research communications
μ-cyanido-ethanolbis(2-iodopyrazine)digold(I)iron(II)]
of poly[tetra-aSchool of Chemical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China, bDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, and cUkraine National O. O. Bogomoletz Medical University, 13 T. Shevchenko Blvd., Kyiv, Ukraine
*Correspondence e-mail: olesia.kucheriv@univ.kiev.ua
In the title polymeric complex, [Au2Fe(CN)4(C4H3IN2)2(C2H6O)]n, the FeII cation is coordinated by two iodopyrazine molecules, one ethanol molecule and three dicyanoaurate anions in a distorted N5O octahedral geometry. In the crystal, the dicyanoaurate anions bridge the FeII cations to form polymeric chains propagating along the b-axis direction. Stabilization of the is provided by O—H⋯N hydrogen bonds and π–π stacking between parallel iodopyrazine rings of neighbouring chains, the centroid–centroid distances being 3.654 (10) and 3.658 (9) Å.
Keywords: crystal structure; polymeric complex; dicyanoaurate; iodopyrazine.
CCDC reference: 1579611
1. Chemical context
Among all coordination compounds, cyanide-based complexes attract considerable attention. The cyanide group can be coordinated in either a monodentate or bridging way, connecting different metal ions, leading to the formation of one-, two- or three-dimensional frameworks. The variety of possible structures of cyanide-based complexes results in a variety of functional properties for these coordination materials, such as the ability to include small guest molecules (Klausmeyer et al., 1998), act as room-temperature magnets (Garde et al., 2002), display photomagnetic and magneto-optical properties (Mizuno et al., 2000; Mercurol et al., 2010), etc. The most representative examples of cyanide-bridged complexes are Prussian blue analogues, which form three-dimensional frameworks with general formula AIMAII[MBIII(CN)6] (A = alkali ion, MA and MB = transition metal ions; Keggin & Miles, 1936). Prussian blue analogues are very attractive because of their facile synthesis and the possibility to manipulate the magnetic ordering of the material by selecting appropriate spin sources (Ohkoshi et al., 1997).
Cyanometallate complexes are typically characterized by a low-spin state of the metal ions; however, the introduction of a complementary ligand with weak M(L)x{M′(CN)4}] where M = Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Mn2+, M′ = Ni2+, Pd2+, Pt2+ and L is either a unidentate or bridging ligand. The first compound of this type reported by Hofmann & Höchtlen (1903) was the [Ni(NH3)2{Ni(CN)4}] clathrate, which is able to incorporate benzene or other aromatic molecules. In this structure, the bridging tetracyanonikelate anions contribute to the formation of infinite layers that propagate in the ab plane (Powell & Rayner, 1949). However, the first Hofmann-clathrate analogue displaying spin-crossover behavior was [Fe(py)2{Ni(CN)4}] (Kitazawa et al., 1996). Later, different examples have been obtained for the modification of the original Hofmann notably with di- or octacyanometallates (Gural'skiy et al., 2016b; Wei et al., 2016). Another modification method is the use of different organic ligands; for example, the inclusion of a bidentate ligand such as pyrazine leads to the formation of a three-dimensional network (Niel et al., 2001). Here we report a new cyanide-based compound with general formula [Fe(Ipz)2(EtOH){Au(CN)2}2] in which the FeII ions are stabilized in the high-spin state.
strength can lead to the formation of spin-crossover compounds. This type of compound is mostly represented by Hofmann clathrate analogues with general formula [2. Structural commentary
The P with two formula units per cell. The FeII site has a distorted octahedral [FeN5O] coordination environment formed by two iodopyrazine N atoms, three dicyanoaurate N atoms and one ethanol O atom (Fig. 1). Two iodopyrazine molecules are coordinated in the cis configuration with the Fe—N distances of 2.216 (7) and 2.272 (7) Å (Table 1) indicating the high-spin state of the FeII cation. One of the dicyanoaurate fragments is N-coordinated to the FeII site in the form of an anion [Fe1—N2 = 2.096 (7) Å], while the other two are coordinated in a trans configuration, further connecting the framework into a chain [Fe1—N1 = 2.105 (8) and Fe1—N5 = 2.096 (8) Å]. The CN− anions bridge the FeII and AuI cations in a quasi-linear mode with C1—Au1—C2 = 178.8 (3) and C3—Au2—C4 = 178.9 (3)°. In addition, one of the coordination sites of the FeII ion is occupied by an O-coordinated ethanol molecule nwith Fe1—O1 = 2.106 (6) Å, which is a typical value for Fe—Oalcohol bonds. There is a deviation from an ideal octahedral geometry, Σ|90 - Θ| = 33.1°, where Θ is the cis-N—Fe—N or cis-O—Fe—N angle in the coordination environment of FeII. This value indicates a significant polyhedral distortion that can be explained by the Jahn–Teller effect and the presence of four different types of ligands.
of the title compound was determined at 296 K. It crystallizes in the triclinic3. Supramolecular features
The coordination framework is connected by bridging dicyanoaurate moieties into chains that propagate along the b-axis direction. In addition, the crystal packing is supported by N⋯H—O hydrogen bonds (Fig. 2a, Table 2) in which H atoms from the ethanol hydroxyl group participate in weak interactions with the N atoms of the dicyanoaurate anions. The structure includes parallel-displaced π–π interactions with a distance of 3.381 (5) Å between the planes of the aromatic rings (Fig. 2b). Short Au ⋯ Au distances of 3.163 (5) Å indicate intermolecular aurophilic interactions between the Au atoms of the monodentate and bridging dicyanoaurate moieties (Fig. 2c). The same type of aurophilic interaction was observed for a very similar Au–Fe–pyrazine complex, which displays high-temperature spin-transition behavior [Au⋯Au (LS, 340 K) = 3.3886 (3) Å, Au⋯Au (HS, 360 K) = 3.5870 (5) Å; Gural'skiy et al., 2016a]. The Au⋯Au distances in the above-mentioned structure are longer because they are defined by a three-dimensional framework of the complex; however, in the case of the title compound, the dicyanoaurate anions are non-bridging and therefore are more flexible, which leads to the creation of aurophilic contacts that are closer to the optimum distance of 3 Å (Schmidbaur, 2000).
4. Database survey
A survey of the Cambridge structural Database (Version 5.38; Groom et al., 2016) confirmed that the title compound has never been published before. It also revealed numerous examples of CN-bridged Au–Fe bimetallic frameworks supported by substituted (Li et al., 2015; Agustí et al., 2008; Kosone et al., 2009) and non-substituted (Niel et al., 2003; Gural'skiy et al., 2016a; Kosone et al., 2008).
5. Synthesis and crystallization
Crystals of the title compound were obtained by the slow-diffusion method with three layers in a 5 ml tube. The first layer was a solution of K[Au(CN)2] (29 mg, 0.1 mmol) in water (1 ml), the second layer was a water/ethanol mixture (1:1, 2.5 ml) and the third layer was a solution of Fe(OTs)2·6H2O (OTs = toluenesulfonate) (50.6 mg, 0.1 mmol) and iodopyrazine (41.2 mg, 0.2 mmol) in ethanol (1 ml). After two weeks, yellow crystals grew in the middle layer; these were collected and kept under the mother solution prior to measurement.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were placed geometrically at their expected calculated positions with C—H = 0.96 (CH3), 0.97 (CH2), 0.93 Å (Carom), O—H = 0.859 (10) Å, and with Uiso(H) = 1.2Ueq(C) with the exception of methyl hydrogen atoms, which were refined with Uiso(H) = 1.5Ueq(C). The idealized CH3 group was fixed using an AFIX 137 command that allowed the H atoms to ride on the C atom and rotate around th C—C bond.
details are summarized in Table 3Supporting information
CCDC reference: 1579611
https://doi.org/10.1107/S2056989017014785/xu5907sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017014785/xu5907Isup2.hkl
Data collection: SMART (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg et al., 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Au2Fe(CN)4(C4H3IN2)2(C2H6O)] | Z = 2 |
Mr = 1011.90 | F(000) = 900 |
Triclinic, P1 | Dx = 3.039 Mg m−3 |
a = 9.40 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.30 (2) Å | Cell parameters from 5517 reflections |
c = 12.81 (3) Å | θ = 2.4–28.1° |
α = 92.05 (6)° | µ = 16.70 mm−1 |
β = 99.67 (7)° | T = 296 K |
γ = 114.30 (6)° | Needle, yellow |
V = 1106 (4) Å3 | 0.20 × 0.05 × 0.03 mm |
Bruker SMART diffractometer | 4453 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.097 |
Absorption correction: part of the (Walker & Stuart, 1983) | model (ΔF) θmax = 28.9°, θmin = 1.6° |
Tmin = 0.298, Tmax = 0.456 | h = −10→12 |
5556 measured reflections | k = −13→8 |
5556 independent reflections | l = −16→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0259P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.92 | (Δ/σ)max = 0.001 |
5556 reflections | Δρmax = 2.26 e Å−3 |
257 parameters | Δρmin = −2.28 e Å−3 |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Au1 | 0.59034 (4) | 0.85190 (3) | 0.70913 (2) | 0.01892 (7) | |
Au2 | 0.11598 (3) | 0.01716 (3) | 0.40500 (2) | 0.02116 (8) | |
I1 | 0.85042 (7) | 0.17524 (6) | 0.33540 (4) | 0.03085 (13) | |
I2 | 1.09742 (8) | 0.86712 (6) | 0.99527 (4) | 0.03868 (15) | |
Fe1 | 0.58906 (12) | 0.35008 (10) | 0.69926 (7) | 0.0154 (2) | |
O1 | 0.4739 (6) | 0.3148 (6) | 0.8300 (4) | 0.0229 (11) | |
H1 | 0.379 (4) | 0.310 (7) | 0.825 (3) | 0.034* | |
N4 | 0.8280 (7) | 0.4651 (6) | 0.8031 (4) | 0.0197 (13) | |
N6 | −0.1459 (9) | −0.2072 (8) | 0.2275 (5) | 0.0306 (16) | |
N2 | 0.3802 (7) | 0.2347 (7) | 0.5851 (4) | 0.0206 (13) | |
N3 | 0.7137 (7) | 0.3977 (6) | 0.5585 (4) | 0.0184 (12) | |
N7 | 0.8521 (8) | 0.4547 (7) | 0.3799 (5) | 0.0252 (14) | |
C4 | −0.0500 (9) | −0.1237 (9) | 0.2898 (5) | 0.0242 (16) | |
N8 | 1.1356 (8) | 0.6149 (7) | 0.9205 (5) | 0.0270 (14) | |
N1 | 0.5698 (7) | 0.5466 (6) | 0.6996 (4) | 0.0200 (12) | |
C3 | 0.2821 (9) | 0.1544 (8) | 0.5205 (5) | 0.0186 (14) | |
N5 | 0.6142 (8) | 1.1576 (7) | 0.7088 (4) | 0.0215 (13) | |
C6 | 0.8096 (9) | 0.3307 (8) | 0.4158 (5) | 0.0196 (14) | |
C5 | 0.7384 (9) | 0.2989 (8) | 0.5038 (5) | 0.0215 (15) | |
H5 | 0.707513 | 0.207434 | 0.525019 | 0.026* | |
C9 | 0.8752 (10) | 0.5910 (8) | 0.8594 (5) | 0.0245 (16) | |
H9 | 0.802733 | 0.630763 | 0.860960 | 0.029* | |
C2 | 0.6042 (9) | 1.0464 (8) | 0.7107 (5) | 0.0195 (14) | |
C8 | 0.7562 (9) | 0.5225 (8) | 0.5231 (5) | 0.0223 (15) | |
H8 | 0.740253 | 0.594317 | 0.558402 | 0.027* | |
C1 | 0.5725 (9) | 0.6564 (8) | 0.7050 (5) | 0.0211 (15) | |
C10 | 1.0299 (10) | 0.6648 (8) | 0.9160 (5) | 0.0270 (18) | |
C7 | 0.8257 (10) | 0.5510 (9) | 0.4327 (6) | 0.0289 (18) | |
H7 | 0.853931 | 0.641261 | 0.409642 | 0.035* | |
C12 | 0.9357 (9) | 0.4135 (8) | 0.8064 (5) | 0.0227 (15) | |
H12 | 0.908739 | 0.325149 | 0.768484 | 0.027* | |
C11 | 1.0847 (10) | 0.4878 (9) | 0.8641 (6) | 0.0271 (17) | |
H11 | 1.156693 | 0.447104 | 0.864451 | 0.033* | |
C13 | 0.4932 (10) | 0.2326 (9) | 0.9133 (5) | 0.0290 (18) | |
H13A | 0.603756 | 0.247389 | 0.930592 | 0.035* | |
H13B | 0.428430 | 0.131598 | 0.889179 | 0.035* | |
C14 | 0.4467 (14) | 0.2727 (13) | 1.0106 (6) | 0.055 (3) | |
H14A | 0.340589 | 0.266687 | 0.992360 | 0.082* | |
H14B | 0.519379 | 0.369119 | 1.039883 | 0.082* | |
H14C | 0.449934 | 0.208333 | 1.062348 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Au1 | 0.02856 (16) | 0.01474 (13) | 0.02017 (13) | 0.01414 (12) | 0.00870 (11) | 0.00444 (10) |
Au2 | 0.02192 (16) | 0.02330 (14) | 0.01917 (13) | 0.00997 (12) | 0.00570 (11) | 0.00122 (11) |
I1 | 0.0417 (3) | 0.0313 (3) | 0.0298 (2) | 0.0205 (3) | 0.0201 (2) | 0.0053 (2) |
I2 | 0.0482 (4) | 0.0259 (3) | 0.0367 (3) | 0.0140 (3) | 0.0020 (3) | −0.0082 (2) |
Fe1 | 0.0220 (5) | 0.0131 (4) | 0.0152 (4) | 0.0100 (4) | 0.0070 (4) | 0.0039 (4) |
O1 | 0.026 (3) | 0.032 (3) | 0.018 (2) | 0.018 (3) | 0.008 (2) | 0.007 (2) |
N4 | 0.026 (3) | 0.019 (3) | 0.017 (3) | 0.011 (3) | 0.005 (2) | 0.007 (2) |
N6 | 0.033 (4) | 0.044 (4) | 0.025 (3) | 0.024 (4) | 0.010 (3) | 0.003 (3) |
N2 | 0.025 (4) | 0.024 (3) | 0.022 (3) | 0.017 (3) | 0.010 (3) | 0.010 (3) |
N3 | 0.021 (3) | 0.022 (3) | 0.017 (3) | 0.012 (3) | 0.010 (2) | 0.008 (2) |
N7 | 0.034 (4) | 0.025 (3) | 0.025 (3) | 0.018 (3) | 0.013 (3) | 0.013 (3) |
C4 | 0.027 (4) | 0.036 (4) | 0.023 (3) | 0.025 (4) | 0.010 (3) | 0.001 (3) |
N8 | 0.024 (4) | 0.028 (3) | 0.029 (3) | 0.011 (3) | 0.004 (3) | 0.002 (3) |
N1 | 0.023 (3) | 0.017 (3) | 0.022 (3) | 0.010 (3) | 0.004 (2) | 0.004 (2) |
C3 | 0.019 (4) | 0.019 (3) | 0.022 (3) | 0.011 (3) | 0.003 (3) | 0.003 (3) |
N5 | 0.025 (3) | 0.020 (3) | 0.023 (3) | 0.011 (3) | 0.011 (3) | 0.004 (2) |
C6 | 0.019 (4) | 0.021 (3) | 0.019 (3) | 0.007 (3) | 0.009 (3) | 0.006 (3) |
C5 | 0.025 (4) | 0.022 (4) | 0.018 (3) | 0.009 (3) | 0.008 (3) | 0.004 (3) |
C9 | 0.031 (4) | 0.027 (4) | 0.022 (3) | 0.017 (4) | 0.007 (3) | 0.003 (3) |
C2 | 0.023 (4) | 0.020 (3) | 0.023 (3) | 0.014 (3) | 0.010 (3) | 0.002 (3) |
C8 | 0.029 (4) | 0.022 (4) | 0.024 (3) | 0.016 (3) | 0.012 (3) | 0.009 (3) |
C1 | 0.024 (4) | 0.021 (4) | 0.023 (3) | 0.013 (3) | 0.008 (3) | 0.002 (3) |
C10 | 0.041 (5) | 0.024 (4) | 0.014 (3) | 0.010 (4) | 0.011 (3) | 0.002 (3) |
C7 | 0.040 (5) | 0.026 (4) | 0.032 (4) | 0.018 (4) | 0.024 (4) | 0.019 (3) |
C12 | 0.026 (4) | 0.018 (3) | 0.024 (3) | 0.009 (3) | 0.005 (3) | 0.001 (3) |
C11 | 0.030 (4) | 0.033 (4) | 0.026 (4) | 0.021 (4) | 0.005 (3) | 0.004 (3) |
C13 | 0.030 (5) | 0.035 (4) | 0.025 (4) | 0.015 (4) | 0.009 (3) | 0.010 (3) |
C14 | 0.060 (7) | 0.086 (8) | 0.024 (4) | 0.032 (7) | 0.017 (4) | 0.011 (5) |
Au1—Au2i | 3.163 (5) | N7—C7 | 1.309 (10) |
Au1—C1 | 1.948 (9) | N8—C10 | 1.287 (11) |
Au1—C2 | 1.952 (8) | N8—C11 | 1.329 (10) |
Au2—C3 | 1.970 (8) | N1—C1 | 1.119 (10) |
Au2—C4 | 1.981 (9) | N5—C2 | 1.111 (10) |
I1—C6 | 2.071 (8) | C6—C5 | 1.387 (9) |
I2—C10 | 2.078 (9) | C5—H5 | 0.9300 |
Fe1—O1 | 2.106 (6) | C9—H9 | 0.9300 |
Fe1—N1 | 2.105 (8) | C9—C10 | 1.384 (11) |
Fe1—N2 | 2.096 (7) | C8—H8 | 0.9300 |
Fe1—N3 | 2.272 (7) | C8—C7 | 1.404 (10) |
Fe1—N4 | 2.216 (7) | C7—H7 | 0.9300 |
Fe1—N5ii | 2.096 (8) | C12—H12 | 0.9300 |
O1—H1 | 0.859 (10) | C12—C11 | 1.350 (11) |
O1—C13 | 1.419 (9) | C11—H11 | 0.9300 |
N4—C9 | 1.323 (10) | C13—H13A | 0.9700 |
N4—C12 | 1.318 (10) | C13—H13B | 0.9700 |
N6—C4 | 1.122 (10) | C13—C14 | 1.486 (11) |
N2—C3 | 1.134 (9) | C14—H14A | 0.9600 |
N3—C5 | 1.333 (9) | C14—H14B | 0.9600 |
N3—C8 | 1.302 (9) | C14—H14C | 0.9600 |
N7—C6 | 1.298 (9) | ||
C2—Au1—Au2i | 82.5 (2) | N7—C6—C5 | 123.1 (7) |
C1—Au1—Au2i | 97.8 (2) | C5—C6—I1 | 119.6 (5) |
C1—Au1—C2 | 178.8 (3) | N3—C5—C6 | 120.9 (7) |
C4—Au2—Au1i | 101.9 (3) | N3—C5—H5 | 119.5 |
C3—Au2—Au1i | 78.1 (3) | C6—C5—H5 | 119.5 |
C3—Au2—C4 | 178.9 (3) | N4—C9—H9 | 119.3 |
O1—Fe1—N4 | 92.6 (3) | N4—C9—C10 | 121.4 (8) |
O1—Fe1—N3 | 177.6 (2) | C10—C9—H9 | 119.3 |
N4—Fe1—N3 | 87.1 (3) | N5—C2—Au1 | 177.8 (7) |
N2—Fe1—O1 | 94.9 (3) | N3—C8—H8 | 119.3 |
N2—Fe1—N4 | 171.7 (2) | N3—C8—C7 | 121.5 (7) |
N2—Fe1—N3 | 85.6 (3) | C7—C8—H8 | 119.3 |
N2—Fe1—N1 | 95.8 (3) | N1—C1—Au1 | 175.8 (7) |
N1—Fe1—O1 | 86.5 (2) | N8—C10—I2 | 118.1 (6) |
N1—Fe1—N4 | 88.1 (3) | N8—C10—C9 | 123.0 (7) |
N1—Fe1—N3 | 91.1 (2) | C9—C10—I2 | 118.9 (6) |
N5ii—Fe1—O1 | 91.3 (2) | N7—C7—C8 | 122.2 (7) |
N5ii—Fe1—N4 | 89.4 (3) | N7—C7—H7 | 118.9 |
N5ii—Fe1—N2 | 87.0 (3) | C8—C7—H7 | 118.9 |
N5ii—Fe1—N3 | 91.1 (2) | N4—C12—H12 | 119.7 |
N5ii—Fe1—N1 | 176.6 (2) | N4—C12—C11 | 120.6 (7) |
Fe1—O1—H1 | 122.0 (18) | C11—C12—H12 | 119.7 |
C13—O1—Fe1 | 126.0 (5) | N8—C11—C12 | 124.5 (8) |
C13—O1—H1 | 105.7 (18) | N8—C11—H11 | 117.8 |
C9—N4—Fe1 | 123.4 (5) | C12—C11—H11 | 117.8 |
C12—N4—Fe1 | 120.4 (5) | O1—C13—H13A | 109.3 |
C12—N4—C9 | 116.1 (7) | O1—C13—H13B | 109.3 |
C3—N2—Fe1 | 165.9 (6) | O1—C13—C14 | 111.7 (8) |
C5—N3—Fe1 | 122.6 (5) | H13A—C13—H13B | 107.9 |
C8—N3—Fe1 | 120.9 (5) | C14—C13—H13A | 109.3 |
C8—N3—C5 | 116.4 (6) | C14—C13—H13B | 109.3 |
C6—N7—C7 | 116.0 (6) | C13—C14—H14A | 109.5 |
N6—C4—Au2 | 177.2 (7) | C13—C14—H14B | 109.5 |
C10—N8—C11 | 114.3 (7) | C13—C14—H14C | 109.5 |
C1—N1—Fe1 | 174.0 (6) | H14A—C14—H14B | 109.5 |
N2—C3—Au2 | 178.2 (6) | H14A—C14—H14C | 109.5 |
C2—N5—Fe1iii | 169.9 (7) | H14B—C14—H14C | 109.5 |
N7—C6—I1 | 117.3 (5) | ||
I1—C6—C5—N3 | 178.6 (5) | C6—N7—C7—C8 | 0.3 (12) |
Fe1—O1—C13—C14 | 158.4 (6) | C5—N3—C8—C7 | −0.6 (11) |
Fe1—N4—C9—C10 | −174.4 (5) | C9—N4—C12—C11 | −0.3 (10) |
Fe1—N4—C12—C11 | 175.7 (5) | C8—N3—C5—C6 | 1.6 (10) |
Fe1—N3—C5—C6 | 177.5 (5) | C10—N8—C11—C12 | −0.3 (11) |
Fe1—N3—C8—C7 | −176.6 (6) | C7—N7—C6—I1 | −179.6 (6) |
N4—C9—C10—I2 | 176.5 (5) | C7—N7—C6—C5 | 0.8 (11) |
N4—C9—C10—N8 | −2.2 (11) | C12—N4—C9—C10 | 1.5 (10) |
N4—C12—C11—N8 | −0.3 (12) | C11—N8—C10—I2 | −177.3 (5) |
N3—C8—C7—N7 | −0.4 (13) | C11—N8—C10—C9 | 1.5 (10) |
N7—C6—C5—N3 | −1.8 (11) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N6iv | 0.86 (5) | 1.98 (5) | 2.765 (13) | 151 (6) |
Symmetry code: (iv) −x, −y, −z+1. |
Funding information
Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 16BF037-01M).
References
Agustí, G., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2008). Inorg. Chem. 47, 2552–2561. PubMed
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2013). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals
Garde, R., Villain, F. & Verdaguer, M. (2002). J. Am. Chem. Soc. 124, 10531–10538. Web of Science CrossRef PubMed CAS
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Gural'skiy, I. A., Golub, B. O., Shylin, S. I., Ksenofontov, V., Shepherd, H. J., Raithby, P. R., Tremel, W. & Fritsky, I. O. (2016a). Eur. J. Inorg. Chem. 2016, 3191–3195. CAS
Gural'skiy, I. A., Shylin, S. I., Golub, B. O., Ksenofontov, V., Fritsky, I. O. & Tremel, W. (2016b). New J. Chem. 40, 9012–9016. CAS
Hofmann, K. A. & Höchtlen, F. (1903). Ber. Dtsch. Chem. Ges. 36, 1149–1151. CrossRef CAS
Keggin, J. F. & Miles, F. D. (1936). Nature, 137, 577–578. CrossRef CAS
Kitazawa, T., Gomi, Y., Takahashi, M., Takeda, M., Enomoto, M., Miyazaki, A. & Enoki, T. (1996). J. Mater. Chem. 6, 119–121. CSD CrossRef CAS Web of Science
Klausmeyer, K. K., Rauchfuss, T. B. & Wilson, S. R. (1998). Angew. Chem. Int. Ed. 37, 1694–1696. Web of Science CrossRef CAS
Kosone, T., Kachi-Terajima, C., Kanadani, C., Saito, T. & Kitazawa, T. (2008). Chem. Lett. 37, 754–755. CSD CrossRef CAS
Kosone, T., Kanadani, C., Saito, T. & Kitazawa, T. (2009). Polyhedron, 28, 1991–1995. CSD CrossRef CAS
Li, J.-Y., Chen, Y.-C., Zhang, Z.-M., Liu, W., Ni, Z.-P. & Tong, M.-L. (2015). Chem. Eur. J. 21, 1645–1651. CSD CrossRef CAS PubMed
Mercurol, J., Li, Y., Pardo, E., Risset, O., Seuleiman, M., Rousselière, H., Lescouëzec, R. & Julve, M. (2010). Chem. Commun. 46, 8995–8997. CSD CrossRef CAS
Mizuno, M., Ohkoshi, S. & Hashimoto, K. (2000). Adv. Mater. 12, 1955–1958. CrossRef CAS
Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2001). Inorg. Chem. 40, 3838–3839. Web of Science CSD CrossRef PubMed CAS
Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E. & Real, J. A. (2003). Angew. Chem. Int. Ed. 42, 3760–3763. Web of Science CSD CrossRef CAS
Ohkoshi, S., Iyoda, T., Fujishima, A. & Hashimoto, K. (1997). Phys. Rev. B, 56, 11642–11652. CrossRef CAS
Powell, H. M. & Rayner, J. H. (1949). Nature, 163, 566–567. CrossRef CAS Web of Science
Schmidbaur, H. (2000). Gold Bull. 33, 3–10. CrossRef CAS
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166. CrossRef CAS Web of Science IUCr Journals
Wei, R.-M., Kong, M., Cao, F., Li, J., Pu, T.-C., Yang, L., Zhang, X. & Song, Y. (2016). Dalton Trans. 45, 18643–18652. CSD CrossRef CAS PubMed
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.