research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of [Pd{C6H4(CH2NHCH2Ph)-2-κ2C,N}(μ-I)]2

CROSSMARK_Color_square_no_text.svg

aSAI, Universidad de Murcia, Murcia 30100, Spain, and bDepartamento Química Inorgánica, Universidad de Murcia, Murcia 30071, Spain
*Correspondence e-mail: dbc@um.es

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 August 2017; accepted 3 October 2017; online 6 October 2017)

The binuclear title complex, di-μ-iodido-bis(­{2-[(benzylamino-κN)meth­yl]phenyl-κC1}palladium(II)), [Pd2I2(C14H14N)2], was prepared by reaction of [Pd{C6H4(CH2NHCH2Ph)-2}(μ-OAc)]2 with NaI. It crystallizes with one discrete mol­ecule in the asymmetric unit. The mol­ecule presents an iodide-bridged dimeric structure with a cisoid arrangement with respect to the C,N-cyclo­palladated ligands. Both PdII atoms have a slightly distorted square-planar coordination environment. Weak inter­molecular contacts of the type C—H⋯Pd seem to have a significant influence on the arrangement of the mol­ecules along the b axis in the crystal.

1. Chemical context

Cyclo­palladated complexes (Dupont et al., 2005[Dupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527-2571.]) have important applications in homogeneous catalysis (Bravo et al., 2002[Bravo, J., Cativiela, C., Navarro, R. & Urriolabeitia, E. P. (2002). J. Organomet. Chem. 650, 157-172.]), as chiral resolving agents (Gugger et al., 2008[Gugger, P. A., Hockless, D. C., Kilah, N. L., Mayadunne, R. C. & Wild, S. B. (2008). Tetrahedron Asymmetry, 19, 1810-1812.]), drugs (Cutillas et al., 2013[Cutillas, N., Yellol, G. S., de Haro, C., Vicente, C., Rodríguez, V. & Ruiz, J. (2013). Coord. Chem. Rev. 257, 2784-2797.]), or new materials (Jayabharathi et al., 2011[Jayabharathi, J., Thanikachalam, V., Saravanan, K. & Srinivasan, N. (2011). J. Fluoresc. 21, 507-519.]).

[Scheme 1]

Over the past few years, our group has been inter­ested in the synthesis, reactivity and applications in organic synthesis of orthopalladated derivatives of di­benzyl­amine. We have reported the first general method for the cyclo­palladation of primary and secondary amines by using Pd(OAc)2. The acetato-bridged complexes were transformed into the corres­ponding halido-bridged complexes by anion metathesis reactions, which were used for further reactivity studies (Vicente et al., 1997[Vicente, J., Saura-Llamas, I., Palin, M. G., Jones, P. G. & Ramírez de Arellano, M. C. (1997). Organometallics, 16, 826-833.]).

Herein we report the synthesis and crystal structure of a iodido-bridged complex [Pd{C6H4(CH2NHCH2Ph)-2}(μ-I)]2. This is a rare example of a cyclo­palladated complex containing bridging iodido ligands and one of the few C^N-cyclo­palladated iodido-bridged complexes characterized by X-ray diffraction.

2. Structural commentary

The complex crystallizes in the centrosymmetric monoclinic space group P21/n with one mol­ecule in the asymmetric unit. The mol­ecular structure can be described as a nearly planar dipalladium subunit of the type (C–N)Pd(μ-I)2Pd(C–N) (Fig. 1[link]). Both palladium atoms adopt a slightly distorted square-planar coordination environment, the mean deviations of the Pd—N—C—I—I planes being larger for Pd2 (0.0868 Å) than for Pd1 (0.0301 Å). The highest deviation from the average coordination plane occurs for C22 (0.1261 Å). The more distorted square-planar geometry of Pd2 is further evidenced by the smaller dihedral angle between the planes N1—Pd1—C2 and I1—Pd1—I2 [5.53 (16)°] compared to that of N2—Pd2—C22 and I1—Pd2—I2 [8.29 (16)°]. The structural differences around both PdII atoms are consistent with the presence of two N—H stretching bands at 3261 and 3201 cm−1 in the infrared spectrum of the solid.

[Figure 1]
Figure 1
The mol­ecular structure of the title complex, with displacement ellipsoids at the 50% probability level. The black dashed line indicates the intra­molecular C—H⋯I hydrogen bond (see Table 2[link] for numerical details).

In contrast to the unsymmetrical dimers with a cisoid arrangement of the ligands observed in the title compound [Pd{C6H4(CH2NHCH2Ph)-2}(μ-I)]2, the di­bromido analogue [Pd{C6H4(CH2NHCH2Ph)-2}(μ-Br)]2 (Vicente et al., 1999[Vicente, J., Saura-Llamas, I., Turpín, J., Ramírez de Arellano, M. C. & Jones, P. G. (1999). Organometallics, 18, 2683-2693.]) shows a centrosymmetric dimer with a transoid disposition of the chelating ligands involving the amino groups.

Owing to the cisoid arrangement of the C,N-cyclo­palladated ligands, one of the iodine atoms of the Pd2I2 unit is trans to two carbon atoms (I1) whereas the other is trans to two nitro­gen atoms (I2). Consequently, the Pd—I bond lengths of the I atoms trans to N [2.5959 (5) and 2.5801 (4) Å] are shorter than those of the I atoms trans to C [2.7504 (5) and 2.7030 (5) Å] because of the greater trans influence of the aryl ligands compared to that of the amino ligands. Similar values for these bond lengths and also for the C—Pd [1.986 (5), 1.991 (4) Å] and N—Pd [2.104 (4), 2.809 (4) Å] bond lengths have been found in the five structures of iodido-bridged cyclo­palladated complexes reported so far (see Database survey). Selected torsion angles are collated in Table 1[link].

Table 1
Selected torsion angles (°)

C2—C1—C7—N1 23.5 (6) C22—C21—C27—N2 29.2 (6)
C7—N1—C8—C11 −54.9 (7) C27—N2—C28—C31 67.4 (5)

One of the methyl­enic hydrogen atoms of the cyclo­palladated di­benzyl­amine moiety coordinating to Pd1 participates in the formation of a non-classical intra­molecular C—H⋯I hydrogen bond (Fig. 1[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯I1 0.99 2.94 3.444 (6) 113

3. Supra­molecular features

There are no hydrogen-bonding inter­actions involving the two NH groups. The most remarkable inter­molecular inter­action observed in the crystal structure is a weak hydrogen bond between the arylic hydrogen placed in position 3 of the phenyl­ene ring attached to Pd2 (H16) and the Pd2 atom of the adjacent mol­ecule. This inter­action gives rise to the formation of a chain arrangement of mol­ecules along the b axis (Fig. 2[link]). Although the Pd—H bond length [2.760 (2) Å] is slightly shorter than the sum of the van der Waals radii of Pd and H (2.83 Å) (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]), it seems to direct the arrangement of the mol­ecules in the crystal structure. In this context it is inter­esting to compare the arrangement of the mol­ecules in this complex with that of the di­bromido analogue [Pd{C6H4(CH2NHCH2Ph)-2}(μ-Br)]2 (Vicente et al., 1999[Vicente, J., Saura-Llamas, I., Turpín, J., Ramírez de Arellano, M. C. & Jones, P. G. (1999). Organometallics, 18, 2683-2693.]), which is formed by stacking of nearly co-planar complex palladium dimers, where the empty space is filled by solvent mol­ecules (CH2Cl2). Such a disposition appears to be normal in dimeric halido-bridging cyclo­metalated complexes of d8 elements (Aullón et al., 1998[Aullón, G., Ujaque, G., Lledós, A., Álvarez, S. & Alemany, P. (1998). Inorg. Chem. 37, 804-813.]) and hence contrasts with the unusual structure observed in the title compound [Pd{C6H4(CH2NHCH2Ph)-2}(μ-I)]2.

[Figure 2]
Figure 2
A view of the mol­ecular packing of the title compound. Dotted lines indicate C—H⋯Pd contacts. H atoms not involved in the inter­actions have been omitted for clarity.

4. Database survey

A search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave only six reports of binuclear iodido-bridged orthopalladated complexes with different bidentate C—N ligands: N,N-di­methyl­benzyl­amine (Gül & Nelson, 2000[Gül, N. & Nelson, J. H. (2000). Organometallics, 19, 91-104.]), azo­benzene derivatives (Ghedini et al., 1999[Ghedini, M., Pucci, D., Crispini, A., Aiello, I., Barigelletti, F., Gessi, A. & Francescangeli, O. (1999). Appl. Organomet. Chem. 13, 565-581.]; Crispini et al., 1993[Crispini, A., Ghedini, M. & Neve, F. (1993). J. Organomet. Chem. 448, 241-245.]), imines (Praefcke et al., 1995[Praefcke, K., Diele, S., Pickardt, J., Gündogman, B., Nütz, U. & Singer, D. (1995). Liq. Cryst. 18, 857-865.]) and ferrocenyloxazoline derivatives (Donde & Overman, 1999[Donde, Y. & Overman, L. E. (1999). J. Am. Chem. Soc. 121, 2933-2934.]; Anderson et al., 2005[Anderson, C. E., Donde, Y., Douglas, C. J. & Overman, L. E. (2005). J. Org. Chem. 70, 648-657.]), with the following bond lengths ranges: Pd—I: 2.591 (3)–2.581 (5) Å (trans to N), 2.724 (4)– 2.694 (5) Å (trans to C); C—Pd: 1.964 (8)–2.113 (2) Å; N—Pd, 2.008 (8)–2.065 (5) Å].

5. Synthesis and crystallization

To a suspension of the complex [Pd{C6H4(CH2NHCH2Ph)-2}(μ-OAc)]2 (Vicente et al., 1999[Vicente, J., Saura-Llamas, I., Turpín, J., Ramírez de Arellano, M. C. & Jones, P. G. (1999). Organometallics, 18, 2683-2693.]) (800 mg, 1.106 mmol) in acetone (30 ml) solid NaI (1000 mg, 6.022 mmol) was added and the resulting mixture was stirred for 3 h. The solution was filtered through a plug of MgSO4, and the filtrate was concentrated to ca 5 ml. Diethyl ether was added (25 ml), the solvent was partially removed (to ca 5 ml), and n-pentane was added (25 ml) to precipitate the title complex as an orange solid, which was collected and air-dried. Single crystals of the compound suitable for X-ray analysis were obtained by slow diffusion of n-pentane into a solution of the compound in CHCl3 at room temperature. Yield 845 mg, 0.983 mmol, 89%. Analysis calculated for C28H28I2N2Pd2 (859.2): C, 39.11; H, 3.26; N, 3.26. Found: C, 38.80; H, 3.21; N, 3.21. IR (Nujol, cm−1): ν(N—H) = 3261, 3201. 1H NMR (CDCl3, 400 MHz): d = 3.83–3.95 (m, 2H, CH2), 4.18 (s, b, 1H, NH), 4.23–4.29 (m, 1H, CH2), 4.65 (d, b, 1H, CH2, 2JHH = 12.9 Hz), 6.83–6.87 (m, 1H, CH, C6H4), 6.92–7.00 (m, 2H, CH, C6H4), 7.32–7.41 (m, 5H, Ph), 7.67 (s, b, 1H, C6H4, 3JHH = 7.6 Hz). 13C{1H} NMR (CDCl3, 75 MHz): d = 57.4 (s, CH2), 59.4 (s, CH2), 122.6 (s, CH, C6H4), 124.6 (s, CH, C6H4), 126.4 (s, CH, C6H4), 128.6 (s, p-CH, Ph), 129.1 (s, m-CH, Ph), 129.3 (s, o-CH, Ph), 135.6 (s, i-C, Ph), 138.5 (s, CH, C6H4), 147.8 (s, C, C6H4), 150.6 (s, C, C6H4).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C and N atoms were subjected to DELU commands (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and five reflections were omitted from the final refinement due to poor agreement between measured and calculated intensities. All H atoms associated with C atoms could be located in difference-Fourier maps. However, they were relocated at geometrically idealized positions and were allowed to ride on the parent atoms with C—H = 0.95 Å (aromatic) and 0.99 Å (CH2) and Uiso(H) = 1.2Ueq(C). Hydrogen atoms bound to N atoms were discernible from a difference-Fourier map and were subsequently refined with N—H distance restraints [target value 0.87 (2) Å].

Table 3
Experimental details

Crystal data
Chemical formula [Pd2I2(C14H14N)2]
Mr 859.12
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 14.2201 (12), 9.9787 (7), 19.4205 (13)
β (°) 90.200 (2)
V3) 2755.7 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.57
Crystal size (mm) 0.15 × 0.10 × 0.04
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.788, 0.928
No. of measured, independent and observed [I > 2σ(I)] reflections 70523, 5768, 5148
Rint 0.034
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.03
No. of reflections 5768
No. of parameters 315
No. of restraints 319
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.45, −0.65
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc. Madison Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Di-µ-iodido-bis({2-[(benzylamino-κN)methyl]phenyl-κC1}palladium(II)) top
Crystal data top
[Pd2I2(C14H14N)2]F(000) = 1632
Mr = 859.12Dx = 2.071 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.2201 (12) ÅCell parameters from 9807 reflections
b = 9.9787 (7) Åθ = 2.3–26.6°
c = 19.4205 (13) ŵ = 3.57 mm1
β = 90.200 (2)°T = 100 K
V = 2755.7 (4) Å3Lath, orange
Z = 40.15 × 0.10 × 0.04 mm
Data collection top
Bruker D8 QUEST
diffractometer
5768 independent reflections
Radiation source: high brilliance microfocus sealed tube5148 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.034
ω–scansθmax = 26.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1717
Tmin = 0.788, Tmax = 0.928k = 1212
70523 measured reflectionsl = 2424
Refinement top
Refinement on F2319 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0439P)2 + 10.4728P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5768 reflectionsΔρmax = 2.45 e Å3
315 parametersΔρmin = 0.65 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.1807 (0.0096) x - 8.2633 (0.0047) y + 6.8462 (0.0164) z = 3.8899 (0.0181)

* 0.0632 (0.0014) Pd1 * 0.0071 (0.0020) N1 * -0.0439 (0.0021) C2 * -0.0312 (0.0014) I1 * 0.0048 (0.0016) I2

Rms deviation of fitted atoms = 0.0373

7.4752 (0.0099) x - 7.3667 (0.0058) y + 8.1731 (0.0140) z = 6.1885 (0.0155)

Angle to previous plane (with approximate esd) = 8.325 ( 0.117 )

* 0.0427 (0.0013) Pd2 * 0.1010 (0.0020) N2 * -0.1261 (0.0020) C22 * -0.0908 (0.0015) I1 * 0.0732 (0.0015) I2

Rms deviation of fitted atoms = 0.0911

Refinement. The hydrogens atoms at NH were refined with DFIX, others as rigid.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.47515 (2)0.70685 (3)1.00161 (2)0.02890 (9)
Pd20.34849 (2)0.47810 (3)0.87459 (2)0.02862 (9)
I10.30166 (2)0.58520 (3)0.99762 (2)0.03447 (9)
I20.49727 (2)0.62609 (3)0.87564 (2)0.03242 (9)
N10.4641 (3)0.7879 (4)1.1013 (2)0.0380 (9)
H010.494 (4)0.729 (5)1.127 (2)0.045 (16)*
N20.2317 (3)0.3510 (4)0.8740 (2)0.0370 (9)
H020.231 (4)0.317 (6)0.9151 (15)0.048 (17)*
C10.5929 (3)0.9138 (4)1.0531 (2)0.0332 (9)
C20.5942 (3)0.8107 (4)1.0039 (2)0.0286 (9)
C30.6740 (3)0.7940 (4)0.9634 (2)0.0327 (9)
H30.6772550.7221410.9313990.039*
C40.7488 (4)0.8826 (5)0.9699 (3)0.0406 (11)
H40.8030040.8709650.9420830.049*
C50.7454 (4)0.9875 (6)1.0164 (3)0.0513 (14)
H50.7961021.0493421.0191040.062*
C60.6688 (4)1.0024 (5)1.0585 (3)0.0437 (12)
H60.6673521.0728241.0913990.052*
C70.5084 (4)0.9232 (5)1.0990 (2)0.0364 (10)
H7A0.5276040.9514071.1458460.044*
H7B0.4633670.9898481.0805370.044*
C80.3699 (4)0.7860 (6)1.1331 (3)0.0505 (13)
H8A0.3477010.6919921.1348650.061*
H8B0.3260340.8362881.1030390.061*
C110.3647 (3)0.8443 (5)1.2049 (3)0.0426 (11)
C120.3065 (4)0.9528 (6)1.2173 (4)0.0653 (18)
H120.2754210.9962111.1800960.078*
C130.2939 (5)0.9979 (8)1.2842 (4)0.083 (2)
H130.2520761.0701991.2927860.100*
C140.3408 (5)0.9395 (8)1.3378 (4)0.0750 (19)
H140.3320630.9712841.3834220.090*
C150.4000 (6)0.8356 (8)1.3252 (3)0.081 (2)
H150.4341330.7958651.3620360.097*
C160.4105 (5)0.7881 (7)1.2594 (3)0.0683 (19)
H160.4508790.7137921.2515930.082*
C210.3024 (3)0.3022 (4)0.7638 (2)0.0338 (9)
C220.3629 (3)0.4095 (4)0.7789 (2)0.0294 (9)
C230.4149 (3)0.4648 (5)0.7258 (2)0.0345 (10)
H230.4552060.5386950.7348390.041*
C240.4089 (4)0.4137 (5)0.6598 (3)0.0412 (11)
H240.4455590.4517780.6239150.049*
C250.3493 (4)0.3067 (5)0.6458 (3)0.0431 (11)
H250.3453930.2713950.6004690.052*
C260.2962 (3)0.2519 (5)0.6974 (3)0.0384 (10)
H260.2549510.1793410.6875720.046*
C270.2478 (4)0.2432 (5)0.8225 (3)0.0397 (11)
H27A0.1868860.2077510.8056480.048*
H27B0.2835480.1686380.8436810.048*
C280.1430 (3)0.4257 (5)0.8621 (3)0.0406 (11)
H28A0.1418480.4593220.8141480.049*
H28B0.1411250.5041760.8932710.049*
C310.0568 (4)0.3397 (5)0.8743 (3)0.0424 (11)
C320.0347 (4)0.3003 (7)0.9398 (3)0.0618 (17)
H320.0724870.3287400.9775200.074*
C330.0430 (5)0.2189 (8)0.9513 (4)0.076 (2)
H330.0577350.1902530.9966000.091*
C340.0981 (4)0.1800 (7)0.8969 (3)0.0585 (15)
H340.1512420.1244230.9046540.070*
C350.0775 (4)0.2200 (6)0.8331 (3)0.0485 (13)
H350.1168420.1935930.7958040.058*
C360.0005 (3)0.2995 (5)0.8205 (3)0.0442 (12)
H360.0149890.3261930.7747930.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02632 (17)0.02705 (17)0.03331 (18)0.00158 (13)0.00086 (13)0.00183 (13)
Pd20.02629 (17)0.02353 (17)0.03602 (18)0.00306 (12)0.00117 (13)0.00140 (13)
I10.02959 (16)0.03506 (17)0.03877 (17)0.00318 (12)0.00233 (12)0.00046 (12)
I20.03033 (16)0.03417 (16)0.03276 (16)0.00964 (11)0.00015 (11)0.00282 (12)
N10.034 (2)0.039 (2)0.041 (2)0.0039 (17)0.0036 (17)0.0084 (18)
N20.035 (2)0.032 (2)0.044 (2)0.0045 (17)0.0042 (18)0.0047 (18)
C10.044 (3)0.027 (2)0.029 (2)0.0038 (19)0.0059 (18)0.0070 (17)
C20.036 (2)0.024 (2)0.026 (2)0.0005 (17)0.0055 (16)0.0069 (16)
C30.034 (2)0.025 (2)0.039 (2)0.0056 (17)0.0025 (18)0.0040 (18)
C40.040 (3)0.043 (3)0.039 (3)0.016 (2)0.002 (2)0.006 (2)
C50.063 (3)0.050 (3)0.041 (3)0.034 (3)0.001 (2)0.003 (2)
C60.065 (3)0.034 (3)0.033 (2)0.020 (2)0.003 (2)0.0038 (19)
C70.050 (3)0.027 (2)0.032 (2)0.000 (2)0.003 (2)0.0013 (18)
C80.038 (3)0.057 (3)0.056 (3)0.001 (2)0.008 (2)0.010 (3)
C110.035 (3)0.041 (3)0.052 (3)0.004 (2)0.008 (2)0.008 (2)
C120.045 (3)0.064 (4)0.087 (4)0.014 (3)0.019 (3)0.025 (3)
C130.052 (4)0.085 (5)0.113 (5)0.021 (3)0.006 (4)0.057 (4)
C140.062 (4)0.093 (5)0.070 (4)0.015 (4)0.030 (3)0.025 (4)
C150.094 (6)0.101 (6)0.047 (3)0.016 (4)0.022 (4)0.011 (4)
C160.087 (5)0.067 (4)0.051 (3)0.033 (4)0.019 (3)0.012 (3)
C210.030 (2)0.025 (2)0.046 (2)0.0001 (17)0.0045 (19)0.0013 (19)
C220.029 (2)0.023 (2)0.036 (2)0.0022 (16)0.0049 (17)0.0008 (17)
C230.036 (2)0.027 (2)0.041 (2)0.0030 (18)0.0046 (19)0.0029 (19)
C240.050 (3)0.036 (3)0.038 (2)0.003 (2)0.005 (2)0.005 (2)
C250.050 (3)0.039 (3)0.040 (3)0.000 (2)0.009 (2)0.004 (2)
C260.037 (2)0.028 (2)0.051 (3)0.0006 (19)0.010 (2)0.006 (2)
C270.036 (2)0.030 (2)0.053 (3)0.0081 (19)0.002 (2)0.001 (2)
C280.033 (2)0.038 (3)0.051 (3)0.0006 (19)0.002 (2)0.001 (2)
C310.035 (2)0.041 (3)0.052 (3)0.001 (2)0.008 (2)0.005 (2)
C320.043 (3)0.092 (5)0.051 (3)0.014 (3)0.002 (3)0.000 (3)
C330.052 (4)0.118 (6)0.058 (3)0.022 (4)0.019 (3)0.008 (4)
C340.032 (3)0.071 (4)0.073 (4)0.010 (3)0.011 (3)0.004 (3)
C350.030 (2)0.046 (3)0.069 (3)0.002 (2)0.005 (2)0.006 (3)
C360.032 (2)0.043 (3)0.057 (3)0.001 (2)0.001 (2)0.004 (2)
Geometric parameters (Å, º) top
Pd1—C21.986 (5)C13—C141.364 (9)
Pd1—N12.104 (4)C13—H130.9500
Pd1—I22.5959 (5)C14—C151.358 (9)
Pd1—I12.7504 (5)C14—H140.9500
Pd2—C221.991 (4)C15—C161.373 (8)
Pd2—N22.090 (4)C15—H150.9500
Pd2—I22.5801 (4)C16—H160.9500
Pd2—I12.7030 (5)C21—C261.387 (6)
N1—C81.477 (7)C21—C221.404 (6)
N1—C71.491 (6)C21—C271.502 (7)
N1—H010.884 (19)C22—C231.387 (6)
N2—C281.482 (6)C23—C241.382 (6)
N2—C271.487 (7)C23—H230.9500
N2—H020.87 (2)C24—C251.390 (7)
C1—C61.399 (7)C24—H240.9500
C1—C21.404 (6)C25—C261.370 (7)
C1—C71.501 (7)C25—H250.9500
C2—C31.392 (7)C26—H260.9500
C3—C41.388 (6)C27—H27A0.9900
C3—H30.9500C27—H27B0.9900
C4—C51.383 (8)C28—C311.516 (7)
C4—H40.9500C28—H28A0.9900
C5—C61.373 (8)C28—H28B0.9900
C5—H50.9500C31—C321.369 (7)
C6—H60.9500C31—C361.375 (7)
C7—H7A0.9900C32—C331.390 (8)
C7—H7B0.9900C32—H320.9500
C8—C111.512 (8)C33—C341.368 (8)
C8—H8A0.9900C33—H330.9500
C8—H8B0.9900C34—C351.336 (8)
C11—C161.361 (7)C34—H340.9500
C11—C121.384 (7)C35—C361.386 (7)
C12—C131.388 (9)C35—H350.9500
C12—H120.9500C36—H360.9500
C2—Pd1—N181.12 (17)C13—C12—H12120.1
C2—Pd1—I294.40 (13)C14—C13—C12120.7 (6)
N1—Pd1—I2174.83 (12)C14—C13—H13119.6
C2—Pd1—I1174.71 (12)C12—C13—H13119.6
N1—Pd1—I197.21 (11)C15—C14—C13119.4 (6)
I2—Pd1—I187.023 (13)C15—C14—H14120.3
C22—Pd2—N282.55 (17)C13—C14—H14120.3
C22—Pd2—I296.72 (12)C14—C15—C16120.1 (7)
N2—Pd2—I2177.54 (12)C14—C15—H15120.0
C22—Pd2—I1170.83 (12)C16—C15—H15120.0
N2—Pd2—I192.69 (12)C11—C16—C15121.9 (6)
I2—Pd2—I188.352 (14)C11—C16—H16119.1
Pd2—I1—Pd188.605 (13)C15—C16—H16119.1
Pd2—I2—Pd194.767 (14)C26—C21—C22120.5 (4)
C8—N1—C7114.1 (4)C26—C21—C27122.2 (4)
C8—N1—Pd1116.8 (3)C22—C21—C27117.3 (4)
C7—N1—Pd1106.7 (3)C23—C22—C21118.4 (4)
C8—N1—H01101 (4)C23—C22—Pd2128.0 (3)
C7—N1—H01114 (4)C21—C22—Pd2113.1 (3)
Pd1—N1—H01104 (4)C24—C23—C22120.9 (4)
C28—N2—C27113.1 (4)C24—C23—H23119.6
C28—N2—Pd2111.8 (3)C22—C23—H23119.6
C27—N2—Pd2108.6 (3)C23—C24—C25120.0 (5)
C28—N2—H02109 (4)C23—C24—H24120.0
C27—N2—H02110 (4)C25—C24—H24120.0
Pd2—N2—H02104 (4)C26—C25—C24120.2 (5)
C6—C1—C2120.1 (5)C26—C25—H25119.9
C6—C1—C7122.3 (4)C24—C25—H25119.9
C2—C1—C7117.6 (4)C25—C26—C21120.1 (4)
C3—C2—C1119.0 (4)C25—C26—H26120.0
C3—C2—Pd1128.4 (3)C21—C26—H26120.0
C1—C2—Pd1112.6 (3)N2—C27—C21107.9 (4)
C4—C3—C2119.8 (5)N2—C27—H27A110.1
C4—C3—H3120.1C21—C27—H27A110.1
C2—C3—H3120.1N2—C27—H27B110.1
C5—C4—C3120.9 (5)C21—C27—H27B110.1
C5—C4—H4119.6H27A—C27—H27B108.4
C3—C4—H4119.6N2—C28—C31112.3 (4)
C6—C5—C4120.0 (5)N2—C28—H28A109.1
C6—C5—H5120.0C31—C28—H28A109.1
C4—C5—H5120.0N2—C28—H28B109.1
C5—C6—C1120.0 (5)C31—C28—H28B109.1
C5—C6—H6120.0H28A—C28—H28B107.9
C1—C6—H6120.0C32—C31—C36119.2 (5)
N1—C7—C1107.5 (4)C32—C31—C28119.8 (5)
N1—C7—H7A110.2C36—C31—C28121.0 (5)
C1—C7—H7A110.2C31—C32—C33120.1 (6)
N1—C7—H7B110.2C31—C32—H32119.9
C1—C7—H7B110.2C33—C32—H32119.9
H7A—C7—H7B108.5C34—C33—C32119.7 (6)
N1—C8—C11115.4 (5)C34—C33—H33120.1
N1—C8—H8A108.4C32—C33—H33120.1
C11—C8—H8A108.4C35—C34—C33120.3 (6)
N1—C8—H8B108.4C35—C34—H34119.8
C11—C8—H8B108.4C33—C34—H34119.8
H8A—C8—H8B107.5C34—C35—C36120.8 (6)
C16—C11—C12118.2 (5)C34—C35—H35119.6
C16—C11—C8122.2 (5)C36—C35—H35119.6
C12—C11—C8119.5 (5)C31—C36—C35119.9 (5)
C11—C12—C13119.7 (6)C31—C36—H36120.1
C11—C12—H12120.1C35—C36—H36120.1
C6—C1—C2—C33.4 (6)C26—C21—C22—C230.9 (7)
C7—C1—C2—C3176.0 (4)C27—C21—C22—C23179.3 (4)
C6—C1—C2—Pd1175.9 (4)C26—C21—C22—Pd2173.1 (4)
C7—C1—C2—Pd14.7 (5)C27—C21—C22—Pd28.5 (5)
C1—C2—C3—C43.0 (7)C21—C22—C23—C241.3 (7)
Pd1—C2—C3—C4176.1 (4)Pd2—C22—C23—C24172.2 (4)
C2—C3—C4—C50.2 (8)C22—C23—C24—C250.8 (8)
C3—C4—C5—C62.3 (9)C23—C24—C25—C260.2 (8)
C4—C5—C6—C11.9 (8)C24—C25—C26—C210.7 (8)
C2—C1—C6—C50.9 (7)C22—C21—C26—C250.1 (7)
C7—C1—C6—C5178.5 (5)C27—C21—C26—C25178.2 (5)
C8—N1—C7—C1168.6 (4)C28—N2—C27—C2190.4 (5)
Pd1—N1—C7—C138.0 (4)Pd2—N2—C27—C2134.3 (4)
C6—C1—C7—N1155.9 (4)C26—C21—C27—N2152.4 (4)
C2—C1—C7—N123.5 (6)C22—C21—C27—N229.2 (6)
C7—N1—C8—C1154.9 (7)C27—N2—C28—C3167.4 (5)
Pd1—N1—C8—C11179.6 (4)Pd2—N2—C28—C31169.6 (3)
N1—C8—C11—C1664.5 (8)N2—C28—C31—C3269.7 (6)
N1—C8—C11—C12120.1 (6)N2—C28—C31—C36109.8 (6)
C16—C11—C12—C132.3 (9)C36—C31—C32—C331.0 (8)
C8—C11—C12—C13173.3 (6)C28—C31—C32—C33178.5 (6)
C11—C12—C13—C142.4 (10)C31—C32—C33—C341.1 (10)
C12—C13—C14—C150.4 (12)C32—C33—C34—C350.1 (11)
C13—C14—C15—C161.6 (12)C33—C34—C35—C361.0 (10)
C12—C11—C16—C150.3 (11)C32—C31—C36—C350.0 (8)
C8—C11—C16—C15175.1 (7)C28—C31—C36—C35179.5 (5)
C14—C15—C16—C111.7 (13)C34—C35—C36—C311.0 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···I10.992.943.444 (6)113
 

Acknowledgements

The authors gratefully acknowledge the help of I. Saura-Llamas and J. Gil-Rubio from the Universidad de Murcia.

Funding information

The Spanish Ministerio de Ciencia e Innovación (grant CTQ2011-24016, with FEDER support) is acknowledged for financial support.

References

First citationAnderson, C. E., Donde, Y., Douglas, C. J. & Overman, L. E. (2005). J. Org. Chem. 70, 648–657.  Web of Science CSD CrossRef PubMed CAS
First citationAullón, G., Ujaque, G., Lledós, A., Álvarez, S. & Alemany, P. (1998). Inorg. Chem. 37, 804–813.
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science
First citationBravo, J., Cativiela, C., Navarro, R. & Urriolabeitia, E. P. (2002). J. Organomet. Chem. 650, 157–172.  Web of Science CSD CrossRef CAS
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc. Madison Wisconsin, USA.
First citationCrispini, A., Ghedini, M. & Neve, F. (1993). J. Organomet. Chem. 448, 241–245.  CSD CrossRef CAS Web of Science
First citationCutillas, N., Yellol, G. S., de Haro, C., Vicente, C., Rodríguez, V. & Ruiz, J. (2013). Coord. Chem. Rev. 257, 2784–2797.  Web of Science CrossRef CAS
First citationDonde, Y. & Overman, L. E. (1999). J. Am. Chem. Soc. 121, 2933–2934.  Web of Science CSD CrossRef CAS
First citationDupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527–2571.  Web of Science CrossRef PubMed CAS
First citationGhedini, M., Pucci, D., Crispini, A., Aiello, I., Barigelletti, F., Gessi, A. & Francescangeli, O. (1999). Appl. Organomet. Chem. 13, 565–581.  CrossRef CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationGugger, P. A., Hockless, D. C., Kilah, N. L., Mayadunne, R. C. & Wild, S. B. (2008). Tetrahedron Asymmetry, 19, 1810–1812.  Web of Science CSD CrossRef CAS
First citationGül, N. & Nelson, J. H. (2000). Organometallics, 19, 91–104.  Web of Science CSD CrossRef
First citationJayabharathi, J., Thanikachalam, V., Saravanan, K. & Srinivasan, N. (2011). J. Fluoresc. 21, 507–519.  Web of Science CrossRef CAS PubMed
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals
First citationPraefcke, K., Diele, S., Pickardt, J., Gündogman, B., Nütz, U. & Singer, D. (1995). Liq. Cryst. 18, 857–865.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationVicente, J., Saura-Llamas, I., Palin, M. G., Jones, P. G. & Ramírez de Arellano, M. C. (1997). Organometallics, 16, 826–833.  CSD CrossRef CAS Web of Science
First citationVicente, J., Saura-Llamas, I., Turpín, J., Ramírez de Arellano, M. C. & Jones, P. G. (1999). Organometallics, 18, 2683–2693.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds