research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­[bis­(4-azaniumylphenyl) sulfone] tetranitrate monohydrate

CROSSMARK_Color_square_no_text.svg

aUnité de Recherche Chimie de l'Environnement et Moléculaire, Structurale `CHEMS', Faculté des Sciences Exactes,Campus Chaabet Ersas, Université Frères Mentouri Constantine 1, 25000 Constantine, Algeria
*Correspondence e-mail: bendjeddoulamia@gmail.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 22 September 2017; accepted 12 October 2017; online 20 October 2017)

In the title compound, the hydrated tetra­(nitrate) salt of dapsone (4,4′-di­amino­diphenyl­sulfone), 2C12H14N2O2S2+·4NO3·H2O {alternative name: bis[bis­(4,4′-di­aza­niumylphen­yl) sulfone] tetra­nitrate monohydrate}, the cations are conformationally similar, with comparable dihedral angles between the two benzene rings in each of 70.03 (18) and 69.69 (19)°. In the crystal, mixed cation–anion–water mol­ecule layers lying parallel to the (001) plane are formed through N—H⋯O, O—H⋯O and C—H⋯O hydrogen-bonding inter­actions and these layers are further extended into an overall three-dimensional supra­molecular network structure. Inter-ring ππ inter­actions are also present [minimum ring centroid separation = 3.693 (3) Å].

1. Chemical context

Dapsone (4,4′-di­amino­diphenyl­sulfone), a very weak Lewis base (pKa ca 2), is a drug that has been used to treat a diversity of diseases including tuberculosis, leprosy, malaria and AIDS-related pneumonia (Wilson et al., 1991[Wilson, J. D., Braunwald, E., Isselbacher, K. J., Petersdorf, R. G., Martin, J. B., Fauci, A. S. & Root, R. K. (1991). Harrison's Principles of Internal Medicine, 12th ed, pp. 320, 647, 787. New York: McGraw-Hill.]). The crystal structure of dapsone was first reported in 1970 (Dickenson et al., 1970[Dickinson, C., Stewart, J. M. & Ammon, H. L. (1970). J. Chem. Soc. D, pp. 920-921.]) and redetermined a number of times (Bocelli & Cantoni, 1990[Bocelli, G. & Cantoni, A. (1990). Acta Cryst. C46, 2257-2259.]; Su et al., 1992[Su, G.-B., Feng, P., He, Y.-P. & Guo, S.-W. (1992). Jiegou Huaxue 11, 293-296.]; Bertolasi et al., 1993[Bertolasi, V., Ferretti, V., Gilli, P. & De Benedetti, P. G. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 213-219.]). The structure of its partial (0.33) hydrate has also been determined (Kus'mina et al., 1981[Kus'mina, L. G., Struchkov, Yu. T., Novozhilova, N. V. & Tudorovskaya, G. L. (1981). Kristallografiya, 26, 690-694.]; Bel'skii et al., 1983[Bel'skii, V. K., Chernikova, N. Yu., Rotatu, V. K. & Kruchinin, M. M. (1983). Kristallografiya, 28, 690-694 .]). To the best of our knowledge there are no reported polymorphic forms of dapsone.

Sulfones are good hydrogen-bond acceptors since their ability to participate as such in hydrogen-bonding inter­actions is increased by the highly polar nature of the sulfur–oxygen bond (Almarsson & Zaworotko, 2004[Almarsson, Ö. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889.]; Eccles et al., 2010[Eccles, K. S., Elcoate, C. J., Stokes, S. P., Maguire, A. R. & Lawrence, S. E. (2010). Cryst. Growth Des. 10, 4243-4245.]). In order to enrich the knowledge of such kinds of compound and to investigate the effect of hydrogen bonding on the chemical and structural features, we report here the synthesis and crystal structure analysis of a new salt of dapsone, the hydrated dinitrate 2C12H14N2O2S2+·4NO3·H2O. In terms of other compounds containing the ammonio-substituted dapsone cation species, only the mono-ammonio–dapsone salt 4-(4-amino­phenyl­sulfon­yl)anilinium 2-carb­oxy-4,6-di­nitro­phen­olate monohydrate has been reported (Smith & Wermuth, 2013[Smith, G. & Wermuth, U. D. (2013). J. Chem. Crystallogr. 43, 664-670.]). Surprisingly, the literature has not revealed any other crystal structure containing the (4,4′-di­ammonio)-substituted di­phenyl­sulfone.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the ortho­rhom­bic space group P212121 with two (4,4′-di­ammonio­diphen­yl)sulfone cations (A and B), four nitrate anions and one water mol­ecule (O1W) in the asymmetric unit (Fig. 1[link]). The di­amino­diphenyl­sulfone unit is protonated at both N1 and N2 in A and N3 and N4 in B. The two cations are conformationally similar with the dihedral angles between the benzene rings of the anilinic moieties of cation A [defined by (N2/C1–C6) (Aa) and (N1/C7–C12) (Ab)] and cation B [defined by (N3/C13–C18) (Ba) and (N4/ C19–C24) (Bb)] are 70.03 (18) and 69.69 (19)°, respectively. As expected the anilinium groups are planar with maximum r.m.s. deviations of 0.0044, 0.0120, 0.0114 and 0.0072 Å, respectively.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-numbering scheme for the two cations (A, left and B, right), the four nitrate anions and the water mol­ecule of solvation. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

3. Supra­molecular features

The hydrogen-bonded supra­molecular assembly in the crystal of the title compound is generated by a total of 28 independent inter­actions, dominated by anilinium N—H⋯O hydrogen bonds involving only nitro-O acceptors and a single water acceptor, but no sulfone O atoms are involved (Table 1[link]). The water mol­ecule forms two hydrogen bonds, to sulfone O1vi and nitro O12vii acceptors. The two cations A and B are associated through ππ inter­actions [ring centroid separation CgAbCgBai = 3.693 (3) Å [symmetry code: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]] and form double cationic chain sub-structures that extend along the a-axis direction (Fig. 2[link]). The water mol­ecule O1W, which plays a dual role as both donor and acceptor in hydrogen-bonding inter­actions, bridges the cations via one sulfonyl group (Fig. 3[link]) and also bridges one nitro group, giving the combination of the hydrogen-bond sequence N3—H⋯O1W/O1W—H⋯O1, involving a D22(5) bond motif (Fig. 3[link]). The cations and anions are inter­linked by the ammonio N—H⋯O(nitro) hydrogen bonds through rings and finite chains involving R12(4), R21(6), R22(7) and D(3) motifs (Fig. 4[link]), generating a three-dimensional hydrogen-bonded network structure in which a number of C—H⋯O(nitro) inter­actions are also found (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O8i 0.89 2.0800 2.959 (4) 169
N1—H1A⋯O10i 0.89 2.4400 3.057 (4) 127
N1—H1B⋯O14ii 0.89 1.9300 2.796 (4) 163
N1—H1C⋯O12ii 0.89 2.0500 2.920 (5) 166
N2—H2A⋯O8 0.89 2.2800 3.132 (4) 160
N2—H2A⋯O9 0.89 2.3300 2.937 (5) 125
N2—H2B⋯O11iii 0.89 2.1300 3.015 (5) 176
N2—H2B⋯O13iii 0.89 2.3900 2.979 (4) 124
N2—H2C⋯O9iii 0.89 2.5600 3.086 (5) 119
N2—H2C⋯O10iii 0.89 2.0400 2.912 (5) 166
N3—H3A⋯O6iv 0.89 2.1000 2.957 (4) 161
N3—H3A⋯O7iv 0.89 2.3700 3.115 (5) 141
N3—H3B⋯O13i 0.89 2.0500 2.906 (4) 163
N3—H3C⋯O1Wi 0.89 1.9100 2.740 (5) 154
N4—H4A⋯O5 0.89 2.1000 2.982 (4) 169
N4—H4A⋯O6 0.89 2.3900 3.071 (4) 134
N4—H4B⋯O5v 0.89 2.0800 2.960 (5) 171
N4—H4B⋯O7v 0.89 2.3800 2.988 (5) 125
N4—H4C⋯O14iii 0.89 1.9800 2.861 (4) 169
N4—H4C⋯O15iii 0.89 2.5000 3.111 (5) 126
O1W—H1W⋯O1vi 0.86 (4) 2.18 (5) 2.834 (5) 133 (5)
O1W—H2W⋯O12vii 0.85 (4) 2.19 (6) 2.940 (6) 147 (5)
C9—H9⋯O10i 0.93 2.6000 3.359 (5) 139
C9—H9⋯O13i 0.93 2.5700 3.206 (5) 126
C14—H14⋯O7iv 0.93 2.5000 3.295 (5) 143
C14—H14⋯O14ii 0.93 2.5300 3.194 (5) 128
C15—H15⋯O16ii 0.93 2.4600 3.351 (6) 160
C23—H23⋯O14iii 0.93 2.5200 3.227 (4) 133
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (vi) x+1, y-1, z; (vii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure, showing double cationic chains and ππ associations, with nitrate anions and the water mol­ecule omitted.
[Figure 3]
Figure 3
Part of the crystal structure, with nitrate anions omitted, showing the dual role of the water mol­ecule in hydrogen bonding (dashed lines) and aggregation of D(3) and D22(5) motifs via O—H⋯O and N—H⋯O inter­actions.
[Figure 4]
Figure 4
Hydrogen-bond inter­actions around each nitrate anion and aggregation of R12(4), R21(6), R22(7) and D(3) motifs.
[Figure 5]
Figure 5
The overall crystal packing in the three-dimensional structure in the unit cell viewed along c. The red lines represent nitrate anions.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows 20 hits concerning the 4,4′-di­amino­diphenyl sulfone. Only one containing a protonated dapsone species, the mono-cationic (4-ammonio-4′-amino-diphen­yl)sulfone, a phenolate (Smith & Wermuth, 2013[Smith, G. & Wermuth, U. D. (2013). J. Chem. Crystallogr. 43, 664-670.]).

5. Synthesis and crystallization

Fe(NO3)3·9H2O (20.19 mg, 0.50 mmol) in EtOH (2 ml) was added dropwise to 4,4′-di­amino­diphenyl sulfone (12.41 mg, 0.50 mmol) in EtOH (5 ml), with continuous stirring at room temperature for 72 h. Slow evaporation of this solution yielded yellow crystals suitable for X-ray analysis within 5 d.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The aromatic H atoms were placed at calculated positions with C—H fixed at 0.93 Å and Uiso(H) = 1.2Ueq(C). All N—H atoms were located by difference methods but were subsequently restrained in the refinement with N—H = 0.89 Å and Uiso = 1.2Ueq(N). The H atoms of the water mol­ecule were also located in a Fourier map and were allowed to ride with a restrained O—H bond length = 0.85 (1) Å and H⋯H = 1.39 (2) Å and Uiso(H) = 1.5 Ueq(O). Although not of relevance in this achiral compound, the Flack absolute structure parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) was determined as 0.02 (9) for 4494 Friedel pairs.

Table 2
Experimental details

Crystal data
Chemical formula 2C12H14N2O2S2+·4NO3·H2O
Mr 766.68
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 9.366 (5), 15.203 (5), 23.070 (5)
V3) 3285.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.1 × 0.04 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 22152, 9858, 5434
Rint 0.045
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.201, 0.98
No. of reflections 9858
No. of parameters 466
No. of restraints 3
Δρmax, Δρmin (e Å−3) 0.94, −0.29
Absolute structure (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4494 Friedel pairs
Absolute structure parameter 0.02 (9)
Computer programs: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and POVRay (Persistence of Vision, 2004[Persistence of Vision (2004). POVray. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: https://www.povray.org/.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision, 2004).

Bis[bis(4-azaniumylphenyl) sulfone] tetranitrate monohydrate top
Crystal data top
2C12H14N2O2S2+·4NO3·H2OF(000) = 1592
Mr = 766.68Dx = 1.55 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4292 reflections
a = 9.366 (5) Åθ = 2.8–30.6°
b = 15.203 (5) ŵ = 0.25 mm1
c = 23.070 (5) ÅT = 293 K
V = 3285.1 (2) Å3Prism, yellow
Z = 40.1 × 0.04 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
5434 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 30.6°, θmin = 2.8°
φ and ω scansh = 1310
22152 measured reflectionsk = 2021
9858 independent reflectionsl = 2032
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063 w = 1/[σ2(Fo2) + (0.1089P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.201(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.94 e Å3
9858 reflectionsΔρmin = 0.29 e Å3
466 parametersAbsolute structure: (Flack, 1983), 4494 Friedel pairs
3 restraintsAbsolute structure parameter: 0.02 (9)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30537 (10)0.66966 (6)0.36491 (3)0.0460 (2)
S20.73567 (13)0.33251 (6)0.34908 (4)0.0573 (3)
O10.1674 (3)0.6792 (2)0.33905 (11)0.0662 (8)
O20.3663 (4)0.74142 (16)0.39709 (11)0.0641 (8)
N10.7194 (4)0.6046 (2)0.17307 (13)0.0632 (9)
N20.2628 (4)0.3644 (2)0.52443 (12)0.0534 (8)
C10.2741 (4)0.4383 (2)0.48528 (13)0.0438 (8)
C20.2055 (5)0.4351 (2)0.43285 (15)0.0526 (11)
C30.2172 (4)0.5057 (2)0.39507 (14)0.0509 (13)
O30.6919 (4)0.25896 (17)0.38437 (12)0.0774 (10)
C40.2981 (4)0.5777 (2)0.41134 (13)0.0424 (7)
O40.8628 (4)0.3279 (2)0.31386 (12)0.0797 (10)
C50.3660 (4)0.5804 (2)0.46487 (14)0.0483 (8)
C60.3540 (4)0.5102 (2)0.50192 (14)0.0485 (8)
C70.4267 (4)0.6429 (2)0.30900 (13)0.0390 (7)
C80.3757 (4)0.6264 (2)0.25382 (14)0.0486 (8)
C90.4746 (4)0.6132 (3)0.20947 (15)0.0530 (9)
C100.6172 (4)0.6166 (2)0.22081 (15)0.0449 (8)
C110.6665 (4)0.6310 (3)0.27560 (16)0.0571 (10)
C120.5709 (5)0.6446 (3)0.32016 (16)0.0558 (12)
N30.2464 (4)0.3877 (2)0.18676 (13)0.0581 (8)
N40.8110 (4)0.6370 (2)0.50927 (13)0.0579 (8)
O50.5968 (3)0.7800 (2)0.49317 (12)0.0697 (8)
O60.7370 (4)0.7782 (2)0.41897 (13)0.0752 (9)
O70.5916 (4)0.88673 (19)0.43116 (13)0.0716 (8)
C130.3656 (5)0.3788 (2)0.22676 (15)0.0501 (9)
C140.5035 (5)0.3837 (3)0.20635 (15)0.0554 (10)
C150.6167 (5)0.3731 (2)0.24417 (15)0.0528 (9)
C160.5899 (5)0.3571 (2)0.30186 (14)0.0484 (9)
C170.4495 (5)0.3514 (3)0.32251 (15)0.0636 (11)
C180.3379 (5)0.3635 (3)0.28489 (17)0.0648 (11)
C190.7558 (4)0.4240 (2)0.39558 (14)0.0503 (9)
C200.8352 (5)0.4962 (3)0.37815 (16)0.0585 (10)
C210.8536 (5)0.5659 (3)0.41473 (16)0.0580 (10)
C220.7930 (4)0.5624 (2)0.46966 (16)0.0491 (8)
C230.7158 (5)0.4897 (3)0.48763 (15)0.0553 (10)
C240.6959 (5)0.4201 (3)0.45057 (15)0.0560 (9)
N50.6416 (4)0.8159 (2)0.44782 (13)0.0550 (8)
O80.3116 (4)0.2214 (2)0.42874 (15)0.0777 (12)
O90.4742 (4)0.2291 (2)0.49463 (14)0.0799 (9)
O100.4700 (3)0.1205 (2)0.43431 (13)0.0703 (8)
N60.4179 (4)0.1904 (2)0.45266 (14)0.0563 (8)
O111.0082 (4)0.1199 (3)0.39162 (15)0.0863 (14)
O120.9768 (4)0.1153 (3)0.29935 (14)0.0909 (11)
O130.8139 (3)0.0628 (2)0.35749 (13)0.0666 (7)
N70.9327 (4)0.0995 (3)0.34960 (16)0.0635 (9)
O141.2484 (3)0.05892 (19)0.38079 (11)0.0620 (7)
O151.0556 (4)0.1246 (3)0.40490 (17)0.1024 (13)
O161.0780 (4)0.0673 (3)0.32060 (17)0.0936 (11)
N81.1241 (4)0.0855 (2)0.36797 (18)0.0632 (9)
O1W0.9435 (4)0.2379 (3)0.27703 (17)0.0861 (10)
H1A0.699460.642480.144760.0760*
H1B0.712920.549930.159590.0760*
H1C0.807550.614270.185960.0760*
H2A0.268740.314540.504390.0640*
H2B0.333460.366690.550190.0640*
H2C0.179360.366580.542810.0640*
H30.151610.386030.422700.0630*
H40.171400.504660.359320.0612*
H60.419190.629420.475510.0580*
H70.399290.511030.537800.0580*
H80.278090.624230.246470.0580*
H90.443060.601970.171970.0640*
H110.764130.631640.282880.0690*
H120.603800.654780.357590.0670*
H3A0.268600.362560.153110.0700*
H3B0.227800.444440.181090.0700*
H3C0.169680.361460.201640.0700*
H4A0.751030.679850.499380.0690*
H4B0.900360.656670.507110.0690*
H4C0.792620.619770.545380.0690*
H140.520450.394260.167240.0660*
H150.710140.376570.230740.0630*
H170.432200.339580.361420.0760*
H180.244300.361400.298280.0780*
H200.876050.497240.341420.0700*
H210.905700.614890.403080.0690*
H230.677430.488040.524790.0660*
H240.643260.371300.462100.0670*
H1W1.012 (4)0.232 (4)0.3016 (18)0.1290*
H2W0.974 (6)0.262 (4)0.2464 (14)0.1290*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0579 (6)0.0387 (4)0.0416 (4)0.0132 (4)0.0042 (4)0.0004 (3)
S20.0848 (8)0.0408 (4)0.0462 (4)0.0166 (5)0.0009 (5)0.0036 (4)
O10.063 (2)0.0803 (19)0.0551 (14)0.0293 (16)0.0019 (13)0.0090 (14)
O20.106 (2)0.0354 (12)0.0515 (14)0.0031 (14)0.0146 (15)0.0086 (11)
N10.066 (2)0.066 (2)0.0571 (17)0.0138 (18)0.0114 (17)0.0058 (16)
N20.057 (2)0.0562 (17)0.0471 (15)0.0021 (15)0.0056 (14)0.0091 (14)
C10.048 (2)0.0424 (17)0.0409 (16)0.0046 (15)0.0074 (14)0.0033 (13)
C20.060 (2)0.0470 (19)0.0507 (18)0.0112 (18)0.0043 (18)0.0008 (16)
C30.061 (3)0.053 (2)0.0388 (16)0.0028 (18)0.0073 (16)0.0036 (15)
O30.138 (3)0.0358 (13)0.0580 (15)0.0072 (16)0.0079 (19)0.0059 (12)
C40.046 (2)0.0422 (17)0.0393 (15)0.0050 (15)0.0010 (14)0.0039 (13)
O40.095 (2)0.081 (2)0.0631 (15)0.0410 (19)0.0049 (16)0.0148 (16)
C50.053 (2)0.0477 (19)0.0444 (17)0.0042 (16)0.0104 (16)0.0013 (15)
C60.055 (2)0.052 (2)0.0379 (16)0.0008 (17)0.0070 (15)0.0032 (15)
C70.0455 (19)0.0329 (15)0.0386 (15)0.0020 (13)0.0010 (13)0.0015 (12)
C80.041 (2)0.060 (2)0.0454 (17)0.0019 (17)0.0036 (15)0.0012 (16)
C90.058 (3)0.064 (2)0.0377 (16)0.0023 (19)0.0045 (16)0.0064 (16)
C100.044 (2)0.0390 (17)0.0517 (19)0.0063 (15)0.0092 (16)0.0058 (14)
C110.044 (2)0.066 (2)0.061 (2)0.0043 (19)0.0061 (17)0.0006 (19)
C120.057 (2)0.065 (2)0.0452 (17)0.0061 (19)0.0100 (17)0.0074 (17)
N30.061 (2)0.063 (2)0.0504 (15)0.0046 (17)0.0062 (16)0.0037 (14)
N40.060 (2)0.0552 (17)0.0588 (17)0.0040 (16)0.0192 (16)0.0112 (15)
O50.071 (2)0.084 (2)0.0544 (15)0.0047 (17)0.0026 (15)0.0124 (15)
O60.065 (2)0.088 (2)0.0731 (19)0.0049 (18)0.0114 (16)0.0076 (16)
O70.084 (2)0.0550 (17)0.0759 (18)0.0000 (16)0.0108 (18)0.0090 (15)
C130.066 (2)0.0405 (18)0.0444 (17)0.0001 (17)0.0082 (17)0.0025 (14)
C140.070 (3)0.059 (2)0.0377 (16)0.011 (2)0.0049 (18)0.0057 (16)
C150.062 (2)0.055 (2)0.0418 (17)0.0037 (19)0.0119 (17)0.0011 (16)
C160.073 (3)0.0311 (15)0.0410 (16)0.0004 (16)0.0041 (17)0.0022 (13)
C170.083 (3)0.069 (3)0.0386 (17)0.000 (2)0.0142 (19)0.0015 (18)
C180.071 (3)0.074 (3)0.050 (2)0.001 (2)0.014 (2)0.0085 (19)
C190.059 (2)0.0466 (18)0.0456 (17)0.0111 (18)0.0043 (17)0.0001 (15)
C200.070 (3)0.055 (2)0.0510 (19)0.005 (2)0.0057 (19)0.0003 (17)
C210.063 (3)0.048 (2)0.063 (2)0.0006 (19)0.0015 (19)0.0048 (18)
C220.044 (2)0.0480 (19)0.0555 (19)0.0057 (16)0.0094 (17)0.0065 (16)
C230.067 (3)0.056 (2)0.0435 (18)0.0021 (19)0.0001 (17)0.0053 (16)
C240.065 (3)0.053 (2)0.0502 (19)0.0029 (19)0.0025 (18)0.0056 (16)
N50.058 (2)0.063 (2)0.0449 (15)0.0029 (17)0.0085 (15)0.0002 (15)
O80.066 (2)0.073 (2)0.094 (2)0.0072 (17)0.0080 (19)0.0010 (17)
O90.076 (2)0.090 (2)0.0737 (18)0.0019 (19)0.0081 (18)0.0174 (18)
O100.069 (2)0.0683 (19)0.0733 (17)0.0112 (16)0.0057 (16)0.0074 (15)
N60.052 (2)0.057 (2)0.0606 (18)0.0048 (16)0.0093 (16)0.0007 (16)
O110.063 (2)0.110 (3)0.086 (2)0.012 (2)0.0061 (19)0.013 (2)
O120.082 (2)0.117 (3)0.0738 (19)0.017 (2)0.0103 (18)0.0278 (19)
O130.0531 (18)0.0745 (19)0.0723 (17)0.0014 (15)0.0003 (15)0.0061 (15)
N70.064 (2)0.064 (2)0.063 (2)0.0171 (19)0.0051 (19)0.0120 (18)
O140.0541 (18)0.0684 (17)0.0635 (16)0.0024 (15)0.0120 (14)0.0060 (14)
O150.096 (3)0.082 (2)0.130 (3)0.024 (2)0.054 (3)0.012 (2)
O160.066 (2)0.116 (3)0.099 (2)0.007 (2)0.014 (2)0.026 (2)
N80.054 (2)0.058 (2)0.078 (2)0.0040 (17)0.014 (2)0.0212 (19)
O1W0.057 (2)0.077 (2)0.124 (3)0.0099 (17)0.007 (2)0.011 (2)
Geometric parameters (Å, º) top
S1—O11.431 (3)C8—C71.383 (5)
S1—O21.438 (3)C8—C91.395 (5)
S1—C41.762 (3)C8—H80.93
S1—C71.766 (3)N7—O121.254 (5)
S2—O31.443 (3)C22—C231.384 (6)
S2—O41.444 (4)C22—C211.390 (5)
S2—C191.766 (4)C20—C211.366 (5)
S2—C161.787 (4)C20—C191.386 (5)
O13—N71.258 (5)C20—H200.93
O14—N81.267 (5)O16—N81.207 (5)
O5—N51.253 (4)C4—C31.383 (5)
N1—C101.470 (5)C13—C141.376 (6)
N1—H1B0.89C13—C181.386 (5)
N1—H1C0.89C13—N31.455 (5)
N1—H1A0.89C3—H40.93
O9—N61.250 (4)C14—C151.383 (6)
N2—C11.445 (4)C14—H140.93
N2—H2A0.89C15—C161.376 (5)
N2—H2C0.89C15—H150.93
N2—H2B0.89C16—C171.401 (6)
O6—N51.253 (4)C24—C231.373 (5)
O7—N51.235 (4)C24—C191.388 (5)
O10—N61.243 (4)C24—H240.93
N4—C221.466 (5)N8—O151.221 (5)
N4—H4A0.89C9—C101.362 (6)
N4—H4B0.89C9—H90.93
N4—H4C0.89C12—C71.375 (5)
O8—N61.233 (5)C12—C111.379 (6)
O1W—H2W0.848 (10)C12—H120.93
O1W—H1W0.859 (10)C23—H230.93
C1—C21.371 (5)C10—C111.363 (5)
C1—C61.379 (5)C21—H210.93
O11—N71.239 (5)C11—H110.93
C2—C31.388 (5)C17—C181.371 (6)
C2—H30.93C17—H170.93
C5—C61.372 (5)C18—H180.93
C5—C41.389 (5)N3—H3C0.89
C5—H60.93N3—H3A0.89
C6—H70.93N3—H3B0.89
O1—S1—O2119.81 (19)C14—C13—C18121.1 (4)
O1—S1—C4107.38 (19)C14—C13—N3119.9 (3)
O2—S1—C4107.65 (15)C18—C13—N3119.0 (4)
O1—S1—C7107.45 (16)C4—C3—C2119.1 (3)
O2—S1—C7107.26 (17)C4—C3—H4120.5
C4—S1—C7106.61 (15)C2—C3—H4120.5
O3—S2—O4120.9 (2)C13—C14—C15119.8 (3)
O3—S2—C19107.32 (16)C13—C14—H14120.1
O4—S2—C19107.0 (2)C15—C14—H14120.1
O3—S2—C16106.8 (2)C16—C15—C14119.4 (4)
O4—S2—C16107.32 (17)C16—C15—H15120.3
C19—S2—C16106.67 (17)C14—C15—H15120.3
C10—N1—H1B109.5C15—C16—C17120.7 (4)
C10—N1—H1C109.5C15—C16—S2119.1 (3)
H1B—N1—H1C109.5C17—C16—S2119.8 (3)
C10—N1—H1A109.5C23—C24—C19118.8 (4)
H1B—N1—H1A109.5C23—C24—H24120.6
H1C—N1—H1A109.5C19—C24—H24120.6
C1—N2—H2A109.5O16—N8—O15123.7 (5)
C1—N2—H2C109.5O16—N8—O14117.9 (4)
H2A—N2—H2C109.5O15—N8—O14118.4 (4)
C1—N2—H2B109.5C10—C9—C8120.3 (3)
H2A—N2—H2B109.5C10—C9—H9119.8
H2C—N2—H2B109.5C8—C9—H9119.8
C22—N4—H4A109.5C7—C12—C11119.7 (3)
C22—N4—H4B109.5C7—C12—H12120.2
H4A—N4—H4B109.5C11—C12—H12120.2
C22—N4—H4C109.5C12—C7—C8121.0 (3)
H4A—N4—H4C109.5C12—C7—S1119.4 (3)
H4B—N4—H4C109.5C8—C7—S1119.5 (3)
H2W—O1W—H1W111 (3)C24—C23—C22120.0 (3)
C2—C1—C6121.9 (3)C24—C23—H23120
C2—C1—N2119.3 (3)C22—C23—H23120
C6—C1—N2118.8 (3)O8—N6—O10119.5 (4)
C1—C2—C3119.3 (3)O8—N6—O9120.5 (4)
C1—C2—H3120.4O10—N6—O9120.0 (4)
C3—C2—H3120.4C20—C19—C24121.0 (3)
O7—N5—O5120.9 (4)C20—C19—S2120.3 (3)
O7—N5—O6120.3 (4)C24—C19—S2118.6 (3)
O5—N5—O6118.8 (4)C9—C10—C11121.1 (3)
C6—C5—C4119.6 (3)C9—C10—N1119.3 (3)
C6—C5—H6120.2C11—C10—N1119.6 (3)
C4—C5—H6120.2C20—C21—C22118.8 (4)
C5—C6—C1119.1 (3)C20—C21—H21120.6
C5—C6—H7120.4C22—C21—H21120.6
C1—C6—H7120.4C10—C11—C12119.7 (4)
C7—C8—C9118.1 (4)C10—C11—H11120.1
C7—C8—H8120.9C12—C11—H11120.1
C9—C8—H8120.9C18—C17—C16119.5 (3)
O11—N7—O12119.2 (4)C18—C17—H17120.3
O11—N7—O13120.2 (4)C16—C17—H17120.3
O12—N7—O13120.6 (4)C17—C18—C13119.5 (4)
C23—C22—C21121.1 (3)C17—C18—H18120.3
C23—C22—N4119.4 (3)C13—C18—H18120.3
C21—C22—N4119.5 (4)C13—N3—H3C109.5
C21—C20—C19120.2 (4)C13—N3—H3A109.5
C21—C20—H20119.9H3C—N3—H3A109.5
C19—C20—H20119.9C13—N3—H3B109.5
C3—C4—C5121.0 (3)H3C—N3—H3B109.5
C3—C4—S1118.9 (3)H3A—N3—H3B109.5
C5—C4—S1120.0 (3)
C6—C1—C2—C30.4 (6)O1—S1—C7—C12169.1 (3)
N2—C1—C2—C3179.5 (3)O2—S1—C7—C1239.0 (3)
C4—C5—C6—C10.3 (6)C4—S1—C7—C1276.0 (3)
C2—C1—C6—C50.3 (6)O1—S1—C7—C86.5 (3)
N2—C1—C6—C5179.6 (3)O2—S1—C7—C8136.6 (3)
C6—C5—C4—C30.7 (6)C4—S1—C7—C8108.3 (3)
C6—C5—C4—S1176.9 (3)C19—C24—C23—C220.8 (6)
O1—S1—C4—C336.4 (3)C21—C22—C23—C241.2 (6)
O2—S1—C4—C3166.7 (3)N4—C22—C23—C24178.8 (4)
C7—S1—C4—C378.5 (3)C21—C20—C19—C241.2 (6)
O1—S1—C4—C5139.8 (3)C21—C20—C19—S2178.4 (3)
O2—S1—C4—C59.6 (4)C23—C24—C19—C200.4 (6)
C7—S1—C4—C5105.3 (3)C23—C24—C19—S2177.6 (3)
C5—C4—C3—C20.6 (6)O3—S2—C19—C20161.2 (3)
S1—C4—C3—C2176.8 (3)O4—S2—C19—C2030.0 (4)
C1—C2—C3—C40.0 (6)C16—S2—C19—C2084.6 (4)
C18—C13—C14—C150.2 (6)O3—S2—C19—C2416.0 (4)
N3—C13—C14—C15178.4 (3)O4—S2—C19—C24147.2 (3)
C13—C14—C15—C160.3 (6)C16—S2—C19—C2498.2 (3)
C14—C15—C16—C170.2 (6)C8—C9—C10—C111.5 (6)
C14—C15—C16—S2173.8 (3)C8—C9—C10—N1178.5 (3)
O3—S2—C16—C15135.2 (3)C19—C20—C21—C220.8 (6)
O4—S2—C16—C154.1 (3)C23—C22—C21—C200.4 (6)
C19—S2—C16—C15110.3 (3)N4—C22—C21—C20179.6 (4)
O3—S2—C16—C1738.5 (3)C9—C10—C11—C121.7 (6)
O4—S2—C16—C17169.5 (3)N1—C10—C11—C12178.3 (3)
C19—S2—C16—C1776.1 (3)C7—C12—C11—C100.4 (6)
C7—C8—C9—C100.0 (6)C15—C16—C17—C181.2 (6)
C11—C12—C7—C81.0 (6)S2—C16—C17—C18174.8 (3)
C11—C12—C7—S1174.6 (3)C16—C17—C18—C131.7 (6)
C9—C8—C7—C121.2 (5)C14—C13—C18—C171.3 (6)
C9—C8—C7—S1174.4 (3)N3—C13—C18—C17177.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O8i0.892.08002.959 (4)169
N1—H1A···O10i0.892.44003.057 (4)127
N1—H1B···O14ii0.891.93002.796 (4)163
N1—H1C···O12ii0.892.05002.920 (5)166
N2—H2A···O80.892.28003.132 (4)160
N2—H2A···O90.892.33002.937 (5)125
N2—H2B···O11iii0.892.13003.015 (5)176
N2—H2B···O13iii0.892.39002.979 (4)124
N2—H2C···O9iii0.892.56003.086 (5)119
N2—H2C···O10iii0.892.04002.912 (5)166
N3—H3A···O6iv0.892.10002.957 (4)161
N3—H3A···O7iv0.892.37003.115 (5)141
N3—H3B···O13i0.892.05002.906 (4)163
N3—H3C···O1Wi0.891.91002.740 (5)154
N4—H4A···O50.892.10002.982 (4)169
N4—H4A···O60.892.39003.071 (4)134
N4—H4B···O5v0.892.08002.960 (5)171
N4—H4B···O7v0.892.38002.988 (5)125
N4—H4C···O14iii0.891.98002.861 (4)169
N4—H4C···O15iii0.892.50003.111 (5)126
O1W—H1W···O1vi0.86 (4)2.18 (5)2.834 (5)133 (5)
O1W—H2W···O12vii0.85 (4)2.19 (6)2.940 (6)147 (5)
C9—H9···O10i0.932.60003.359 (5)139
C9—H9···O13i0.932.57003.206 (5)126
C14—H14···O7iv0.932.50003.295 (5)143
C14—H14···O14ii0.932.53003.194 (5)128
C15—H15···O16ii0.932.46003.351 (6)160
C23—H23···O14iii0.932.52003.227 (4)133
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1; (iv) x+1, y1/2, z+1/2; (v) x+1/2, y+3/2, z+1; (vi) x+1, y1, z; (vii) x+2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Frères Mentouri Constantine, Algeria. Thanks are due to MESRS and ATRST (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie, Algérie) for financial support via the PNR program.

References

First citationAlmarsson, Ö. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889.
First citationBel'skii, V. K., Chernikova, N. Yu., Rotatu, V. K. & Kruchinin, M. M. (1983). Kristallografiya, 28, 690–694 .  CAS
First citationBertolasi, V., Ferretti, V., Gilli, P. & De Benedetti, P. G. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 213–219.  CSD CrossRef
First citationBocelli, G. & Cantoni, A. (1990). Acta Cryst. C46, 2257–2259.  CSD CrossRef CAS Web of Science IUCr Journals
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationDickinson, C., Stewart, J. M. & Ammon, H. L. (1970). J. Chem. Soc. D, pp. 920–921.
First citationEccles, K. S., Elcoate, C. J., Stokes, S. P., Maguire, A. R. & Lawrence, S. E. (2010). Cryst. Growth Des. 10, 4243–4245.  Web of Science CSD CrossRef CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationKus'mina, L. G., Struchkov, Yu. T., Novozhilova, N. V. & Tudorovskaya, G. L. (1981). Kristallografiya, 26, 690–694.
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals
First citationPersistence of Vision (2004). POVray. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: https://www.povray.org/.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSmith, G. & Wermuth, U. D. (2013). J. Chem. Crystallogr. 43, 664–670.  Web of Science CSD CrossRef CAS
First citationSu, G.-B., Feng, P., He, Y.-P. & Guo, S.-W. (1992). Jiegou Huaxue 11, 293–296.  CAS
First citationWilson, J. D., Braunwald, E., Isselbacher, K. J., Petersdorf, R. G., Martin, J. B., Fauci, A. S. & Root, R. K. (1991). Harrison's Principles of Internal Medicine, 12th ed, pp. 320, 647, 787. New York: McGraw-Hill.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds