solution of the compound in CHCl3 at room temperature. Yield 845 mg, 0.983 mmol, 89%. Analysis calculated for C28H28I2N2Pd2 (859.2): C, 39.11; H, 3.26; N, 3.26. Found: C, 38.80; H, 3.21; N, 3.21. IR (Nujol, cm−1): ν(N—H) = 3261, 3201. 1H NMR (CDCl3, 400 MHz): d = 3.83–3.95 (m, 2H, CH2), 4.18 (s, b, 1H, NH), 4.23–4.29 (m, 1H, CH2), 4.65 (d, b, 1H, CH2, 2JHH = 12.9 Hz), 6.83–6.87 (m, 1H, CH, C6H4), 6.92–7.00 (m, 2H, CH, C6H4), 7.32–7.41 (m, 5H, Ph), 7.67 (s, b, 1H, C6H4, 3JHH = 7.6 Hz). 13C{1H} NMR (CDCl3, 75 MHz): d = 57.4 (s, CH2), 59.4 (s, CH2), 122.6 (s, CH, C6H4), 124.6 (s, CH, C6H4), 126.4 (s, CH, C6H4), 128.6 (s, p-CH, Ph), 129.1 (s, m-CH, Ph), 129.3 (s, o-CH, Ph), 135.6 (s, i-C, Ph), 138.5 (s, CH, C6H4), 147.8 (s, C, C6H4), 150.6 (s, C, C6H4).
6. Refinement
Crystal data, data collection and structure . C and N atoms were subjected to DELU commands (Sheldrick, 2015), and five reflections were omitted from the final due to poor agreement between measured and calculated intensities. All H atoms associated with C atoms could be located in difference-Fourier maps. However, they were relocated at geometrically idealized positions and were allowed to ride on the parent atoms with C—H = 0.95 Å (aromatic) and 0.99 Å (CH2) and Uiso(H) = 1.2Ueq(C). Hydrogen atoms bound to N atoms were discernible from a difference-Fourier map and were subsequently refined with N—H distance restraints [target value 0.87 (2) Å].
details are summarized in Table 3Supporting information
CCDC reference: 1577834
https://doi.org/10.1107/S2056989017014281/wm5411sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017014281/wm5411Isup3.hkl
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Pd2I2(C14H14N)2] | F(000) = 1632 |
Mr = 859.12 | Dx = 2.071 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 14.2201 (12) Å | Cell parameters from 9807 reflections |
b = 9.9787 (7) Å | θ = 2.3–26.6° |
c = 19.4205 (13) Å | µ = 3.57 mm−1 |
β = 90.200 (2)° | T = 100 K |
V = 2755.7 (4) Å3 | Lath, orange |
Z = 4 | 0.15 × 0.10 × 0.04 mm |
Bruker D8 QUEST diffractometer | 5768 independent reflections |
Radiation source: high brilliance microfocus sealed tube | 5148 reflections with I > 2σ(I) |
Detector resolution: 10.4167 pixels mm-1 | Rint = 0.034 |
ω–scans | θmax = 26.6°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −17→17 |
Tmin = 0.788, Tmax = 0.928 | k = −12→12 |
70523 measured reflections | l = −24→24 |
Refinement on F2 | 319 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0439P)2 + 10.4728P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
5768 reflections | Δρmax = 2.45 e Å−3 |
315 parameters | Δρmin = −0.65 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 6.1807 (0.0096) x - 8.2633 (0.0047) y + 6.8462 (0.0164) z = 3.8899 (0.0181) * 0.0632 (0.0014) Pd1 * 0.0071 (0.0020) N1 * -0.0439 (0.0021) C2 * -0.0312 (0.0014) I1 * 0.0048 (0.0016) I2 Rms deviation of fitted atoms = 0.0373 7.4752 (0.0099) x - 7.3667 (0.0058) y + 8.1731 (0.0140) z = 6.1885 (0.0155) Angle to previous plane (with approximate esd) = 8.325 ( 0.117 ) * 0.0427 (0.0013) Pd2 * 0.1010 (0.0020) N2 * -0.1261 (0.0020) C22 * -0.0908 (0.0015) I1 * 0.0732 (0.0015) I2 Rms deviation of fitted atoms = 0.0911 |
Refinement. The hydrogens atoms at NH were refined with DFIX, others as rigid. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.47515 (2) | 0.70685 (3) | 1.00161 (2) | 0.02890 (9) | |
Pd2 | 0.34849 (2) | 0.47810 (3) | 0.87459 (2) | 0.02862 (9) | |
I1 | 0.30166 (2) | 0.58520 (3) | 0.99762 (2) | 0.03447 (9) | |
I2 | 0.49727 (2) | 0.62609 (3) | 0.87564 (2) | 0.03242 (9) | |
N1 | 0.4641 (3) | 0.7879 (4) | 1.1013 (2) | 0.0380 (9) | |
H01 | 0.494 (4) | 0.729 (5) | 1.127 (2) | 0.045 (16)* | |
N2 | 0.2317 (3) | 0.3510 (4) | 0.8740 (2) | 0.0370 (9) | |
H02 | 0.231 (4) | 0.317 (6) | 0.9151 (15) | 0.048 (17)* | |
C1 | 0.5929 (3) | 0.9138 (4) | 1.0531 (2) | 0.0332 (9) | |
C2 | 0.5942 (3) | 0.8107 (4) | 1.0039 (2) | 0.0286 (9) | |
C3 | 0.6740 (3) | 0.7940 (4) | 0.9634 (2) | 0.0327 (9) | |
H3 | 0.677255 | 0.722141 | 0.931399 | 0.039* | |
C4 | 0.7488 (4) | 0.8826 (5) | 0.9699 (3) | 0.0406 (11) | |
H4 | 0.803004 | 0.870965 | 0.942083 | 0.049* | |
C5 | 0.7454 (4) | 0.9875 (6) | 1.0164 (3) | 0.0513 (14) | |
H5 | 0.796102 | 1.049342 | 1.019104 | 0.062* | |
C6 | 0.6688 (4) | 1.0024 (5) | 1.0585 (3) | 0.0437 (12) | |
H6 | 0.667352 | 1.072824 | 1.091399 | 0.052* | |
C7 | 0.5084 (4) | 0.9232 (5) | 1.0990 (2) | 0.0364 (10) | |
H7A | 0.527604 | 0.951407 | 1.145846 | 0.044* | |
H7B | 0.463367 | 0.989848 | 1.080537 | 0.044* | |
C8 | 0.3699 (4) | 0.7860 (6) | 1.1331 (3) | 0.0505 (13) | |
H8A | 0.347701 | 0.691992 | 1.134865 | 0.061* | |
H8B | 0.326034 | 0.836288 | 1.103039 | 0.061* | |
C11 | 0.3647 (3) | 0.8443 (5) | 1.2049 (3) | 0.0426 (11) | |
C12 | 0.3065 (4) | 0.9528 (6) | 1.2173 (4) | 0.0653 (18) | |
H12 | 0.275421 | 0.996211 | 1.180096 | 0.078* | |
C13 | 0.2939 (5) | 0.9979 (8) | 1.2842 (4) | 0.083 (2) | |
H13 | 0.252076 | 1.070199 | 1.292786 | 0.100* | |
C14 | 0.3408 (5) | 0.9395 (8) | 1.3378 (4) | 0.0750 (19) | |
H14 | 0.332063 | 0.971284 | 1.383422 | 0.090* | |
C15 | 0.4000 (6) | 0.8356 (8) | 1.3252 (3) | 0.081 (2) | |
H15 | 0.434133 | 0.795865 | 1.362036 | 0.097* | |
C16 | 0.4105 (5) | 0.7881 (7) | 1.2594 (3) | 0.0683 (19) | |
H16 | 0.450879 | 0.713792 | 1.251593 | 0.082* | |
C21 | 0.3024 (3) | 0.3022 (4) | 0.7638 (2) | 0.0338 (9) | |
C22 | 0.3629 (3) | 0.4095 (4) | 0.7789 (2) | 0.0294 (9) | |
C23 | 0.4149 (3) | 0.4648 (5) | 0.7258 (2) | 0.0345 (10) | |
H23 | 0.455206 | 0.538695 | 0.734839 | 0.041* | |
C24 | 0.4089 (4) | 0.4137 (5) | 0.6598 (3) | 0.0412 (11) | |
H24 | 0.445559 | 0.451778 | 0.623915 | 0.049* | |
C25 | 0.3493 (4) | 0.3067 (5) | 0.6458 (3) | 0.0431 (11) | |
H25 | 0.345393 | 0.271395 | 0.600469 | 0.052* | |
C26 | 0.2962 (3) | 0.2519 (5) | 0.6974 (3) | 0.0384 (10) | |
H26 | 0.254951 | 0.179341 | 0.687572 | 0.046* | |
C27 | 0.2478 (4) | 0.2432 (5) | 0.8225 (3) | 0.0397 (11) | |
H27A | 0.186886 | 0.207751 | 0.805648 | 0.048* | |
H27B | 0.283548 | 0.168638 | 0.843681 | 0.048* | |
C28 | 0.1430 (3) | 0.4257 (5) | 0.8621 (3) | 0.0406 (11) | |
H28A | 0.141848 | 0.459322 | 0.814148 | 0.049* | |
H28B | 0.141125 | 0.504176 | 0.893271 | 0.049* | |
C31 | 0.0568 (4) | 0.3397 (5) | 0.8743 (3) | 0.0424 (11) | |
C32 | 0.0347 (4) | 0.3003 (7) | 0.9398 (3) | 0.0618 (17) | |
H32 | 0.072487 | 0.328740 | 0.977520 | 0.074* | |
C33 | −0.0430 (5) | 0.2189 (8) | 0.9513 (4) | 0.076 (2) | |
H33 | −0.057735 | 0.190253 | 0.996600 | 0.091* | |
C34 | −0.0981 (4) | 0.1800 (7) | 0.8969 (3) | 0.0585 (15) | |
H34 | −0.151242 | 0.124423 | 0.904654 | 0.070* | |
C35 | −0.0775 (4) | 0.2200 (6) | 0.8331 (3) | 0.0485 (13) | |
H35 | −0.116842 | 0.193593 | 0.795804 | 0.058* | |
C36 | 0.0005 (3) | 0.2995 (5) | 0.8205 (3) | 0.0442 (12) | |
H36 | 0.014989 | 0.326193 | 0.774793 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.02632 (17) | 0.02705 (17) | 0.03331 (18) | −0.00158 (13) | −0.00086 (13) | −0.00183 (13) |
Pd2 | 0.02629 (17) | 0.02353 (17) | 0.03602 (18) | −0.00306 (12) | −0.00117 (13) | 0.00140 (13) |
I1 | 0.02959 (16) | 0.03506 (17) | 0.03877 (17) | −0.00318 (12) | 0.00233 (12) | 0.00046 (12) |
I2 | 0.03033 (16) | 0.03417 (16) | 0.03276 (16) | −0.00964 (11) | 0.00015 (11) | −0.00282 (12) |
N1 | 0.034 (2) | 0.039 (2) | 0.041 (2) | −0.0039 (17) | 0.0036 (17) | −0.0084 (18) |
N2 | 0.035 (2) | 0.032 (2) | 0.044 (2) | −0.0045 (17) | 0.0042 (18) | 0.0047 (18) |
C1 | 0.044 (3) | 0.027 (2) | 0.029 (2) | −0.0038 (19) | −0.0059 (18) | 0.0070 (17) |
C2 | 0.036 (2) | 0.024 (2) | 0.026 (2) | −0.0005 (17) | −0.0055 (16) | 0.0069 (16) |
C3 | 0.034 (2) | 0.025 (2) | 0.039 (2) | −0.0056 (17) | −0.0025 (18) | 0.0040 (18) |
C4 | 0.040 (3) | 0.043 (3) | 0.039 (3) | −0.016 (2) | 0.002 (2) | 0.006 (2) |
C5 | 0.063 (3) | 0.050 (3) | 0.041 (3) | −0.034 (3) | 0.001 (2) | 0.003 (2) |
C6 | 0.065 (3) | 0.034 (3) | 0.033 (2) | −0.020 (2) | −0.003 (2) | 0.0038 (19) |
C7 | 0.050 (3) | 0.027 (2) | 0.032 (2) | 0.000 (2) | −0.003 (2) | −0.0013 (18) |
C8 | 0.038 (3) | 0.057 (3) | 0.056 (3) | −0.001 (2) | 0.008 (2) | −0.010 (3) |
C11 | 0.035 (3) | 0.041 (3) | 0.052 (3) | −0.004 (2) | 0.008 (2) | −0.008 (2) |
C12 | 0.045 (3) | 0.064 (4) | 0.087 (4) | 0.014 (3) | −0.019 (3) | −0.025 (3) |
C13 | 0.052 (4) | 0.085 (5) | 0.113 (5) | 0.021 (3) | −0.006 (4) | −0.057 (4) |
C14 | 0.062 (4) | 0.093 (5) | 0.070 (4) | −0.015 (4) | 0.030 (3) | −0.025 (4) |
C15 | 0.094 (6) | 0.101 (6) | 0.047 (3) | 0.016 (4) | 0.022 (4) | 0.011 (4) |
C16 | 0.087 (5) | 0.067 (4) | 0.051 (3) | 0.033 (4) | 0.019 (3) | 0.012 (3) |
C21 | 0.030 (2) | 0.025 (2) | 0.046 (2) | 0.0001 (17) | −0.0045 (19) | 0.0013 (19) |
C22 | 0.029 (2) | 0.023 (2) | 0.036 (2) | 0.0022 (16) | −0.0049 (17) | 0.0008 (17) |
C23 | 0.036 (2) | 0.027 (2) | 0.041 (2) | −0.0030 (18) | −0.0046 (19) | 0.0029 (19) |
C24 | 0.050 (3) | 0.036 (3) | 0.038 (2) | −0.003 (2) | −0.005 (2) | 0.005 (2) |
C25 | 0.050 (3) | 0.039 (3) | 0.040 (3) | 0.000 (2) | −0.009 (2) | −0.004 (2) |
C26 | 0.037 (2) | 0.028 (2) | 0.051 (3) | −0.0006 (19) | −0.010 (2) | −0.006 (2) |
C27 | 0.036 (2) | 0.030 (2) | 0.053 (3) | −0.0081 (19) | −0.002 (2) | −0.001 (2) |
C28 | 0.033 (2) | 0.038 (3) | 0.051 (3) | −0.0006 (19) | −0.002 (2) | −0.001 (2) |
C31 | 0.035 (2) | 0.041 (3) | 0.052 (3) | 0.001 (2) | 0.008 (2) | −0.005 (2) |
C32 | 0.043 (3) | 0.092 (5) | 0.051 (3) | −0.014 (3) | 0.002 (3) | 0.000 (3) |
C33 | 0.052 (4) | 0.118 (6) | 0.058 (3) | −0.022 (4) | 0.019 (3) | 0.008 (4) |
C34 | 0.032 (3) | 0.071 (4) | 0.073 (4) | −0.010 (3) | 0.011 (3) | −0.004 (3) |
C35 | 0.030 (2) | 0.046 (3) | 0.069 (3) | −0.002 (2) | 0.005 (2) | −0.006 (3) |
C36 | 0.032 (2) | 0.043 (3) | 0.057 (3) | 0.001 (2) | 0.001 (2) | −0.004 (2) |
Pd1—C2 | 1.986 (5) | C13—C14 | 1.364 (9) |
Pd1—N1 | 2.104 (4) | C13—H13 | 0.9500 |
Pd1—I2 | 2.5959 (5) | C14—C15 | 1.358 (9) |
Pd1—I1 | 2.7504 (5) | C14—H14 | 0.9500 |
Pd2—C22 | 1.991 (4) | C15—C16 | 1.373 (8) |
Pd2—N2 | 2.090 (4) | C15—H15 | 0.9500 |
Pd2—I2 | 2.5801 (4) | C16—H16 | 0.9500 |
Pd2—I1 | 2.7030 (5) | C21—C26 | 1.387 (6) |
N1—C8 | 1.477 (7) | C21—C22 | 1.404 (6) |
N1—C7 | 1.491 (6) | C21—C27 | 1.502 (7) |
N1—H01 | 0.884 (19) | C22—C23 | 1.387 (6) |
N2—C28 | 1.482 (6) | C23—C24 | 1.382 (6) |
N2—C27 | 1.487 (7) | C23—H23 | 0.9500 |
N2—H02 | 0.87 (2) | C24—C25 | 1.390 (7) |
C1—C6 | 1.399 (7) | C24—H24 | 0.9500 |
C1—C2 | 1.404 (6) | C25—C26 | 1.370 (7) |
C1—C7 | 1.501 (7) | C25—H25 | 0.9500 |
C2—C3 | 1.392 (7) | C26—H26 | 0.9500 |
C3—C4 | 1.388 (6) | C27—H27A | 0.9900 |
C3—H3 | 0.9500 | C27—H27B | 0.9900 |
C4—C5 | 1.383 (8) | C28—C31 | 1.516 (7) |
C4—H4 | 0.9500 | C28—H28A | 0.9900 |
C5—C6 | 1.373 (8) | C28—H28B | 0.9900 |
C5—H5 | 0.9500 | C31—C32 | 1.369 (7) |
C6—H6 | 0.9500 | C31—C36 | 1.375 (7) |
C7—H7A | 0.9900 | C32—C33 | 1.390 (8) |
C7—H7B | 0.9900 | C32—H32 | 0.9500 |
C8—C11 | 1.512 (8) | C33—C34 | 1.368 (8) |
C8—H8A | 0.9900 | C33—H33 | 0.9500 |
C8—H8B | 0.9900 | C34—C35 | 1.336 (8) |
C11—C16 | 1.361 (7) | C34—H34 | 0.9500 |
C11—C12 | 1.384 (7) | C35—C36 | 1.386 (7) |
C12—C13 | 1.388 (9) | C35—H35 | 0.9500 |
C12—H12 | 0.9500 | C36—H36 | 0.9500 |
C2—Pd1—N1 | 81.12 (17) | C13—C12—H12 | 120.1 |
C2—Pd1—I2 | 94.40 (13) | C14—C13—C12 | 120.7 (6) |
N1—Pd1—I2 | 174.83 (12) | C14—C13—H13 | 119.6 |
C2—Pd1—I1 | 174.71 (12) | C12—C13—H13 | 119.6 |
N1—Pd1—I1 | 97.21 (11) | C15—C14—C13 | 119.4 (6) |
I2—Pd1—I1 | 87.023 (13) | C15—C14—H14 | 120.3 |
C22—Pd2—N2 | 82.55 (17) | C13—C14—H14 | 120.3 |
C22—Pd2—I2 | 96.72 (12) | C14—C15—C16 | 120.1 (7) |
N2—Pd2—I2 | 177.54 (12) | C14—C15—H15 | 120.0 |
C22—Pd2—I1 | 170.83 (12) | C16—C15—H15 | 120.0 |
N2—Pd2—I1 | 92.69 (12) | C11—C16—C15 | 121.9 (6) |
I2—Pd2—I1 | 88.352 (14) | C11—C16—H16 | 119.1 |
Pd2—I1—Pd1 | 88.605 (13) | C15—C16—H16 | 119.1 |
Pd2—I2—Pd1 | 94.767 (14) | C26—C21—C22 | 120.5 (4) |
C8—N1—C7 | 114.1 (4) | C26—C21—C27 | 122.2 (4) |
C8—N1—Pd1 | 116.8 (3) | C22—C21—C27 | 117.3 (4) |
C7—N1—Pd1 | 106.7 (3) | C23—C22—C21 | 118.4 (4) |
C8—N1—H01 | 101 (4) | C23—C22—Pd2 | 128.0 (3) |
C7—N1—H01 | 114 (4) | C21—C22—Pd2 | 113.1 (3) |
Pd1—N1—H01 | 104 (4) | C24—C23—C22 | 120.9 (4) |
C28—N2—C27 | 113.1 (4) | C24—C23—H23 | 119.6 |
C28—N2—Pd2 | 111.8 (3) | C22—C23—H23 | 119.6 |
C27—N2—Pd2 | 108.6 (3) | C23—C24—C25 | 120.0 (5) |
C28—N2—H02 | 109 (4) | C23—C24—H24 | 120.0 |
C27—N2—H02 | 110 (4) | C25—C24—H24 | 120.0 |
Pd2—N2—H02 | 104 (4) | C26—C25—C24 | 120.2 (5) |
C6—C1—C2 | 120.1 (5) | C26—C25—H25 | 119.9 |
C6—C1—C7 | 122.3 (4) | C24—C25—H25 | 119.9 |
C2—C1—C7 | 117.6 (4) | C25—C26—C21 | 120.1 (4) |
C3—C2—C1 | 119.0 (4) | C25—C26—H26 | 120.0 |
C3—C2—Pd1 | 128.4 (3) | C21—C26—H26 | 120.0 |
C1—C2—Pd1 | 112.6 (3) | N2—C27—C21 | 107.9 (4) |
C4—C3—C2 | 119.8 (5) | N2—C27—H27A | 110.1 |
C4—C3—H3 | 120.1 | C21—C27—H27A | 110.1 |
C2—C3—H3 | 120.1 | N2—C27—H27B | 110.1 |
C5—C4—C3 | 120.9 (5) | C21—C27—H27B | 110.1 |
C5—C4—H4 | 119.6 | H27A—C27—H27B | 108.4 |
C3—C4—H4 | 119.6 | N2—C28—C31 | 112.3 (4) |
C6—C5—C4 | 120.0 (5) | N2—C28—H28A | 109.1 |
C6—C5—H5 | 120.0 | C31—C28—H28A | 109.1 |
C4—C5—H5 | 120.0 | N2—C28—H28B | 109.1 |
C5—C6—C1 | 120.0 (5) | C31—C28—H28B | 109.1 |
C5—C6—H6 | 120.0 | H28A—C28—H28B | 107.9 |
C1—C6—H6 | 120.0 | C32—C31—C36 | 119.2 (5) |
N1—C7—C1 | 107.5 (4) | C32—C31—C28 | 119.8 (5) |
N1—C7—H7A | 110.2 | C36—C31—C28 | 121.0 (5) |
C1—C7—H7A | 110.2 | C31—C32—C33 | 120.1 (6) |
N1—C7—H7B | 110.2 | C31—C32—H32 | 119.9 |
C1—C7—H7B | 110.2 | C33—C32—H32 | 119.9 |
H7A—C7—H7B | 108.5 | C34—C33—C32 | 119.7 (6) |
N1—C8—C11 | 115.4 (5) | C34—C33—H33 | 120.1 |
N1—C8—H8A | 108.4 | C32—C33—H33 | 120.1 |
C11—C8—H8A | 108.4 | C35—C34—C33 | 120.3 (6) |
N1—C8—H8B | 108.4 | C35—C34—H34 | 119.8 |
C11—C8—H8B | 108.4 | C33—C34—H34 | 119.8 |
H8A—C8—H8B | 107.5 | C34—C35—C36 | 120.8 (6) |
C16—C11—C12 | 118.2 (5) | C34—C35—H35 | 119.6 |
C16—C11—C8 | 122.2 (5) | C36—C35—H35 | 119.6 |
C12—C11—C8 | 119.5 (5) | C31—C36—C35 | 119.9 (5) |
C11—C12—C13 | 119.7 (6) | C31—C36—H36 | 120.1 |
C11—C12—H12 | 120.1 | C35—C36—H36 | 120.1 |
C6—C1—C2—C3 | 3.4 (6) | C26—C21—C22—C23 | 0.9 (7) |
C7—C1—C2—C3 | −176.0 (4) | C27—C21—C22—C23 | 179.3 (4) |
C6—C1—C2—Pd1 | −175.9 (4) | C26—C21—C22—Pd2 | 173.1 (4) |
C7—C1—C2—Pd1 | 4.7 (5) | C27—C21—C22—Pd2 | −8.5 (5) |
C1—C2—C3—C4 | −3.0 (7) | C21—C22—C23—C24 | −1.3 (7) |
Pd1—C2—C3—C4 | 176.1 (4) | Pd2—C22—C23—C24 | −172.2 (4) |
C2—C3—C4—C5 | 0.2 (8) | C22—C23—C24—C25 | 0.8 (8) |
C3—C4—C5—C6 | 2.3 (9) | C23—C24—C25—C26 | 0.2 (8) |
C4—C5—C6—C1 | −1.9 (8) | C24—C25—C26—C21 | −0.7 (8) |
C2—C1—C6—C5 | −0.9 (7) | C22—C21—C26—C25 | 0.1 (7) |
C7—C1—C6—C5 | 178.5 (5) | C27—C21—C26—C25 | −178.2 (5) |
C8—N1—C7—C1 | −168.6 (4) | C28—N2—C27—C21 | 90.4 (5) |
Pd1—N1—C7—C1 | −38.0 (4) | Pd2—N2—C27—C21 | −34.3 (4) |
C6—C1—C7—N1 | −155.9 (4) | C26—C21—C27—N2 | −152.4 (4) |
C2—C1—C7—N1 | 23.5 (6) | C22—C21—C27—N2 | 29.2 (6) |
C7—N1—C8—C11 | −54.9 (7) | C27—N2—C28—C31 | 67.4 (5) |
Pd1—N1—C8—C11 | 179.6 (4) | Pd2—N2—C28—C31 | −169.6 (3) |
N1—C8—C11—C16 | −64.5 (8) | N2—C28—C31—C32 | 69.7 (6) |
N1—C8—C11—C12 | 120.1 (6) | N2—C28—C31—C36 | −109.8 (6) |
C16—C11—C12—C13 | −2.3 (9) | C36—C31—C32—C33 | 1.0 (8) |
C8—C11—C12—C13 | 173.3 (6) | C28—C31—C32—C33 | −178.5 (6) |
C11—C12—C13—C14 | 2.4 (10) | C31—C32—C33—C34 | −1.1 (10) |
C12—C13—C14—C15 | −0.4 (12) | C32—C33—C34—C35 | 0.1 (11) |
C13—C14—C15—C16 | −1.6 (12) | C33—C34—C35—C36 | 1.0 (10) |
C12—C11—C16—C15 | 0.3 (11) | C32—C31—C36—C35 | 0.0 (8) |
C8—C11—C16—C15 | −175.1 (7) | C28—C31—C36—C35 | 179.5 (5) |
C14—C15—C16—C11 | 1.7 (13) | C34—C35—C36—C31 | −1.0 (9) |
Acknowledgements
The authors gratefully acknowledge the help of I. Saura-Llamas and J. Gil-Rubio from the Universidad de Murcia.
Funding information
The Spanish Ministerio de Ciencia e Innovación (grant CTQ2011-24016, with FEDER support) is acknowledged for financial support.
References
Anderson, C. E., Donde, Y., Douglas, C. J. & Overman, L. E. (2005). J. Org. Chem. 70, 648–657. Web of Science CSD CrossRef PubMed CAS
Aullón, G., Ujaque, G., Lledós, A., Álvarez, S. & Alemany, P. (1998). Inorg. Chem. 37, 804–813.
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science
Bravo, J., Cativiela, C., Navarro, R. & Urriolabeitia, E. P. (2002). J. Organomet. Chem. 650, 157–172. Web of Science CSD CrossRef CAS
Bruker (2013). APEX2 and SAINT. Bruker AXS Inc. Madison Wisconsin, USA.
Crispini, A., Ghedini, M. & Neve, F. (1993). J. Organomet. Chem. 448, 241–245. CSD CrossRef CAS Web of Science
Cutillas, N., Yellol, G. S., de Haro, C., Vicente, C., Rodríguez, V. & Ruiz, J. (2013). Coord. Chem. Rev. 257, 2784–2797. Web of Science CrossRef CAS
Donde, Y. & Overman, L. E. (1999). J. Am. Chem. Soc. 121, 2933–2934. Web of Science CSD CrossRef CAS
Dupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527–2571. Web of Science CrossRef PubMed CAS
Ghedini, M., Pucci, D., Crispini, A., Aiello, I., Barigelletti, F., Gessi, A. & Francescangeli, O. (1999). Appl. Organomet. Chem. 13, 565–581. CrossRef CAS
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Gugger, P. A., Hockless, D. C., Kilah, N. L., Mayadunne, R. C. & Wild, S. B. (2008). Tetrahedron Asymmetry, 19, 1810–1812. Web of Science CSD CrossRef CAS
Gül, N. & Nelson, J. H. (2000). Organometallics, 19, 91–104. Web of Science CSD CrossRef
Jayabharathi, J., Thanikachalam, V., Saravanan, K. & Srinivasan, N. (2011). J. Fluoresc. 21, 507–519. Web of Science CrossRef CAS PubMed
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals
Praefcke, K., Diele, S., Pickardt, J., Gündogman, B., Nütz, U. & Singer, D. (1995). Liq. Cryst. 18, 857–865. CrossRef CAS Web of Science
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Vicente, J., Saura-Llamas, I., Palin, M. G., Jones, P. G. & Ramírez de Arellano, M. C. (1997). Organometallics, 16, 826–833. CSD CrossRef CAS Web of Science
Vicente, J., Saura-Llamas, I., Turpín, J., Ramírez de Arellano, M. C. & Jones, P. G. (1999). Organometallics, 18, 2683–2693. Web of Science CSD CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.