research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[tetra-μ-cyanido-ethanol­bis­(2-iodo­pyrazine)­digold(I)iron(II)]

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China, bDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, and cUkraine National O. O. Bogomoletz Medical University, 13 T. Shevchenko Blvd., Kyiv, Ukraine
*Correspondence e-mail: olesia.kucheriv@univ.kiev.ua

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 22 September 2017; accepted 12 October 2017; online 24 October 2017)

In the title polymeric complex, [Au2Fe(CN)4(C4H3IN2)2(C2H6O)]n, the FeII cation is coordinated by two iodo­pyrazine mol­ecules, one ethanol mol­ecule and three di­cyano­aurate anions in a distorted N5O octa­hedral geometry. In the crystal, the di­cyano­aurate anions bridge the FeII cations to form polymeric chains propagating along the b-axis direction. Stabilization of the crystal structure is provided by O—H⋯N hydrogen bonds and ππ stacking between parallel iodo­pyrazine rings of neighbouring chains, the centroid–centroid distances being 3.654 (10) and 3.658 (9) Å.

1. Chemical context

Among all coordination compounds, cyanide-based complexes attract considerable attention. The cyanide group can be coordinated in either a monodentate or bridging way, connecting different metal ions, leading to the formation of one-, two- or three-dimensional frameworks. The variety of possible structures of cyanide-based complexes results in a variety of functional properties for these coordination materials, such as the ability to include small guest mol­ecules (Klausmeyer et al., 1998[Klausmeyer, K. K., Rauchfuss, T. B. & Wilson, S. R. (1998). Angew. Chem. Int. Ed. 37, 1694-1696.]), act as room-temperature magnets (Garde et al., 2002[Garde, R., Villain, F. & Verdaguer, M. (2002). J. Am. Chem. Soc. 124, 10531-10538.]), display photomagnetic and magneto-optical properties (Mizuno et al., 2000[Mizuno, M., Ohkoshi, S. & Hashimoto, K. (2000). Adv. Mater. 12, 1955-1958.]; Mercurol et al., 2010[Mercurol, J., Li, Y., Pardo, E., Risset, O., Seuleiman, M., Rousselière, H., Lescouëzec, R. & Julve, M. (2010). Chem. Commun. 46, 8995-8997.]), etc. The most representative examples of cyanide-bridged complexes are Prussian blue analogues, which form three-dimensional frameworks with general formula AIMAII[MBIII(CN)6] (A = alkali ion, MA and MB = transition metal ions; Keggin & Miles, 1936[Keggin, J. F. & Miles, F. D. (1936). Nature, 137, 577-578.]). Prussian blue analogues are very attractive because of their facile synthesis and the possibility to manipulate the magnetic ordering of the material by selecting appropriate spin sources (Ohkoshi et al., 1997[Ohkoshi, S., Iyoda, T., Fujishima, A. & Hashimoto, K. (1997). Phys. Rev. B, 56, 11642-11652.]).

Cyano­metallate complexes are typically characterized by a low-spin state of the metal ions; however, the introduction of a complementary ligand with weak ligand field strength can lead to the formation of spin-crossover compounds. This type of compound is mostly represented by Hofmann clathrate analogues with general formula [M(L)x{M′(CN)4}] where M = Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Mn2+, M′ = Ni2+, Pd2+, Pt2+ and L is either a unidentate or bridging ligand. The first compound of this type reported by Hofmann & Höchtlen (1903[Hofmann, K. A. & Höchtlen, F. (1903). Ber. Dtsch. Chem. Ges. 36, 1149-1151.]) was the [Ni(NH3)2{Ni(CN)4}] clathrate, which is able to incorporate benzene or other aromatic mol­ecules. In this structure, the bridging tetra­cyano­nikelate anions contribute to the formation of infinite layers that propagate in the ab plane (Powell & Rayner, 1949[Powell, H. M. & Rayner, J. H. (1949). Nature, 163, 566-567.]). However, the first Hofmann-clathrate analogue displaying spin-crossover behavior was [Fe(py)2{Ni(CN)4}] (Kitazawa et al., 1996[Kitazawa, T., Gomi, Y., Takahashi, M., Takeda, M., Enomoto, M., Miyazaki, A. & Enoki, T. (1996). J. Mater. Chem. 6, 119-121.]). Later, different examples have been obtained for the modification of the original Hofmann clathrates, notably with di- or octa­cyano­metallates (Gural'skiy et al., 2016b[Gural'skiy, I. A., Shylin, S. I., Golub, B. O., Ksenofontov, V., Fritsky, I. O. & Tremel, W. (2016b). New J. Chem. 40, 9012-9016.]; Wei et al., 2016[Wei, R.-M., Kong, M., Cao, F., Li, J., Pu, T.-C., Yang, L., Zhang, X. & Song, Y. (2016). Dalton Trans. 45, 18643-18652.]). Another modification method is the use of different organic ligands; for example, the inclusion of a bidentate ligand such as pyrazine leads to the formation of a three-dimensional network (Niel et al., 2001[Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2001). Inorg. Chem. 40, 3838-3839.]). Here we report a new cyanide-based compound with general formula [Fe(Ipz)2(EtOH){Au(CN)2}2] in which the FeII ions are stabilized in the high-spin state.

[Scheme 1]

2. Structural commentary

The crystal structure of the title compound was determined at 296 K. It crystallizes in the triclinic P[\overline{1}] space group with two formula units per cell. The FeII site has a distorted octa­hedral [FeN5O] coordination environment formed by two iodo­pyrazine N atoms, three di­cyano­aurate N atoms and one ethanol O atom (Fig. 1[link]). Two iodo­pyrazine mol­ecules are coordinated in the cis configuration with the Fe—N distances of 2.216 (7) and 2.272 (7) Å (Table 1[link]) indicating the high-spin state of the FeII cation. One of the di­cyano­aurate fragments is N-coordinated to the FeII site in the form of an anion [Fe1—N2 = 2.096 (7) Å], while the other two are coordinated in a trans configuration, further connecting the framework into a chain [Fe1—N1 = 2.105 (8) and Fe1—N5 = 2.096 (8) Å]. The CN anions bridge the FeII and AuI cations in a quasi-linear mode with C1—Au1—C2 = 178.8 (3) and C3—Au2—C4 = 178.9 (3)°. In addition, one of the coordination sites of the FeII ion is occupied by an O-coordinated ethanol molecule nwith Fe1—O1 = 2.106 (6) Å, which is a typical value for Fe—Oalcohol bonds. There is a deviation from an ideal octa­hedral geometry, Σ|90 - Θ| = 33.1°, where Θ is the cis-N—Fe—N or cis-O—Fe—N angle in the coordination environment of FeII. This value indicates a significant polyhedral distortion that can be explained by the Jahn–Teller effect and the presence of four different types of ligands.

Table 1
Selected bond lengths (Å)

Au1—C1 1.948 (9) Fe1—N1 2.105 (8)
Au1—C2 1.952 (8) Fe1—N2 2.096 (7)
Au2—C3 1.970 (8) Fe1—N3 2.272 (7)
Au2—C4 1.981 (9) Fe1—N4 2.216 (7)
Fe1—O1 2.106 (6) Fe1—N5i 2.096 (8)
Symmetry code: (i) x, y-1, z.
[Figure 1]
Figure 1
A fragment of the mol­ecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (i) x, 1 + y, z; (ii) x, −1 + y, z].

3. Supra­molecular features

The coordination framework is connected by bridging di­cyano­aurate moieties into chains that propagate along the b-axis direction. In addition, the crystal packing is supported by N⋯H—O hydrogen bonds (Fig. 2[link]a, Table 2[link]) in which H atoms from the ethanol hydroxyl group participate in weak inter­actions with the N atoms of the di­cyano­aurate anions. The structure includes parallel-displaced ππ inter­actions with a distance of 3.381 (5) Å between the planes of the aromatic rings (Fig. 2[link]b). Short Au ⋯ Au distances of 3.163 (5) Å indicate inter­molecular aurophilic inter­actions between the Au atoms of the monodentate and bridging di­cyano­aurate moieties (Fig. 2[link]c). The same type of aurophilic inter­action was observed for a very similar Au–Fe–pyrazine complex, which displays high-temperature spin-transition behavior [Au⋯Au (LS, 340 K) = 3.3886 (3) Å, Au⋯Au (HS, 360 K) = 3.5870 (5) Å; Gural'skiy et al., 2016a[Gural'skiy, I. A., Golub, B. O., Shylin, S. I., Ksenofontov, V., Shepherd, H. J., Raithby, P. R., Tremel, W. & Fritsky, I. O. (2016a). Eur. J. Inorg. Chem. 2016, 3191-3195.]]. The Au⋯Au distances in the above-mentioned structure are longer because they are defined by a three-dimensional framework of the complex; however, in the case of the title compound, the di­cyano­aurate anions are non-bridging and therefore are more flexible, which leads to the creation of aurophilic contacts that are closer to the optimum distance of 3 Å (Schmidbaur, 2000[Schmidbaur, H. (2000). Gold Bull. 33, 3-10.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N6ii 0.86 (5) 1.98 (5) 2.765 (13) 151 (6)
Symmetry code: (ii) -x, -y, -z+1.
[Figure 2]
Figure 2
The crystal structure of the title compound. (a) View in the ac plane showing N⋯H—O hydrogen bonds (dashed lines). H atoms, except those involved in hydrogen bonding, are omitted for clarity. (b) Structure of the title compound showing ππ contacts (dashed lines). (c) View in the bc plane showing aurophilic inter­actions (dashed lines). Colour key: Fe dark red; Ag cyan; N blue; O red; C grey; I purple.

4. Database survey

A survey of the Cambridge structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) confirmed that the title compound has never been published before. It also revealed numerous examples of CN-bridged Au–Fe bimetallic frameworks supported by substituted azines (Li et al., 2015[Li, J.-Y., Chen, Y.-C., Zhang, Z.-M., Liu, W., Ni, Z.-P. & Tong, M.-L. (2015). Chem. Eur. J. 21, 1645-1651.]; Agustí et al., 2008[Agustí, G., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2008). Inorg. Chem. 47, 2552-2561.]; Kosone et al., 2009[Kosone, T., Kanadani, C., Saito, T. & Kitazawa, T. (2009). Polyhedron, 28, 1991-1995.]) and non-substituted azines (Niel et al., 2003[Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E. & Real, J. A. (2003). Angew. Chem. Int. Ed. 42, 3760-3763.]; Gural'skiy et al., 2016a[Gural'skiy, I. A., Golub, B. O., Shylin, S. I., Ksenofontov, V., Shepherd, H. J., Raithby, P. R., Tremel, W. & Fritsky, I. O. (2016a). Eur. J. Inorg. Chem. 2016, 3191-3195.]; Kosone et al., 2008[Kosone, T., Kachi-Terajima, C., Kanadani, C., Saito, T. & Kitazawa, T. (2008). Chem. Lett. 37, 754-755.]).

5. Synthesis and crystallization

Crystals of the title compound were obtained by the slow-diffusion method with three layers in a 5 ml tube. The first layer was a solution of K[Au(CN)2] (29 mg, 0.1 mmol) in water (1 ml), the second layer was a water/ethanol mixture (1:1, 2.5 ml) and the third layer was a solution of Fe(OTs)2·6H2O (OTs = toluene­sulfonate) (50.6 mg, 0.1 mmol) and iodo­pyrazine (41.2 mg, 0.2 mmol) in ethanol (1 ml). After two weeks, yellow crystals grew in the middle layer; these were collected and kept under the mother solution prior to measurement.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were placed geometrically at their expected calculated positions with C—H = 0.96 (CH3), 0.97 (CH2), 0.93 Å (Carom), O—H = 0.859 (10) Å, and with Uiso(H) = 1.2Ueq(C) with the exception of methyl hydrogen atoms, which were refined with Uiso(H) = 1.5Ueq(C). The idealized CH3 group was fixed using an AFIX 137 command that allowed the H atoms to ride on the C atom and rotate around th C—C bond.

Table 3
Experimental details

Crystal data
Chemical formula [Au2Fe(CN)4(C4H3IN2)2(C2H6O)]
Mr 1011.90
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.40 (2), 10.30 (2), 12.81 (3)
α, β, γ (°) 92.05 (6), 99.67 (7), 114.30 (6)
V3) 1106 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 16.70
Crystal size (mm) 0.20 × 0.05 × 0.03
 
Data collection
Diffractometer Bruker SMART
Absorption correction Part of the refinement model (ΔF) (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.])
Tmin, Tmax 0.298, 0.456
No. of measured, independent and observed [I > 2σ(I)] reflections 5556, 5556, 4453
Rint 0.097
(sin θ/λ)max−1) 0.680
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.077, 0.92
No. of reflections 5556
No. of parameters 257
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.26, −2.28
Computer programs: SMART and SAINT (Bruker, 2013[Bruker (2013). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg et al., 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg et al., 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[tetra-µ-cyanido-ethanolbis(2-iodopyrazine)digold(I)iron(II)] top
Crystal data top
[Au2Fe(CN)4(C4H3IN2)2(C2H6O)]Z = 2
Mr = 1011.90F(000) = 900
Triclinic, P1Dx = 3.039 Mg m3
a = 9.40 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.30 (2) ÅCell parameters from 5517 reflections
c = 12.81 (3) Åθ = 2.4–28.1°
α = 92.05 (6)°µ = 16.70 mm1
β = 99.67 (7)°T = 296 K
γ = 114.30 (6)°Needle, yellow
V = 1106 (4) Å30.20 × 0.05 × 0.03 mm
Data collection top
Bruker SMART
diffractometer
4453 reflections with I > 2σ(I)
φ and ω scansRint = 0.097
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
θmax = 28.9°, θmin = 1.6°
Tmin = 0.298, Tmax = 0.456h = 1012
5556 measured reflectionsk = 138
5556 independent reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0259P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.001
5556 reflectionsΔρmax = 2.26 e Å3
257 parametersΔρmin = 2.28 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.59034 (4)0.85190 (3)0.70913 (2)0.01892 (7)
Au20.11598 (3)0.01716 (3)0.40500 (2)0.02116 (8)
I10.85042 (7)0.17524 (6)0.33540 (4)0.03085 (13)
I21.09742 (8)0.86712 (6)0.99527 (4)0.03868 (15)
Fe10.58906 (12)0.35008 (10)0.69926 (7)0.0154 (2)
O10.4739 (6)0.3148 (6)0.8300 (4)0.0229 (11)
H10.379 (4)0.310 (7)0.825 (3)0.034*
N40.8280 (7)0.4651 (6)0.8031 (4)0.0197 (13)
N60.1459 (9)0.2072 (8)0.2275 (5)0.0306 (16)
N20.3802 (7)0.2347 (7)0.5851 (4)0.0206 (13)
N30.7137 (7)0.3977 (6)0.5585 (4)0.0184 (12)
N70.8521 (8)0.4547 (7)0.3799 (5)0.0252 (14)
C40.0500 (9)0.1237 (9)0.2898 (5)0.0242 (16)
N81.1356 (8)0.6149 (7)0.9205 (5)0.0270 (14)
N10.5698 (7)0.5466 (6)0.6996 (4)0.0200 (12)
C30.2821 (9)0.1544 (8)0.5205 (5)0.0186 (14)
N50.6142 (8)1.1576 (7)0.7088 (4)0.0215 (13)
C60.8096 (9)0.3307 (8)0.4158 (5)0.0196 (14)
C50.7384 (9)0.2989 (8)0.5038 (5)0.0215 (15)
H50.7075130.2074340.5250190.026*
C90.8752 (10)0.5910 (8)0.8594 (5)0.0245 (16)
H90.8027330.6307630.8609600.029*
C20.6042 (9)1.0464 (8)0.7107 (5)0.0195 (14)
C80.7562 (9)0.5225 (8)0.5231 (5)0.0223 (15)
H80.7402530.5943170.5584020.027*
C10.5725 (9)0.6564 (8)0.7050 (5)0.0211 (15)
C101.0299 (10)0.6648 (8)0.9160 (5)0.0270 (18)
C70.8257 (10)0.5510 (9)0.4327 (6)0.0289 (18)
H70.8539310.6412610.4096420.035*
C120.9357 (9)0.4135 (8)0.8064 (5)0.0227 (15)
H120.9087390.3251490.7684840.027*
C111.0847 (10)0.4878 (9)0.8641 (6)0.0271 (17)
H111.1566930.4471040.8644510.033*
C130.4932 (10)0.2326 (9)0.9133 (5)0.0290 (18)
H13A0.6037560.2473890.9305920.035*
H13B0.4284300.1315980.8891790.035*
C140.4467 (14)0.2727 (13)1.0106 (6)0.055 (3)
H14A0.3405890.2666870.9923600.082*
H14B0.5193790.3691191.0398830.082*
H14C0.4499340.2083331.0623480.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02856 (16)0.01474 (13)0.02017 (13)0.01414 (12)0.00870 (11)0.00444 (10)
Au20.02192 (16)0.02330 (14)0.01917 (13)0.00997 (12)0.00570 (11)0.00122 (11)
I10.0417 (3)0.0313 (3)0.0298 (2)0.0205 (3)0.0201 (2)0.0053 (2)
I20.0482 (4)0.0259 (3)0.0367 (3)0.0140 (3)0.0020 (3)0.0082 (2)
Fe10.0220 (5)0.0131 (4)0.0152 (4)0.0100 (4)0.0070 (4)0.0039 (4)
O10.026 (3)0.032 (3)0.018 (2)0.018 (3)0.008 (2)0.007 (2)
N40.026 (3)0.019 (3)0.017 (3)0.011 (3)0.005 (2)0.007 (2)
N60.033 (4)0.044 (4)0.025 (3)0.024 (4)0.010 (3)0.003 (3)
N20.025 (4)0.024 (3)0.022 (3)0.017 (3)0.010 (3)0.010 (3)
N30.021 (3)0.022 (3)0.017 (3)0.012 (3)0.010 (2)0.008 (2)
N70.034 (4)0.025 (3)0.025 (3)0.018 (3)0.013 (3)0.013 (3)
C40.027 (4)0.036 (4)0.023 (3)0.025 (4)0.010 (3)0.001 (3)
N80.024 (4)0.028 (3)0.029 (3)0.011 (3)0.004 (3)0.002 (3)
N10.023 (3)0.017 (3)0.022 (3)0.010 (3)0.004 (2)0.004 (2)
C30.019 (4)0.019 (3)0.022 (3)0.011 (3)0.003 (3)0.003 (3)
N50.025 (3)0.020 (3)0.023 (3)0.011 (3)0.011 (3)0.004 (2)
C60.019 (4)0.021 (3)0.019 (3)0.007 (3)0.009 (3)0.006 (3)
C50.025 (4)0.022 (4)0.018 (3)0.009 (3)0.008 (3)0.004 (3)
C90.031 (4)0.027 (4)0.022 (3)0.017 (4)0.007 (3)0.003 (3)
C20.023 (4)0.020 (3)0.023 (3)0.014 (3)0.010 (3)0.002 (3)
C80.029 (4)0.022 (4)0.024 (3)0.016 (3)0.012 (3)0.009 (3)
C10.024 (4)0.021 (4)0.023 (3)0.013 (3)0.008 (3)0.002 (3)
C100.041 (5)0.024 (4)0.014 (3)0.010 (4)0.011 (3)0.002 (3)
C70.040 (5)0.026 (4)0.032 (4)0.018 (4)0.024 (4)0.019 (3)
C120.026 (4)0.018 (3)0.024 (3)0.009 (3)0.005 (3)0.001 (3)
C110.030 (4)0.033 (4)0.026 (4)0.021 (4)0.005 (3)0.004 (3)
C130.030 (5)0.035 (4)0.025 (4)0.015 (4)0.009 (3)0.010 (3)
C140.060 (7)0.086 (8)0.024 (4)0.032 (7)0.017 (4)0.011 (5)
Geometric parameters (Å, º) top
Au1—Au2i3.163 (5)N7—C71.309 (10)
Au1—C11.948 (9)N8—C101.287 (11)
Au1—C21.952 (8)N8—C111.329 (10)
Au2—C31.970 (8)N1—C11.119 (10)
Au2—C41.981 (9)N5—C21.111 (10)
I1—C62.071 (8)C6—C51.387 (9)
I2—C102.078 (9)C5—H50.9300
Fe1—O12.106 (6)C9—H90.9300
Fe1—N12.105 (8)C9—C101.384 (11)
Fe1—N22.096 (7)C8—H80.9300
Fe1—N32.272 (7)C8—C71.404 (10)
Fe1—N42.216 (7)C7—H70.9300
Fe1—N5ii2.096 (8)C12—H120.9300
O1—H10.859 (10)C12—C111.350 (11)
O1—C131.419 (9)C11—H110.9300
N4—C91.323 (10)C13—H13A0.9700
N4—C121.318 (10)C13—H13B0.9700
N6—C41.122 (10)C13—C141.486 (11)
N2—C31.134 (9)C14—H14A0.9600
N3—C51.333 (9)C14—H14B0.9600
N3—C81.302 (9)C14—H14C0.9600
N7—C61.298 (9)
C2—Au1—Au2i82.5 (2)N7—C6—C5123.1 (7)
C1—Au1—Au2i97.8 (2)C5—C6—I1119.6 (5)
C1—Au1—C2178.8 (3)N3—C5—C6120.9 (7)
C4—Au2—Au1i101.9 (3)N3—C5—H5119.5
C3—Au2—Au1i78.1 (3)C6—C5—H5119.5
C3—Au2—C4178.9 (3)N4—C9—H9119.3
O1—Fe1—N492.6 (3)N4—C9—C10121.4 (8)
O1—Fe1—N3177.6 (2)C10—C9—H9119.3
N4—Fe1—N387.1 (3)N5—C2—Au1177.8 (7)
N2—Fe1—O194.9 (3)N3—C8—H8119.3
N2—Fe1—N4171.7 (2)N3—C8—C7121.5 (7)
N2—Fe1—N385.6 (3)C7—C8—H8119.3
N2—Fe1—N195.8 (3)N1—C1—Au1175.8 (7)
N1—Fe1—O186.5 (2)N8—C10—I2118.1 (6)
N1—Fe1—N488.1 (3)N8—C10—C9123.0 (7)
N1—Fe1—N391.1 (2)C9—C10—I2118.9 (6)
N5ii—Fe1—O191.3 (2)N7—C7—C8122.2 (7)
N5ii—Fe1—N489.4 (3)N7—C7—H7118.9
N5ii—Fe1—N287.0 (3)C8—C7—H7118.9
N5ii—Fe1—N391.1 (2)N4—C12—H12119.7
N5ii—Fe1—N1176.6 (2)N4—C12—C11120.6 (7)
Fe1—O1—H1122.0 (18)C11—C12—H12119.7
C13—O1—Fe1126.0 (5)N8—C11—C12124.5 (8)
C13—O1—H1105.7 (18)N8—C11—H11117.8
C9—N4—Fe1123.4 (5)C12—C11—H11117.8
C12—N4—Fe1120.4 (5)O1—C13—H13A109.3
C12—N4—C9116.1 (7)O1—C13—H13B109.3
C3—N2—Fe1165.9 (6)O1—C13—C14111.7 (8)
C5—N3—Fe1122.6 (5)H13A—C13—H13B107.9
C8—N3—Fe1120.9 (5)C14—C13—H13A109.3
C8—N3—C5116.4 (6)C14—C13—H13B109.3
C6—N7—C7116.0 (6)C13—C14—H14A109.5
N6—C4—Au2177.2 (7)C13—C14—H14B109.5
C10—N8—C11114.3 (7)C13—C14—H14C109.5
C1—N1—Fe1174.0 (6)H14A—C14—H14B109.5
N2—C3—Au2178.2 (6)H14A—C14—H14C109.5
C2—N5—Fe1iii169.9 (7)H14B—C14—H14C109.5
N7—C6—I1117.3 (5)
I1—C6—C5—N3178.6 (5)C6—N7—C7—C80.3 (12)
Fe1—O1—C13—C14158.4 (6)C5—N3—C8—C70.6 (11)
Fe1—N4—C9—C10174.4 (5)C9—N4—C12—C110.3 (10)
Fe1—N4—C12—C11175.7 (5)C8—N3—C5—C61.6 (10)
Fe1—N3—C5—C6177.5 (5)C10—N8—C11—C120.3 (11)
Fe1—N3—C8—C7176.6 (6)C7—N7—C6—I1179.6 (6)
N4—C9—C10—I2176.5 (5)C7—N7—C6—C50.8 (11)
N4—C9—C10—N82.2 (11)C12—N4—C9—C101.5 (10)
N4—C12—C11—N80.3 (12)C11—N8—C10—I2177.3 (5)
N3—C8—C7—N70.4 (13)C11—N8—C10—C91.5 (10)
N7—C6—C5—N31.8 (11)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N6iv0.86 (5)1.98 (5)2.765 (13)151 (6)
Symmetry code: (iv) x, y, z+1.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 16BF037-01M).

References

First citationAgustí, G., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2008). Inorg. Chem. 47, 2552–2561.  PubMed
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2013). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationGarde, R., Villain, F. & Verdaguer, M. (2002). J. Am. Chem. Soc. 124, 10531–10538.  Web of Science CrossRef PubMed CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationGural'skiy, I. A., Golub, B. O., Shylin, S. I., Ksenofontov, V., Shepherd, H. J., Raithby, P. R., Tremel, W. & Fritsky, I. O. (2016a). Eur. J. Inorg. Chem. 2016, 3191–3195.  CAS
First citationGural'skiy, I. A., Shylin, S. I., Golub, B. O., Ksenofontov, V., Fritsky, I. O. & Tremel, W. (2016b). New J. Chem. 40, 9012–9016.  CAS
First citationHofmann, K. A. & Höchtlen, F. (1903). Ber. Dtsch. Chem. Ges. 36, 1149–1151.  CrossRef CAS
First citationKeggin, J. F. & Miles, F. D. (1936). Nature, 137, 577–578.  CrossRef CAS
First citationKitazawa, T., Gomi, Y., Takahashi, M., Takeda, M., Enomoto, M., Miyazaki, A. & Enoki, T. (1996). J. Mater. Chem. 6, 119–121.  CSD CrossRef CAS Web of Science
First citationKlausmeyer, K. K., Rauchfuss, T. B. & Wilson, S. R. (1998). Angew. Chem. Int. Ed. 37, 1694–1696.  Web of Science CrossRef CAS
First citationKosone, T., Kachi-Terajima, C., Kanadani, C., Saito, T. & Kitazawa, T. (2008). Chem. Lett. 37, 754–755.  CSD CrossRef CAS
First citationKosone, T., Kanadani, C., Saito, T. & Kitazawa, T. (2009). Polyhedron, 28, 1991–1995.  CSD CrossRef CAS
First citationLi, J.-Y., Chen, Y.-C., Zhang, Z.-M., Liu, W., Ni, Z.-P. & Tong, M.-L. (2015). Chem. Eur. J. 21, 1645–1651.  CSD CrossRef CAS PubMed
First citationMercurol, J., Li, Y., Pardo, E., Risset, O., Seuleiman, M., Rousselière, H., Lescouëzec, R. & Julve, M. (2010). Chem. Commun. 46, 8995–8997.  CSD CrossRef CAS
First citationMizuno, M., Ohkoshi, S. & Hashimoto, K. (2000). Adv. Mater. 12, 1955–1958.  CrossRef CAS
First citationNiel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2001). Inorg. Chem. 40, 3838–3839.  Web of Science CSD CrossRef PubMed CAS
First citationNiel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E. & Real, J. A. (2003). Angew. Chem. Int. Ed. 42, 3760–3763.  Web of Science CSD CrossRef CAS
First citationOhkoshi, S., Iyoda, T., Fujishima, A. & Hashimoto, K. (1997). Phys. Rev. B, 56, 11642–11652.  CrossRef CAS
First citationPowell, H. M. & Rayner, J. H. (1949). Nature, 163, 566–567.  CrossRef CAS Web of Science
First citationSchmidbaur, H. (2000). Gold Bull. 33, 3–10.  CrossRef CAS
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals
First citationWei, R.-M., Kong, M., Cao, F., Li, J., Pu, T.-C., Yang, L., Zhang, X. & Song, Y. (2016). Dalton Trans. 45, 18643–18652.  CSD CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds