research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of bis­­(1H-benzo[d][1,2,3]triazole-κN2){2,2′-[N-(phenyl­phospho­r­yl­methyl-κO)aza­nedi­yl]di­acetato-κ3O,N,O′}cobalt(II)–1H-benzo[d][1,2,3]triazole (1/1)

CROSSMARK_Color_square_no_text.svg

aSchool of Biochemical and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473000, People's Republic of China
*Correspondence e-mail: hyperchem@126.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 9 September 2017; accepted 16 October 2017; online 20 October 2017)

In the title compound, [Co(C11H12NO6P)(C6H5N3)2]·C6H5N3, the 2,2′-[N-(phenyl­phospho­rylmethyl-κO)aza­nedi­yl]di­acetate dianion N,O,O′,O′′-chelates the CoII cation and two 1H-benzo[d][1,2,3]triazole mol­ecules coordinate to the CoII cation to complete the slightly distorted octa­hedral coordination. In the crystal, classical O—H⋯O, N—H⋯O hydrogen bonds and weak C—H⋯N hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular architecture. ππ stacking between the triazole and benzene rings and between the benzene rings is also observed in the crystal.

1. Chemical context

Over the past few decades, many researchers have focused their attention on the preparation of organo­phospho­rus materials because of their biological activities (Miller et al., 2008[Miller, S. R., Pearce, G. M., Wright, P. A., Bonino, F., Chavan, S., Bordiga, S., Margiolaki, I., Guillou, N., Férey, G., Bourrelly, S. & Llewellyn, P. L. (2008). J. Am. Chem. Soc. 130, 15967-15981.]; Leonova et al., 2010[Leonova, E. S., Makarov, M. V., Rybalkina, E. Y., Nayani, S. L., Tongwa, P., Fonari, A., Timofeeva, T. V. & Odinets, I. L. (2010). Eur. J. Med. Chem. 45, 5926-5934.]; Sharma & Clearfield, 2000[Sharma, C. V. K. & Clearfield, A. (2000). J. Am. Chem. Soc. 122, 1558-1559.]). In particular, amino­phosphinic acid ligands as phospho­rus analogues of natural amino acids have attracted significant attention because of their strong coordination ability with metals. It has been shown that amino­phosphinic acid derivatives can be used as potent and selective inhibitors of many proteolytic enzymes, especially metalloproteases (Latajka et al., 2008[Latajka, R., Krężel, A., Mucha, A., Jewgiński, M. & Kafarski, P. (2008). J. Mol. Struct. 877, 64-71.]; Cates & Li, 1985[Cates, L. A. & Li, V.-S. (1985). Pharm. Res. 2, 135-136.]; Katoh et al., 1996[Katoh, M., Hiratake, J., Kato, H. & Oda, J. (1996). Bioorg. Med. Chem. Lett. 6, 1437-1442.]). For the design and preparation of extraordinary enzyme inhibitors with considerable pharmacological activity and low toxicity, it is necessary to understand the metal-binding properties in order to obtain a profound insight into the mechanism of their biological activity.

In addition to their biological activities, amino­phosphinic acids are also attracting inter­est in many areas such as the construction industry, aerospace and electronics for their excellent flame retardancy to polymeric materials (Lin, 2004[Lin, C.-H. (2004). Polymer, 45, 7911-7926.]; Lin et al., 2010[Lin, C.-H., Chang, S.-L., Wei, T.-P., Ding, S.-H. & Su, W.-H. (2010). Polym. Degrad. Stab. 95, 1167-1176.]; Lu & Hamerton, 2002[Lu, S.-Y. & Hamerton, I. (2002). Prog. Polym. Sci. 27, 1661-1712.]). Amino­phosphinic acid reactive flame retardants also have the advantage of low evolution of toxic gases and smoke in the event of fire, but cannot be used to make polyesters flame retardant because their decomposed temperatures do not match those of the polymers. In the early 80s, many metal salts of di­alkyl­phosphinates were used by Pennwalt to increase the fire safety of polyesters (Sandler, 1979[Sandler, S. R. (1979). US Patent 4180495.], 1980[Sandler, S. R. (1980). US Patent 4208321.]). Later, researchers from the Clariant company researched in detail the variety of di­alkyl­phosphinates aluminum salts in glass-filled nylons (Kleiner et al., 1998[Kleiner, H.-J., Budzinsky, W. & Kirsch, G. (1998). US Patent 5773556.], 1999[Kleiner, H.-J., Budzinsky, W. & Kirsch, G. (1999). EP Patent No. 0941996-A.]; Weferling et al., 2001[Weferling, N., Schmitz, H. & Kolbe, G. (2001). US Patent 6248921.]). They found that the aluminum di­ethyl­phosphinate can give a V-0 rating at 15 wt% in plain PBT and commercialized it as Exolit OP 930 (DEPAL), which is also used in thermoset resins (Horold et al., 2002[Horold, S. (2002). US Patent 6420459.]; Campbell et al., 2005[Campbell, J. R., Duffy, B., Rude, J., Susarla, R. P., Vallance, M. A., Yaeger, G. W. & Zarnoch, K. P. (2005). US Patent 20050427.]). Unfort­un­ately, aluminum di­ethyl­phosphinate was prepared at high temperature and pressure. The coordination complexes of amino­phosphinic acids and metals that are easily obtained at normal temperature have the elements phospho­rus, nitro­gen and the metal coexisting in the mol­ecular structure, which may give a significant improvement of flame-retardant efficiency for polyesters. We therefore decided to explore new coord­in­ation complexes of amino­phosphinic acids and metals as halogen-free flame retardants and as excellent candidates to replace the aluminum di­ethyl­phosphinate flame retardant. To the best of our knowledge, neither the title ligand 2,2′-({[(phen­yl)phosphor­yl]meth­yl}aza­nedi­yl)di­acetic acid (synth­esized by a typical Mannich reaction) nor any complexes based on this ligand have been reported anywhere. We therefore report herein the synthesis and crystal structure of a cobalt(II) complex of this ligand, [Co(C11H12NO6P)(C6H5N3)2]·C6H5N3. Research of its potential applications (especially for use as a flame retardant) of this and analogous complexes is currently being undertaken.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title complex is shown in Fig. 1[link]. The CoII cation is N,O,O′,O"-chelated by a 2,2′-({[(phen­yl)phosphor­yl]meth­yl}aza­nedi­yl)di­acetate dianion and coordin­ates two 1H-benzo[d][1,2,3]triazole mol­ecules in a slightly distorted octa­hedral coordination (Table 1[link]). The 2,2′-({[(phen­yl)phosphor­yl]meth­yl}aza­nedi­yl)di­acetate dianion forms three five-membered chelate rings. The N atom comes from the imino group, the two O atoms from carboxyl groups and another O atom from the organo­phospho­rus group.

Table 1
Selected bond lengths (Å)

Co1—N1 2.2350 (17) Co1—O2 2.0320 (15)
Co1—N4 2.0742 (15) Co1—O3 2.1602 (14)
Co1—N10 2.2274 (15) Co1—O6 2.0399 (14)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound.

3. Supra­molecular features

In the crystal, the complex mol­ecules are linked by N—H⋯O hydrogen bonds involving the 1H-benzo[d][1,2,3]triazole mol­ecules and O—H⋯O bonds involving the amino­phospho­nate groups into a three-dimensional supra­molecular architecture (Fig. 2[link], Table 2[link]). ππ stacking between organo­phospho­rus aromatic rings is also observed, the centroid-to-centroid distances being 3.8622 (16), 3.7961 (16) 3.7331 (18) and 3.5001 (17) Å.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.82 1.70 2.507 (2) 168
N3—H3⋯O1ii 0.86 1.80 2.651 (2) 169
N6—H6⋯O1iii 0.86 2.44 3.173 (2) 144
N6—H6⋯O2iii 0.86 2.24 3.012 (2) 149
N9—H9⋯O5iv 0.86 1.94 2.743 (3) 156
C3—H3A⋯N7v 0.93 2.62 3.440 (5) 147
C26—H26⋯N2vi 0.93 2.53 3.251 (4) 134
Symmetry codes: (i) -x, -y, -z+2; (ii) x+1, y, z; (iii) -x, -y+1, -z+2; (iv) -x, -y, -z+1; (v) -x+1, -y, -z+1; (vi) -x, -y+1, -z+1.
[Figure 2]
Figure 2
View in the bc plane of the crystal packing showing hydrogen bonds as green dotted lines.

4. Database survey

Amino­phospho­nates acting as ligands have been widely used in coordination chemistry. Over the past two decades, many studies have been reported that use alkyl­amino-N,N-bis methyl­ene­phospho­nates to coordinate with main group metals such as Ca, Ba (Vivani et al., 2006[Vivani, R., Costantino, U., Costantino, U. & Nocchetti, M. (2006). Inorg. Chem. 45, 2388-2390.]), transition metals such as Cd, Mn, Zn, and Pb (Taddei et al., 2011[Taddei, M., Costantino, F., Manuali, V. & Vivani, R. (2011). Inorg. Chem. 50, 10835-10843.]) and lanthanide metals (Mao et al., 2002[Mao, J., Wang, Z. & Clearfield, A. (2002). Inorg. Chem. 41, 2334-2340.]) to obtain large numbers of zero-, one- two- and three-dimensional structures. However, the use of 2,2′-({[(phen­yl)phosphor­yl]meth­yl}aza­nedi­yl)di­acetic acid as a ligand has not been reported elsewhere. The ligand has three functional groups, carboxyl, imino and organophosphate, and all of them are affected by pH values in solution. One of the key factors for the ligand used is to adjust the acidity of the reaction solution. Exploiting more analogous ligands and their complexes and developing their potential applications remains a big challenge.

5. Synthesis and crystallization

Phenyl­phosphinic acid (1.42 g, 0.01 mol) and iminodi­acetic acid (41.33 g, 0.01 mol) were dissolved in hydro­chloric acid (6 M, 50 ml) and refluxed for 1 h under a nitro­gen atmosphere. 50 ml of formaldehyde in hydro­chloric acid (37%) was added dropwise under vigorous stirring, and the temperature was maintained at 378–383 K for 4 h. This solution was then concentrated under reduced pressure and allowed to cool to room temperature. 100 ml of acetone was added, and the white precipitate of 2,2′-({[(phen­yl)phosphor­yl]meth­yl}aza­nedi­yl)di­acetic acid was collected by filtration. Colourless crystals of the title compound were obtained as follows: 2.38 g CoCl2·6H2O (0.01 mol) and 3.57 g 1H-benzo[d][1,2,3]triazole (0.03 mol) were added to a stirred hydro­chloric acid solution (4 M, 40 ml), then 3.24 g of 2,2′-({[(phen­yl)phosphor­yl]meth­yl}aza­nedi­yl)di­acetic acid (0.01 mol) were added in one portion. The mixture was stirred for 1 h, then filtered and left undisturbed. Single crystals were obtained by slow evaporation of the reaction mixture after several days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Water H atoms were located in difference-Fourier maps and O—H distances were restrained to 0.82 Å. Other H atoms (CH and CH2 groups) were positioned geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C). The carboxyl H atom was refined as rotating group with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Co(C11H12NO6P)(C6H5N3)2]·C6H5N3
Mr 701.50
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.5701 (3), 14.1261 (4), 14.9018 (5)
α, β, γ (°) 97.351 (3), 102.335 (3), 91.206 (3)
V3) 1542.03 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.67
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Agilent Xcalibur Atlas Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.905, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14339, 6722, 5440
Rint 0.032
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.02
No. of reflections 6722
No. of parameters 425
No. of restraints 121
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.26
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(1H-benzo[d][1,2,3]triazole-κN2){2,2'-[N-(phenylphosphorylmethyl-κO)azanediyl]diacetato-κ3O,N,O'}cobalt(II)–1H-benzo[d][1,2,3]triazole (1/1) top
Crystal data top
[Co(C11H12NO6P)(C6H5N3)2]·C6H5N3Z = 2
Mr = 701.50F(000) = 722
Triclinic, P1Dx = 1.511 Mg m3
a = 7.5701 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.1261 (4) ÅCell parameters from 7159 reflections
c = 14.9018 (5) Åθ = 2.8–29.4°
α = 97.351 (3)°µ = 0.67 mm1
β = 102.335 (3)°T = 293 K
γ = 91.206 (3)°Block, colourless
V = 1542.03 (9) Å30.30 × 0.25 × 0.20 mm
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
6722 independent reflections
Radiation source: Enhance (Mo) X-ray Source5440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.4170 pixels mm-1θmax = 27.1°, θmin = 2.8°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis Pro; Agilent, 2011)
k = 1818
Tmin = 0.905, Tmax = 1.000l = 1918
14339 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.042P)2 + 0.4782P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6722 reflectionsΔρmax = 0.42 e Å3
425 parametersΔρmin = 0.26 e Å3
121 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.05582 (3)0.24613 (2)0.88580 (2)0.03100 (9)
P10.00092 (7)0.05593 (3)0.77757 (4)0.03346 (13)
O10.5457 (2)0.36152 (11)0.84311 (12)0.0487 (4)
O20.26323 (19)0.33099 (10)0.90211 (10)0.0390 (3)
O30.07905 (19)0.16185 (10)0.99428 (10)0.0385 (3)
O40.2239 (2)0.03247 (11)1.02198 (11)0.0482 (4)
H40.1457570.0396651.0701220.072*
O50.0013 (2)0.03141 (10)0.82718 (11)0.0477 (4)
O60.09929 (18)0.14478 (9)0.83555 (10)0.0359 (3)
N10.0358 (2)0.31090 (12)0.75891 (12)0.0374 (4)
N20.1649 (2)0.30501 (13)0.68392 (13)0.0435 (4)
N30.1202 (2)0.34112 (12)0.74030 (13)0.0426 (4)
H30.2222670.3503350.7795750.051*
N40.1601 (2)0.33299 (11)0.96562 (11)0.0344 (4)
N50.1596 (3)0.42687 (12)0.97157 (12)0.0421 (4)
N60.3092 (3)0.46220 (13)1.03207 (13)0.0481 (5)
H60.3383700.5222141.0468810.058*
N100.2928 (2)0.14824 (11)0.81479 (11)0.0316 (4)
C10.1002 (3)0.02925 (15)0.67820 (15)0.0407 (5)
C20.1773 (4)0.0567 (2)0.6597 (2)0.0694 (8)
H20.1687550.1052730.6954370.083*
C30.2682 (5)0.0708 (3)0.5871 (3)0.0953 (12)
H3A0.3234200.1279410.5755310.114*
C40.2756 (4)0.0009 (3)0.5325 (2)0.0891 (11)
H4A0.3334800.0090270.4832300.107*
C50.2002 (4)0.0844 (3)0.5499 (2)0.0775 (9)
H50.2072190.1324180.5133420.093*
C60.1125 (4)0.09900 (19)0.62221 (17)0.0568 (6)
H6A0.0602200.1570670.6336340.068*
C70.2342 (3)0.08818 (13)0.73759 (13)0.0342 (4)
H7A0.2428460.1232870.6851000.041*
H7B0.3126100.0307420.7178940.041*
C80.4400 (3)0.21247 (14)0.78471 (15)0.0364 (5)
H8A0.5555350.1814910.7847630.044*
H8B0.4410060.2239970.7218240.044*
C90.4163 (3)0.30816 (14)0.84836 (14)0.0352 (4)
C100.3395 (3)0.08937 (15)0.88264 (14)0.0398 (5)
H10A0.3550490.0229440.8548480.048*
H10B0.4541270.1085740.8964540.048*
C110.1990 (3)0.09783 (14)0.97153 (14)0.0359 (4)
C120.0903 (4)0.33164 (15)0.61468 (16)0.0479 (6)
C130.1688 (5)0.3351 (2)0.5210 (2)0.0781 (9)
H130.2911410.3194940.4965730.094*
C140.0567 (8)0.3623 (3)0.4679 (2)0.1141 (15)
H140.1036230.3650140.4053420.137*
C150.1263 (8)0.3864 (3)0.5043 (3)0.1173 (16)
H150.1964610.4057100.4650570.141*
C160.2073 (5)0.3829 (2)0.5947 (3)0.0865 (10)
H160.3301160.3980910.6180440.104*
C170.0921 (4)0.35481 (15)0.65044 (17)0.0486 (6)
C180.4099 (3)0.39200 (17)1.06754 (15)0.0439 (5)
C190.5708 (3)0.3909 (2)1.13410 (17)0.0602 (7)
H190.6372760.4467971.1629610.072*
C200.6243 (3)0.3031 (2)1.15410 (19)0.0672 (8)
H200.7296520.2994781.1987570.081*
C210.5271 (3)0.2173 (2)1.11010 (18)0.0575 (6)
H210.5702540.1591741.1261330.069*
C220.3703 (3)0.21803 (17)1.04418 (16)0.0448 (5)
H220.3058190.1618581.0145590.054*
C230.3128 (3)0.30737 (15)1.02394 (14)0.0360 (5)
N70.4354 (4)0.24725 (17)0.3610 (2)0.0865 (9)
N80.3398 (4)0.17053 (17)0.3187 (2)0.0874 (9)
N90.2049 (3)0.19459 (15)0.25306 (18)0.0672 (6)
H90.1255780.1547090.2167820.081*
C240.1059 (4)0.3510 (2)0.1986 (2)0.0626 (7)
H240.0069260.3284080.1514910.075*
C250.1578 (5)0.4475 (2)0.2201 (3)0.0749 (9)
H250.0902040.4912570.1874240.090*
C260.3083 (5)0.4801 (2)0.2892 (3)0.0767 (9)
H260.3397390.5452200.3006960.092*
C270.4112 (4)0.4206 (2)0.3407 (2)0.0727 (8)
H270.5114550.4434670.3870290.087*
C280.3593 (4)0.32319 (18)0.3209 (2)0.0599 (7)
C290.2101 (3)0.29056 (17)0.25143 (19)0.0518 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02873 (15)0.02622 (14)0.03550 (16)0.00256 (11)0.00329 (11)0.00159 (10)
P10.0386 (3)0.0257 (2)0.0332 (3)0.0004 (2)0.0023 (2)0.0028 (2)
O10.0327 (8)0.0417 (8)0.0708 (11)0.0047 (7)0.0110 (7)0.0048 (8)
O20.0314 (7)0.0325 (7)0.0490 (9)0.0011 (6)0.0058 (6)0.0040 (6)
O30.0383 (8)0.0373 (7)0.0375 (8)0.0059 (7)0.0032 (6)0.0065 (6)
O40.0542 (10)0.0431 (8)0.0457 (9)0.0082 (8)0.0020 (7)0.0169 (7)
O50.0572 (10)0.0328 (8)0.0483 (9)0.0044 (7)0.0027 (7)0.0121 (7)
O60.0342 (7)0.0310 (7)0.0401 (8)0.0000 (6)0.0062 (6)0.0007 (6)
N10.0343 (9)0.0331 (9)0.0456 (10)0.0023 (8)0.0066 (8)0.0112 (7)
N20.0395 (10)0.0384 (9)0.0497 (11)0.0001 (8)0.0006 (8)0.0109 (8)
N30.0363 (10)0.0382 (9)0.0521 (11)0.0049 (8)0.0073 (8)0.0066 (8)
N40.0342 (9)0.0272 (8)0.0400 (9)0.0047 (7)0.0072 (7)0.0004 (7)
N50.0500 (11)0.0310 (9)0.0429 (10)0.0093 (8)0.0095 (8)0.0011 (7)
N60.0599 (12)0.0349 (10)0.0453 (11)0.0215 (9)0.0099 (9)0.0035 (8)
N100.0315 (9)0.0291 (8)0.0316 (8)0.0023 (7)0.0024 (7)0.0031 (6)
C10.0389 (12)0.0399 (11)0.0380 (12)0.0033 (10)0.0028 (9)0.0054 (9)
C20.0746 (19)0.0618 (17)0.0636 (18)0.0280 (15)0.0042 (14)0.0077 (13)
C30.078 (2)0.114 (3)0.082 (2)0.049 (2)0.0116 (18)0.030 (2)
C40.0503 (17)0.149 (3)0.059 (2)0.001 (2)0.0168 (15)0.026 (2)
C50.074 (2)0.104 (2)0.0548 (17)0.0217 (19)0.0271 (15)0.0042 (16)
C60.0680 (17)0.0545 (14)0.0505 (14)0.0003 (13)0.0209 (12)0.0034 (11)
C70.0377 (11)0.0277 (9)0.0337 (10)0.0039 (8)0.0027 (8)0.0006 (8)
C80.0287 (10)0.0353 (10)0.0418 (11)0.0030 (9)0.0015 (8)0.0043 (9)
C90.0327 (11)0.0338 (10)0.0409 (11)0.0028 (9)0.0109 (9)0.0073 (9)
C100.0393 (12)0.0379 (11)0.0409 (12)0.0093 (9)0.0071 (9)0.0056 (9)
C110.0397 (11)0.0310 (10)0.0380 (11)0.0020 (9)0.0102 (9)0.0052 (8)
C120.0632 (15)0.0338 (11)0.0459 (13)0.0003 (11)0.0074 (11)0.0100 (10)
C130.114 (3)0.0591 (17)0.0522 (16)0.0011 (18)0.0044 (16)0.0136 (13)
C140.207 (5)0.086 (3)0.051 (2)0.012 (3)0.029 (2)0.0192 (18)
C150.191 (5)0.097 (3)0.090 (3)0.013 (3)0.085 (3)0.024 (2)
C160.107 (3)0.072 (2)0.096 (2)0.0171 (19)0.059 (2)0.0131 (18)
C170.0624 (15)0.0345 (11)0.0542 (14)0.0015 (11)0.0227 (12)0.0093 (10)
C180.0390 (12)0.0523 (13)0.0384 (12)0.0177 (11)0.0104 (9)0.0015 (10)
C190.0446 (14)0.0790 (18)0.0490 (14)0.0255 (14)0.0005 (11)0.0001 (13)
C200.0337 (13)0.108 (2)0.0543 (16)0.0042 (15)0.0009 (11)0.0083 (16)
C210.0448 (14)0.0717 (17)0.0573 (16)0.0143 (13)0.0110 (12)0.0123 (13)
C220.0384 (12)0.0482 (13)0.0468 (13)0.0023 (10)0.0093 (10)0.0027 (10)
C230.0325 (10)0.0402 (11)0.0336 (11)0.0068 (9)0.0078 (8)0.0009 (8)
N70.0813 (18)0.0538 (14)0.109 (2)0.0115 (13)0.0140 (15)0.0136 (14)
N80.0901 (19)0.0463 (13)0.113 (2)0.0089 (13)0.0093 (16)0.0186 (13)
N90.0651 (14)0.0432 (11)0.0872 (16)0.0120 (11)0.0050 (13)0.0087 (11)
C240.0531 (15)0.0686 (17)0.0759 (18)0.0093 (13)0.0313 (13)0.0163 (14)
C250.078 (2)0.0608 (16)0.107 (2)0.0278 (15)0.0513 (18)0.0305 (16)
C260.081 (2)0.0429 (14)0.118 (2)0.0052 (15)0.0486 (19)0.0099 (15)
C270.0689 (18)0.0461 (14)0.103 (2)0.0099 (14)0.0268 (16)0.0001 (14)
C280.0584 (15)0.0408 (13)0.0812 (18)0.0044 (12)0.0181 (14)0.0063 (12)
C290.0498 (14)0.0404 (12)0.0703 (16)0.0025 (11)0.0243 (12)0.0080 (11)
Geometric parameters (Å, º) top
Co1—N12.2350 (17)C8—H8A0.9700
Co1—N42.0742 (15)C8—H8B0.9700
Co1—N102.2274 (15)C8—C91.532 (3)
Co1—O22.0320 (15)C10—H10A0.9700
Co1—O32.1602 (14)C10—H10B0.9700
Co1—O62.0399 (14)C10—C111.501 (3)
P1—O51.5171 (15)C12—C131.403 (4)
P1—O61.5115 (13)C12—C171.385 (3)
P1—C11.801 (2)C13—H130.9300
P1—C71.839 (2)C13—C141.359 (6)
O1—C91.244 (2)C14—H140.9300
O2—C91.269 (2)C14—C151.393 (6)
O3—C111.230 (2)C15—H150.9300
O4—H40.8200C15—C161.364 (6)
O4—C111.298 (2)C16—H160.9300
N1—N21.310 (2)C16—C171.410 (4)
N1—N31.343 (2)C18—C191.399 (3)
N2—C121.366 (3)C18—C231.397 (3)
N3—H30.8600C19—H190.9300
N3—C171.350 (3)C19—C201.363 (4)
N4—N51.318 (2)C20—H200.9300
N4—C231.375 (3)C20—C211.412 (4)
N5—N61.330 (3)C21—H210.9300
N6—H60.8600C21—C221.371 (3)
N6—C181.356 (3)C22—H220.9300
N10—C71.491 (3)C22—C231.392 (3)
N10—C81.483 (3)N7—N81.301 (3)
N10—C101.481 (2)N7—C281.372 (4)
C1—C21.381 (3)N8—N91.337 (3)
C1—C61.384 (3)N9—H90.8600
C2—H20.9300N9—C291.359 (3)
C2—C31.396 (5)C24—H240.9300
C3—H3A0.9300C24—C251.388 (4)
C3—C41.385 (5)C24—C291.380 (4)
C4—H4A0.9300C25—H250.9300
C4—C51.341 (5)C25—C261.388 (5)
C5—H50.9300C26—H260.9300
C5—C61.378 (4)C26—C271.356 (4)
C6—H6A0.9300C27—H270.9300
C7—H7A0.9700C27—C281.400 (4)
C7—H7B0.9700C28—C291.384 (4)
O2—Co1—O395.92 (6)C9—C8—H8A109.3
O2—Co1—O6163.36 (6)C9—C8—H8B109.3
O2—Co1—N189.43 (6)O1—C9—O2122.73 (19)
O2—Co1—N499.74 (6)O1—C9—C8118.80 (18)
O2—Co1—N1079.23 (6)O2—C9—C8118.43 (18)
O3—Co1—N1170.82 (6)N10—C10—H10A108.9
O3—Co1—N1079.15 (5)N10—C10—H10B108.9
O6—Co1—O389.22 (6)N10—C10—C11113.31 (16)
O6—Co1—N183.63 (6)H10A—C10—H10B107.7
O6—Co1—N495.57 (6)C11—C10—H10A108.9
O6—Co1—N1086.25 (6)C11—C10—H10B108.9
N4—Co1—O394.76 (6)O3—C11—O4124.72 (19)
N4—Co1—N191.67 (6)O3—C11—C10123.09 (18)
N4—Co1—N10173.64 (6)O4—C11—C10112.14 (17)
N10—Co1—N194.59 (6)N2—C12—C13130.2 (3)
O5—P1—C1109.77 (10)N2—C12—C17108.4 (2)
O5—P1—C7109.02 (9)C17—C12—C13121.4 (3)
O6—P1—O5115.55 (8)C12—C13—H13121.8
O6—P1—C1107.76 (9)C14—C13—C12116.4 (4)
O6—P1—C7105.87 (8)C14—C13—H13121.8
C1—P1—C7108.64 (10)C13—C14—H14119.0
C9—O2—Co1117.27 (13)C13—C14—C15122.1 (3)
C11—O3—Co1114.42 (13)C15—C14—H14119.0
C11—O4—H4109.5C14—C15—H15118.5
P1—O6—Co1116.94 (8)C16—C15—C14123.0 (3)
N2—N1—Co1124.52 (13)C16—C15—H15118.5
N2—N1—N3109.50 (17)C15—C16—H16122.3
N3—N1—Co1124.31 (13)C15—C16—C17115.4 (4)
N1—N2—C12107.56 (18)C17—C16—H16122.3
N1—N3—H3125.3N3—C17—C12105.1 (2)
N1—N3—C17109.50 (18)N3—C17—C16133.1 (3)
C17—N3—H3125.3C12—C17—C16121.8 (3)
N5—N4—Co1121.69 (14)N6—C18—C19134.2 (2)
N5—N4—C23109.44 (16)N6—C18—C23104.45 (18)
C23—N4—Co1128.68 (13)C23—C18—C19121.3 (2)
N4—N5—N6107.51 (18)C18—C19—H19122.0
N5—N6—H6124.2C20—C19—C18116.0 (2)
N5—N6—C18111.69 (17)C20—C19—H19122.0
C18—N6—H6124.2C19—C20—H20118.5
C7—N10—Co1106.01 (11)C19—C20—C21123.0 (2)
C8—N10—Co1104.74 (11)C21—C20—H20118.5
C8—N10—C7114.68 (15)C20—C21—H21119.4
C10—N10—Co1108.48 (11)C22—C21—C20121.2 (3)
C10—N10—C7111.46 (15)C22—C21—H21119.4
C10—N10—C8110.95 (16)C21—C22—H22121.8
C2—C1—P1121.9 (2)C21—C22—C23116.5 (2)
C2—C1—C6118.3 (3)C23—C22—H22121.8
C6—C1—P1119.54 (18)N4—C23—C18106.90 (19)
C1—C2—H2120.0N4—C23—C22130.98 (18)
C1—C2—C3119.9 (3)C22—C23—C18122.1 (2)
C3—C2—H2120.0N8—N7—C28107.3 (2)
C2—C3—H3A120.2N7—N8—N9109.2 (2)
C4—C3—C2119.6 (3)N8—N9—H9124.6
C4—C3—H3A120.2N8—N9—C29110.9 (2)
C3—C4—H4A119.6C29—N9—H9124.6
C5—C4—C3120.8 (3)C25—C24—H24122.0
C5—C4—H4A119.6C29—C24—H24122.0
C4—C5—H5120.1C29—C24—C25116.0 (3)
C4—C5—C6119.8 (3)C24—C25—H25119.3
C6—C5—H5120.1C24—C25—C26121.5 (3)
C1—C6—H6A119.2C26—C25—H25119.3
C5—C6—C1121.6 (3)C25—C26—H26118.8
C5—C6—H6A119.2C27—C26—C25122.5 (3)
P1—C7—H7A109.8C27—C26—H26118.8
P1—C7—H7B109.8C26—C27—H27121.6
N10—C7—P1109.28 (12)C26—C27—C28116.8 (3)
N10—C7—H7A109.8C28—C27—H27121.6
N10—C7—H7B109.8N7—C28—C27129.9 (3)
H7A—C7—H7B108.3N7—C28—C29109.4 (2)
N10—C8—H8A109.3C29—C28—C27120.7 (3)
N10—C8—H8B109.3N9—C29—C24134.3 (3)
N10—C8—C9111.71 (16)N9—C29—C28103.2 (2)
H8A—C8—H8B107.9C24—C29—C28122.5 (2)
Co1—O2—C9—O1169.65 (15)C3—C4—C5—C60.8 (5)
Co1—O2—C9—C87.9 (2)C4—C5—C6—C10.2 (4)
Co1—O3—C11—O4172.11 (17)C6—C1—C2—C31.3 (4)
Co1—O3—C11—C1010.6 (3)C7—P1—O6—Co119.78 (11)
Co1—N1—N2—C12165.41 (14)C7—P1—C1—C2124.5 (2)
Co1—N1—N3—C17165.45 (14)C7—P1—C1—C660.4 (2)
Co1—N4—N5—N6175.84 (13)C7—N10—C8—C9143.90 (16)
Co1—N4—C23—C18175.15 (14)C7—N10—C10—C11105.60 (19)
Co1—N4—C23—C222.4 (3)C8—N10—C7—P1154.75 (13)
Co1—N10—C7—P139.72 (13)C8—N10—C10—C11125.29 (18)
Co1—N10—C8—C928.13 (18)C10—N10—C7—P178.13 (16)
Co1—N10—C10—C1110.8 (2)C10—N10—C8—C988.72 (19)
P1—C1—C2—C3173.8 (2)C12—C13—C14—C150.5 (6)
P1—C1—C6—C5174.7 (2)C13—C12—C17—N3178.4 (2)
O5—P1—O6—Co1100.98 (11)C13—C12—C17—C160.0 (4)
O5—P1—C1—C25.4 (2)C13—C14—C15—C161.2 (7)
O5—P1—C1—C6179.53 (18)C14—C15—C16—C171.2 (6)
O5—P1—C7—N1084.17 (14)C15—C16—C17—N3178.5 (3)
O6—P1—C1—C2121.2 (2)C15—C16—C17—C120.6 (5)
O6—P1—C1—C653.9 (2)C17—C12—C13—C140.1 (4)
O6—P1—C7—N1040.74 (14)C18—C19—C20—C211.0 (4)
N1—N2—C12—C13178.0 (3)C19—C18—C23—N4177.9 (2)
N1—N2—C12—C170.2 (3)C19—C18—C23—C220.0 (3)
N1—N3—C17—C120.2 (2)C19—C20—C21—C220.4 (4)
N1—N3—C17—C16177.9 (3)C20—C21—C22—C230.4 (4)
N2—N1—N3—C170.3 (2)C21—C22—C23—N4176.7 (2)
N2—C12—C13—C14178.1 (3)C21—C22—C23—C180.6 (3)
N2—C12—C17—N30.0 (3)C23—N4—N5—N60.3 (2)
N2—C12—C17—C16178.4 (2)C23—C18—C19—C200.8 (4)
N3—N1—N2—C120.3 (2)N7—N8—N9—C290.1 (4)
N4—N5—N6—C180.5 (2)N7—C28—C29—N90.4 (3)
N5—N4—C23—C180.0 (2)N7—C28—C29—C24179.9 (3)
N5—N4—C23—C22177.6 (2)N8—N7—C28—C27179.7 (3)
N5—N6—C18—C19177.3 (3)N8—N7—C28—C290.4 (4)
N5—N6—C18—C230.5 (2)N8—N9—C29—C24179.7 (3)
N6—C18—C19—C20176.7 (3)N8—N9—C29—C280.3 (3)
N6—C18—C23—N40.3 (2)C24—C25—C26—C271.2 (5)
N6—C18—C23—C22178.1 (2)C25—C24—C29—N9179.7 (3)
N10—C8—C9—O1166.14 (18)C25—C24—C29—C281.0 (4)
N10—C8—C9—O216.2 (3)C25—C26—C27—C280.2 (5)
N10—C10—C11—O315.2 (3)C26—C27—C28—N7179.7 (3)
N10—C10—C11—O4167.21 (18)C26—C27—C28—C290.3 (5)
C1—P1—O6—Co1135.88 (10)C27—C28—C29—N9179.6 (3)
C1—P1—C7—N10156.24 (12)C27—C28—C29—C240.1 (4)
C1—C2—C3—C41.9 (5)C28—N7—N8—N90.2 (4)
C2—C1—C6—C50.5 (4)C29—C24—C25—C261.5 (4)
C2—C3—C4—C51.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.821.702.507 (2)168
N3—H3···O1ii0.861.802.651 (2)169
N6—H6···O1iii0.862.443.173 (2)144
N6—H6···O2iii0.862.243.012 (2)149
N9—H9···O5iv0.861.942.743 (3)156
C3—H3A···N7v0.932.623.440 (5)147
C26—H26···N2vi0.932.533.251 (4)134
Symmetry codes: (i) x, y, z+2; (ii) x+1, y, z; (iii) x, y+1, z+2; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) x, y+1, z+1.
 

Funding information

Funding for this research was provided by the key research projects of Henan Province Higher Education (No. 17A430027).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
First citationCampbell, J. R., Duffy, B., Rude, J., Susarla, R. P., Vallance, M. A., Yaeger, G. W. & Zarnoch, K. P. (2005). US Patent 20050427.
First citationCates, L. A. & Li, V.-S. (1985). Pharm. Res. 2, 135–136.  CrossRef CAS PubMed
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationHorold, S. (2002). US Patent 6420459.
First citationKatoh, M., Hiratake, J., Kato, H. & Oda, J. (1996). Bioorg. Med. Chem. Lett. 6, 1437–1442.  CrossRef CAS
First citationKleiner, H.-J., Budzinsky, W. & Kirsch, G. (1998). US Patent 5773556.
First citationKleiner, H.-J., Budzinsky, W. & Kirsch, G. (1999). EP Patent No. 0941996-A.
First citationLatajka, R., Krężel, A., Mucha, A., Jewgiński, M. & Kafarski, P. (2008). J. Mol. Struct. 877, 64–71.  CrossRef CAS
First citationLeonova, E. S., Makarov, M. V., Rybalkina, E. Y., Nayani, S. L., Tongwa, P., Fonari, A., Timofeeva, T. V. & Odinets, I. L. (2010). Eur. J. Med. Chem. 45, 5926–5934.  Web of Science CSD CrossRef CAS PubMed
First citationLin, C.-H. (2004). Polymer, 45, 7911–7926.  Web of Science CrossRef CAS
First citationLin, C.-H., Chang, S.-L., Wei, T.-P., Ding, S.-H. & Su, W.-H. (2010). Polym. Degrad. Stab. 95, 1167–1176.  CrossRef CAS
First citationLu, S.-Y. & Hamerton, I. (2002). Prog. Polym. Sci. 27, 1661–1712.  Web of Science CrossRef CAS
First citationMao, J., Wang, Z. & Clearfield, A. (2002). Inorg. Chem. 41, 2334–2340.  CSD CrossRef PubMed CAS
First citationMiller, S. R., Pearce, G. M., Wright, P. A., Bonino, F., Chavan, S., Bordiga, S., Margiolaki, I., Guillou, N., Férey, G., Bourrelly, S. & Llewellyn, P. L. (2008). J. Am. Chem. Soc. 130, 15967–15981.  Web of Science CSD CrossRef PubMed CAS
First citationSandler, S. R. (1979). US Patent 4180495.
First citationSandler, S. R. (1980). US Patent 4208321.
First citationSharma, C. V. K. & Clearfield, A. (2000). J. Am. Chem. Soc. 122, 1558–1559.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationTaddei, M., Costantino, F., Manuali, V. & Vivani, R. (2011). Inorg. Chem. 50, 10835–10843.
First citationVivani, R., Costantino, U., Costantino, U. & Nocchetti, M. (2006). Inorg. Chem. 45, 2388–2390.  CSD CrossRef PubMed CAS
First citationWeferling, N., Schmitz, H. & Kolbe, G. (2001). US Patent 6248921.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds