research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(pyridine-4-carbo­thio­amide-κN1)bis­­(thio­cyanato-κN)cobalt(II) methanol monosolvate

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: t.neumann@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 October 2017; accepted 16 October 2017; online 31 October 2017)

The asymmetric unit of the title compound, [Co(NCS)2(C6H6NS)4]·CH3OH, consists of one cobalt(II) cation, two thio­cyanate anions, four pyridine-4-carbo­thio­amide ligands and one methanol mol­ecule that are located in general positions. The CoII cations are coordinated by two terminal N-bonding thio­cyanate anions and four N-bonding pyridine-4-carbo­thio­amide ligands, resulting in discrete and slightly distorted octa­hedral complexes. These complexes are linked into a three-dimensional network via inter­molecular N—H⋯S hydrogen bonding between the amino H atoms and the thio­cyanate and pyridine-4-carbo­thio­amide S atoms. From this arrangement, channels are formed in which the methanol solvate mol­ecules are embedded and linked to the host structure by inter­molecular O—H⋯S and N—H⋯O hydrogen bonding.

1. Chemical context

Thio- and seleno­cyanate anions are useful ligands for the synthesis of new coordination compounds and polymers because of their versatile coordination behaviour (Massoud et al., 2013[Massoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26-33.]; Kabesova et al., 1995[Kabešová, M., Boča, R., Melník, M., Valigura, D. & Dunaj-Jurčo, M. (1995). Coord. Chem. Rev. 140, 115-135.]). Compounds in which the metal cations are linked by these ligands are of special inter­est because magnetic exchange can be mediated (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Boeckmann & Näther, 2012[Boeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587-595.]; Wöhlert et al., 2013[Wöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 1061-1068.]). In this context, we are especially inter­ested in cobalt compounds in which the metal cations are octa­hedrally coordinated by two neutral co-ligands and four anionic ligands. In the corresponding structures, the central cations are linked into chains by mutual pairs of anionic ligands. Some of these compounds show a slow relaxation of the magnetization, which in part can be traced back to single-chain magnetism (Rams et al., 2017a[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. doi: 10.1039C.7C04189F.],b[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Wöhlert et al., 2012[Wöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715-2718.]). To study the influence of the neutral co-ligand on the magnetic properties, different pyridine derivatives substituted in the 4-position, e.g. 4-benzoyl­pyridine, 4-vinyl­pyridine, 4-(4-chloro­benz­yl)pyridine and 4-(3-phenyl­prop­yl)pyridine have been investigated (Rams et al., 2017b[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.], 2015[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149-14158.]). In this regard, we also became inter­ested in pyridine-4-carbo­thio­amide as a ligand, because in this case the Co(NCS)2 chains can be linked into layers by pairs of inter­molecular hydrogen bonds between the amino H atoms and the thio­amide S atom. Unfortunately, the desired compound with composition Co(NCS)2(pyridine-4-carbo­thio­amide)2 could not be prepared from solution. Alternatively, we attempted to synthesize discrete solvato complexes as precursors that might transform into the desired compound on thermal annealing, as has been shown previously (Boeckmann & Näther, 2012[Boeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587-595.]). In the course of these investigations, crystals of the title compound were grown and characterized by single crystal X-ray diffraction. Unfortunately, no single-phase crystalline product could be obtained which prevented further investigations.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, [Co(NCS)2(C6H6NS)4]·CH3OH, consists of one CoII cation, two thio­cyanate anions, four 4-pyridinde­thio­amide co-ligands and one one methanol mol­ecule, all located in general positions. The CoII cation is sixfold coordinated by two terminal N-bonded thio­cyanate anions and four N-bonded pyridine-4-carbo­thio­amide ligands, resulting in discrete and slightly distorted octa­hedra (Fig. 1[link]). The Co—N bond lengths to the thio­cyanate anions of 2.0847 (14) and 2.0865 (14) Å are significantly shorter then those to the pyridine N atoms of the pyridine-4-carbo­thio­amide ligand [2.1608 (13)–2.1933 (14) Å], in agreement with values reported in the literature (Goodgame et al., 2003[Goodgame, D. M. L., Grachvogel, D. A., White, A. J. P. & Williams, D. J. (2003). Inorg. Chim. Acta, 348, 187-193.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]).

[Figure 1]
Figure 1
View of the asymmetric unit of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The discrete complexes are linked into a three-dimensional network by centrosymmetric pairs of inter­molecular N—H⋯S hydrogen bonds between the amino H atoms and the 4-pyridinde­thio­amide S atoms as well as by additional N—H⋯S hydrogen bonds involving the thio­cyanate S atoms (Fig. 2[link], Table 1[link]). By this arrangement, channels extending parallel the a axis are formed in which the methanol solvate mol­ecules are located (Fig. 2[link]). The solvent mol­ecules are connected to the network via inter­molecular O—H⋯S hydrogen bonding between the hydroxyl H atoms and the thio­cyanate S atoms (Table 1[link]). It is noted that the methanol mol­ecules also act as acceptors for N—H⋯O hydrogen bonding from the amino group of neighbouring complexes. There are also additional short contacts between some of the aromatic hydrogen atoms and the two types of S atoms (thio­cyanate, 4-pyridinde­thio­amide), which are indicative of weak C—H⋯S inter­actions (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H11N⋯S2i 0.88 2.45 3.3010 (16) 163
N12—H12N⋯S41ii 0.88 2.64 3.3589 (16) 140
C21—H21⋯S2iii 0.95 2.89 3.7626 (16) 153
N22—H21N⋯S31iv 0.88 2.69 3.4969 (17) 152
N22—H22N⋯S11iv 0.88 2.71 3.5691 (17) 166
C31—H31⋯N1 0.95 2.65 3.137 (2) 112
C34—H34⋯S21v 0.95 2.95 3.8809 (17) 165
C35—H35⋯S1vi 0.95 2.85 3.6906 (17) 148
C35—H35⋯N2 0.95 2.68 3.203 (2) 115
N32—H31N⋯O51 0.88 1.99 2.863 (2) 173
N32—H32N⋯S41vii 0.88 2.67 3.5176 (14) 163
N42—H41N⋯S1viii 0.88 2.49 3.3580 (16) 171
N42—H42N⋯S31ix 0.88 2.64 3.4935 (14) 165
O51—H51⋯S2v 0.84 2.43 3.1994 (17) 153
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y+1, z; (iii) x+1, y, z; (iv) x+1, y-1, z; (v) -x, -y+1, -z; (vi) x-1, y, z; (vii) x-1, y+1, z-1; (viii) -x+1, -y+1, -z+1; (ix) x+1, y-1, z+1.
[Figure 2]
Figure 2
Crystal structure of the title compound in a view along the a axis. Inter­molecular hydrogen bonding is shown by dashed lines.

4. Database survey

There are no structures of cobalt(II) thio­cyanate compounds with pyridine-4-carbo­thio­amide as co-ligand reported in the Cambridge Structure Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). There is only one compound with cadmium, in which the CdII cations are octa­hedrally coordinated by two terminal N-bonded pyridine­thio­amide ligands and four thio­cyanate anions. The CdII cations are linked by pairs of the anionic ligands into linear chains, which corresponds exactly to the structure in which we were originally inter­ested (Neumann et al., 2016[Neumann, T., Jess, I. & Näther, C. (2016). Acta Cryst. E72, 370-373.]).

5. Synthesis and crystallization

Co(NCS)2 and pyridine-4-carbo­thio­amide were purchased from Alfa Aesar. Crystals of the title compound suitable for single crystal X-ray diffraction were obtained by the reaction of 8.8 mg Co(NCS)2 (0.05 mmol) with 27.6 mg pyridine-4-carbo­thio­amide (0.2 mmol) in methanol (0.5 ml). The reaction mixture was heated to boiling and then left on the turned-off heating plate to cool down slowly. During this process, crystals of the title compound formed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The aromatic hydrogen atoms, the methyl hydrogen atoms and the hydrogen atom of the hy­droxy function were positioned with idealized geometry (the hy­droxy hydrogen atom was allowed to rotate but not to tip) and were refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model. The amino hydrogen atoms were located in a difference map. Their N—H bond lengths were set to ideal values and refined with Uiso(H) = 1.5Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C6H6NS)4]·CH4O
Mr 759.88
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 9.3136 (3), 12.4532 (5), 16.1799 (6)
α, β, γ (°) 70.584 (3), 89.453 (3), 74.996 (3)
V3) 1703.51 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.15 × 0.10 × 0.06
 
Data collection
Diffractometer Stoe IPDS1
Absorption correction Numerical (X-RED32 and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.781, 0.926
No. of measured, independent and observed [I > 2σ(I)] reflections 26748, 8222, 6873
Rint 0.029
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.07
No. of reflections 8222
No. of parameters 409
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.37
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: publCIF (Westrip, 2010); software used to prepare material for publication: DIAMOND (Brandenburg, 1999).

Bis(pyridine-4-carbothioamide-κN1)bis(thiocyanato-κN)cobalt(II) methanol monosolvate top
Crystal data top
[Co(NCS)2(C6H6NS)4]·CH4OZ = 2
Mr = 759.88F(000) = 782
Triclinic, P1Dx = 1.481 Mg m3
a = 9.3136 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4532 (5) ÅCell parameters from 26748 reflections
c = 16.1799 (6) Åθ = 1.8–28.0°
α = 70.584 (3)°µ = 0.91 mm1
β = 89.453 (3)°T = 200 K
γ = 74.996 (3)°Block, violet
V = 1703.51 (11) Å30.15 × 0.10 × 0.06 mm
Data collection top
Stoe IPDS-1
diffractometer
6873 reflections with I > 2σ(I)
ω scansRint = 0.029
Absorption correction: numerical
(X-RED32 and X-SHAPE; Stoe, 2008)
θmax = 28.0°, θmin = 1.8°
Tmin = 0.781, Tmax = 0.926h = 1212
26748 measured reflectionsk = 1616
8222 independent reflectionsl = 2121
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.3232P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.34 e Å3
8222 reflectionsΔρmin = 0.37 e Å3
409 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0030 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.27982 (2)0.47102 (2)0.28964 (2)0.02307 (7)
N10.46073 (15)0.54348 (13)0.26565 (9)0.0314 (3)
C10.55593 (18)0.58580 (14)0.27195 (11)0.0300 (3)
S10.68741 (5)0.64636 (5)0.28192 (4)0.04785 (13)
N20.09728 (15)0.40149 (12)0.32138 (9)0.0299 (3)
C20.00111 (19)0.35654 (15)0.33143 (11)0.0318 (3)
S20.13229 (6)0.28999 (5)0.34636 (4)0.05500 (16)
N110.17465 (15)0.61256 (12)0.34077 (9)0.0281 (3)
C110.1060 (2)0.59454 (15)0.41509 (11)0.0334 (4)
H110.11980.51550.45360.040*
C120.0159 (2)0.68505 (15)0.43884 (11)0.0344 (4)
H120.02780.66830.49340.041*
C130.00972 (19)0.80101 (14)0.38169 (11)0.0294 (3)
C140.06193 (19)0.82030 (14)0.30472 (11)0.0307 (3)
H140.04740.89820.26400.037*
C150.15440 (19)0.72529 (14)0.28799 (11)0.0292 (3)
H150.20660.74020.23640.035*
C160.1113 (2)0.90116 (15)0.40209 (11)0.0334 (4)
S110.24145 (7)1.00294 (5)0.32725 (3)0.05019 (14)
N120.09385 (19)0.90110 (14)0.48257 (10)0.0391 (3)
H11N0.01950.84850.51910.059*
H12N0.15330.95210.50310.059*
N210.37050 (14)0.34643 (12)0.22359 (8)0.0261 (3)
C210.51800 (17)0.30357 (14)0.22423 (10)0.0282 (3)
H210.58160.32240.25970.034*
C220.58254 (18)0.23326 (14)0.17595 (11)0.0289 (3)
H220.68800.20460.17870.035*
C230.49188 (18)0.20501 (14)0.12339 (10)0.0282 (3)
C240.33894 (19)0.24933 (16)0.12248 (12)0.0346 (4)
H240.27300.23260.08700.041*
C250.28281 (18)0.31776 (16)0.17335 (11)0.0322 (3)
H250.17770.34590.17290.039*
C260.55584 (19)0.13437 (15)0.06639 (11)0.0321 (3)
S210.48865 (5)0.17821 (4)0.03746 (3)0.03921 (11)
N220.6715 (2)0.04167 (14)0.10307 (11)0.0461 (4)
H21N0.70890.00100.06890.069*
H22N0.70120.01870.15920.069*
N310.16434 (14)0.59080 (12)0.16328 (8)0.0258 (3)
C310.24284 (18)0.63003 (16)0.09577 (10)0.0313 (3)
H310.34800.59770.10240.038*
C320.17817 (18)0.71544 (16)0.01669 (11)0.0327 (4)
H320.23790.73910.03030.039*
C330.02558 (18)0.76625 (14)0.00659 (10)0.0274 (3)
C340.05686 (18)0.72709 (15)0.07659 (11)0.0310 (3)
H340.16160.76070.07260.037*
C350.01598 (18)0.63816 (15)0.15246 (11)0.0302 (3)
H350.04190.60920.19910.036*
C360.04773 (18)0.85862 (15)0.07826 (10)0.0288 (3)
S310.17011 (6)0.98271 (4)0.07939 (3)0.03822 (11)
N320.00718 (17)0.83122 (13)0.14892 (9)0.0343 (3)
H31N0.05010.76200.14720.051*
H32N0.05180.87720.20100.051*
N410.39825 (15)0.34459 (12)0.41333 (9)0.0274 (3)
C410.4822 (2)0.37337 (15)0.46472 (11)0.0361 (4)
H410.49230.45170.44570.043*
C420.5548 (2)0.29474 (15)0.54422 (11)0.0367 (4)
H420.61050.31990.57950.044*
C430.54595 (18)0.17943 (14)0.57193 (10)0.0278 (3)
C440.4615 (2)0.14806 (14)0.51807 (11)0.0330 (4)
H440.45340.06930.53430.040*
C450.3894 (2)0.23294 (14)0.44069 (11)0.0323 (3)
H450.33040.21080.40500.039*
C460.62759 (18)0.09095 (14)0.65609 (10)0.0285 (3)
S410.76058 (5)0.02709 (4)0.65401 (3)0.03816 (11)
N420.59116 (17)0.11527 (13)0.72785 (9)0.0342 (3)
H41N0.51240.17200.72850.051*
H42N0.63890.07310.77990.051*
O510.1577 (2)0.59710 (15)0.13645 (10)0.0604 (4)
H510.17930.60810.18860.091*
C510.2618 (3)0.4961 (2)0.07977 (18)0.0658 (7)
H51A0.35450.51590.07130.099*
H51B0.28230.43340.10570.099*
H51C0.22090.46860.02290.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02305 (11)0.02408 (11)0.01983 (11)0.00347 (8)0.00100 (7)0.00676 (8)
N10.0281 (7)0.0329 (7)0.0307 (7)0.0080 (6)0.0002 (5)0.0080 (6)
C10.0281 (8)0.0293 (8)0.0294 (8)0.0015 (6)0.0040 (6)0.0109 (6)
S10.0289 (2)0.0497 (3)0.0759 (4)0.0142 (2)0.0085 (2)0.0329 (3)
N20.0279 (7)0.0324 (7)0.0271 (7)0.0077 (6)0.0011 (5)0.0073 (5)
C20.0301 (8)0.0346 (8)0.0236 (7)0.0040 (7)0.0031 (6)0.0044 (6)
S20.0428 (3)0.0648 (3)0.0469 (3)0.0303 (3)0.0122 (2)0.0069 (2)
N110.0322 (7)0.0265 (6)0.0260 (6)0.0070 (5)0.0032 (5)0.0102 (5)
C110.0453 (10)0.0263 (8)0.0259 (8)0.0083 (7)0.0061 (7)0.0067 (6)
C120.0477 (10)0.0293 (8)0.0254 (8)0.0087 (7)0.0099 (7)0.0097 (6)
C130.0341 (8)0.0284 (8)0.0257 (7)0.0074 (6)0.0022 (6)0.0100 (6)
C140.0393 (9)0.0252 (7)0.0260 (8)0.0083 (7)0.0026 (7)0.0071 (6)
C150.0354 (8)0.0291 (8)0.0248 (7)0.0108 (6)0.0058 (6)0.0100 (6)
C160.0409 (9)0.0284 (8)0.0288 (8)0.0069 (7)0.0061 (7)0.0093 (6)
S110.0599 (3)0.0417 (3)0.0312 (2)0.0116 (2)0.0026 (2)0.00872 (19)
N120.0483 (9)0.0359 (8)0.0302 (7)0.0006 (7)0.0017 (7)0.0158 (6)
N210.0254 (6)0.0280 (6)0.0242 (6)0.0041 (5)0.0003 (5)0.0103 (5)
C210.0250 (7)0.0312 (8)0.0271 (8)0.0032 (6)0.0024 (6)0.0116 (6)
C220.0257 (7)0.0297 (8)0.0281 (8)0.0022 (6)0.0002 (6)0.0099 (6)
C230.0318 (8)0.0264 (7)0.0255 (7)0.0068 (6)0.0036 (6)0.0085 (6)
C240.0308 (8)0.0432 (9)0.0378 (9)0.0120 (7)0.0035 (7)0.0226 (8)
C250.0249 (7)0.0411 (9)0.0354 (9)0.0079 (7)0.0020 (6)0.0200 (7)
C260.0341 (8)0.0313 (8)0.0321 (8)0.0071 (7)0.0046 (7)0.0136 (7)
S210.0365 (2)0.0477 (3)0.0331 (2)0.00146 (19)0.00106 (18)0.02079 (19)
N220.0574 (10)0.0387 (8)0.0337 (8)0.0081 (7)0.0027 (7)0.0175 (7)
N310.0243 (6)0.0291 (6)0.0203 (6)0.0036 (5)0.0007 (5)0.0067 (5)
C310.0235 (7)0.0419 (9)0.0239 (8)0.0050 (7)0.0009 (6)0.0081 (7)
C320.0262 (8)0.0435 (9)0.0224 (7)0.0080 (7)0.0017 (6)0.0046 (7)
C330.0285 (7)0.0288 (7)0.0223 (7)0.0065 (6)0.0020 (6)0.0063 (6)
C340.0233 (7)0.0350 (8)0.0277 (8)0.0030 (6)0.0010 (6)0.0054 (6)
C350.0251 (7)0.0357 (8)0.0242 (8)0.0065 (6)0.0018 (6)0.0042 (6)
C360.0272 (7)0.0319 (8)0.0238 (7)0.0081 (6)0.0019 (6)0.0047 (6)
S310.0474 (3)0.0316 (2)0.0262 (2)0.00146 (18)0.00544 (18)0.00684 (16)
N320.0354 (7)0.0369 (8)0.0229 (7)0.0026 (6)0.0028 (6)0.0055 (6)
N410.0302 (7)0.0261 (6)0.0225 (6)0.0041 (5)0.0043 (5)0.0067 (5)
C410.0490 (10)0.0265 (8)0.0295 (8)0.0110 (7)0.0111 (7)0.0044 (6)
C420.0491 (10)0.0305 (8)0.0287 (8)0.0116 (7)0.0134 (7)0.0066 (7)
C430.0288 (7)0.0268 (7)0.0239 (7)0.0023 (6)0.0022 (6)0.0072 (6)
C440.0400 (9)0.0251 (8)0.0316 (8)0.0085 (7)0.0052 (7)0.0067 (6)
C450.0374 (9)0.0283 (8)0.0294 (8)0.0085 (7)0.0071 (7)0.0076 (6)
C460.0312 (8)0.0272 (7)0.0245 (7)0.0063 (6)0.0026 (6)0.0065 (6)
S410.0462 (3)0.0309 (2)0.0285 (2)0.00573 (18)0.00729 (18)0.01084 (16)
N420.0372 (8)0.0336 (7)0.0243 (7)0.0010 (6)0.0035 (6)0.0081 (6)
O510.0771 (11)0.0529 (9)0.0403 (8)0.0034 (8)0.0046 (8)0.0176 (7)
C510.0840 (18)0.0442 (12)0.0592 (15)0.0041 (12)0.0121 (13)0.0144 (11)
Geometric parameters (Å, º) top
Co1—N12.0847 (14)N22—H21N0.8800
Co1—N22.0865 (14)N22—H22N0.8800
Co1—N212.1608 (13)N31—C311.335 (2)
Co1—N312.1783 (12)N31—C351.342 (2)
Co1—N412.1792 (13)C31—C321.382 (2)
Co1—N112.1933 (14)C31—H310.9500
N1—C11.164 (2)C32—C331.384 (2)
C1—S11.6300 (18)C32—H320.9500
N2—C21.157 (2)C33—C341.386 (2)
C2—S21.6381 (18)C33—C361.495 (2)
N11—C111.336 (2)C34—C351.384 (2)
N11—C151.343 (2)C34—H340.9500
C11—C121.384 (2)C35—H350.9500
C11—H110.9500C36—N321.323 (2)
C12—C131.391 (2)C36—S311.6605 (17)
C12—H120.9500N32—H31N0.8800
C13—C141.386 (2)N32—H32N0.8799
C13—C161.489 (2)N41—C451.336 (2)
C14—C151.377 (2)N41—C411.336 (2)
C14—H140.9500C41—C421.381 (2)
C15—H150.9500C41—H410.9500
C16—N121.314 (2)C42—C431.379 (2)
C16—S111.6594 (18)C42—H420.9500
N12—H11N0.8799C43—C441.389 (2)
N12—H12N0.8800C43—C461.495 (2)
N21—C211.338 (2)C44—C451.380 (2)
N21—C251.346 (2)C44—H440.9500
C21—C221.383 (2)C45—H450.9500
C21—H210.9500C46—N421.314 (2)
C22—C231.388 (2)C46—S411.6690 (17)
C22—H220.9500N42—H41N0.8800
C23—C241.386 (2)N42—H42N0.8800
C23—C261.496 (2)O51—C511.408 (3)
C24—C251.380 (2)O51—H510.8400
C24—H240.9500C51—H51A0.9800
C25—H250.9500C51—H51B0.9800
C26—N221.326 (2)C51—H51C0.9800
C26—S211.6572 (18)
N1—Co1—N2176.11 (6)N22—C26—C23115.73 (15)
N1—Co1—N2192.32 (5)N22—C26—S21124.05 (14)
N2—Co1—N2191.06 (5)C23—C26—S21120.11 (12)
N1—Co1—N3191.36 (5)C26—N22—H21N115.1
N2—Co1—N3190.73 (5)C26—N22—H22N121.5
N21—Co1—N3187.09 (5)H21N—N22—H22N123.0
N1—Co1—N4189.20 (5)C31—N31—C35117.36 (13)
N2—Co1—N4188.87 (5)C31—N31—Co1119.81 (10)
N21—Co1—N4190.24 (5)C35—N31—Co1122.41 (11)
N31—Co1—N41177.29 (5)N31—C31—C32123.04 (15)
N1—Co1—N1187.53 (6)N31—C31—H31118.5
N2—Co1—N1189.35 (5)C32—C31—H31118.5
N21—Co1—N11172.94 (5)C31—C32—C33119.40 (16)
N31—Co1—N1185.85 (5)C31—C32—H32120.3
N41—Co1—N1196.82 (5)C33—C32—H32120.3
C1—N1—Co1163.69 (14)C32—C33—C34118.04 (14)
N1—C1—S1178.93 (16)C32—C33—C36120.67 (15)
C2—N2—Co1171.72 (14)C34—C33—C36121.28 (14)
N2—C2—S2178.71 (16)C35—C34—C33118.87 (15)
C11—N11—C15116.99 (14)C35—C34—H34120.6
C11—N11—Co1123.49 (11)C33—C34—H34120.6
C15—N11—Co1118.44 (11)N31—C35—C34123.21 (15)
N11—C11—C12123.40 (15)N31—C35—H35118.4
N11—C11—H11118.3C34—C35—H35118.4
C12—C11—H11118.3N32—C36—C33114.27 (15)
C11—C12—C13119.03 (16)N32—C36—S31124.92 (12)
C11—C12—H12120.5C33—C36—S31120.80 (12)
C13—C12—H12120.5C36—N32—H31N124.0
C14—C13—C12117.78 (15)C36—N32—H32N120.1
C14—C13—C16121.00 (15)H31N—N32—H32N114.8
C12—C13—C16121.22 (15)C45—N41—C41117.06 (14)
C15—C14—C13119.26 (15)C45—N41—Co1120.25 (10)
C15—C14—H14120.4C41—N41—Co1122.68 (11)
C13—C14—H14120.4N41—C41—C42123.16 (16)
N11—C15—C14123.42 (16)N41—C41—H41118.4
N11—C15—H15118.3C42—C41—H41118.4
C14—C15—H15118.3C43—C42—C41119.50 (15)
N12—C16—C13115.95 (15)C43—C42—H42120.2
N12—C16—S11123.07 (14)C41—C42—H42120.2
C13—C16—S11120.95 (13)C42—C43—C44117.72 (14)
C16—N12—H11N120.2C42—C43—C46120.89 (14)
C16—N12—H12N123.4C44—C43—C46121.37 (14)
H11N—N12—H12N116.3C45—C44—C43119.03 (15)
C21—N21—C25117.15 (14)C45—C44—H44120.5
C21—N21—Co1120.78 (10)C43—C44—H44120.5
C25—N21—Co1121.75 (11)N41—C45—C44123.49 (15)
N21—C21—C22123.32 (14)N41—C45—H45118.3
N21—C21—H21118.3C44—C45—H45118.3
C22—C21—H21118.3N42—C46—C43116.01 (14)
C21—C22—C23119.39 (15)N42—C46—S41124.26 (12)
C21—C22—H22120.3C43—C46—S41119.69 (12)
C23—C22—H22120.3C46—N42—H41N122.5
C24—C23—C22117.47 (15)C46—N42—H42N123.2
C24—C23—C26120.86 (15)H41N—N42—H42N114.2
C22—C23—C26121.61 (15)C51—O51—H51109.5
C25—C24—C23119.77 (15)O51—C51—H51A109.5
C25—C24—H24120.1O51—C51—H51B109.5
C23—C24—H24120.1H51A—C51—H51B109.5
N21—C25—C24122.88 (15)O51—C51—H51C109.5
N21—C25—H25118.6H51A—C51—H51C109.5
C24—C25—H25118.6H51B—C51—H51C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H11N···S2i0.882.453.3010 (16)163
N12—H12N···S41ii0.882.643.3589 (16)140
C21—H21···S2iii0.952.893.7626 (16)153
N22—H21N···S31iv0.882.693.4969 (17)152
N22—H22N···S11iv0.882.713.5691 (17)166
C31—H31···N10.952.653.137 (2)112
C34—H34···S21v0.952.953.8809 (17)165
C35—H35···S1vi0.952.853.6906 (17)148
C35—H35···N20.952.683.203 (2)115
N32—H31N···O510.881.992.863 (2)173
N32—H32N···S41vii0.882.673.5176 (14)163
N42—H41N···S1viii0.882.493.3580 (16)171
N42—H42N···S31ix0.882.643.4935 (14)165
O51—H51···S2v0.842.433.1994 (17)153
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+1, z; (iii) x+1, y, z; (iv) x+1, y1, z; (v) x, y+1, z; (vi) x1, y, z; (vii) x1, y+1, z1; (viii) x+1, y+1, z+1; (ix) x+1, y1, z+1.
 

Acknowledgements

We thank Professor Dr. Wolfgang Bensch for access to his experimental facilities.

Funding information

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/5–1) and the State of Schleswig-Holstein.

References

First citationBoeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587–595.  Web of Science CSD CrossRef CAS
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationGoodgame, D. M. L., Grachvogel, D. A., White, A. J. P. & Williams, D. J. (2003). Inorg. Chim. Acta, 348, 187–193.  Web of Science CSD CrossRef CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationKabešová, M., Boča, R., Melník, M., Valigura, D. & Dunaj-Jurčo, M. (1995). Coord. Chem. Rev. 140, 115–135.
First citationMassoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26–33.  Web of Science CSD CrossRef CAS
First citationNeumann, T., Jess, I. & Näther, C. (2016). Acta Cryst. E72, 370–373.  CrossRef IUCr Journals
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  CrossRef CAS
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. doi: 10.1039C.7C04189F.
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232–3243.  CrossRef CAS PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149–14158.  CrossRef CAS PubMed
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationWöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715–2718.
First citationWöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 1061–1068.  PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds