research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-N-benzyl­­idene-1-phenyl­methanamine oxide hydrogen peroxide monosolvate

CROSSMARK_Color_square_no_text.svg

aInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prospekt 31, Moscow 119991, Russian Federation
*Correspondence e-mail: churakov@igic.ras.ru

Edited by G. Smith, Queensland University of Technology, Australia (Received 29 September 2017; accepted 7 October 2017; online 20 October 2017)

The title adduct, C14H13NO·H2O2, consists of (Z)-N-benzyl­idene-1-phenyl­methanamine oxide and hydrogen peroxide mol­ecules in a 1:1 ratio. The organic coformer adopts a skew geometry with an inter-aryl-ring dihedral angle of 81.9 (2)°. In the crystal, the organic and peroxide mol­ecules are linked through both peroxide O—H donor groups to oxide O-atom acceptors, giving one-dimensional chains extending along the b axis. Present also are weak inter­molecular C—H⋯O hydrogen-bonding inter­actions.

1. Chemical context

Peroxosolvates are solid adducts that contain hydrogen peroxide mol­ecules of crystallization in the same manner as the water in crystalline hydrates. Today, some of these are widely used as environmentally friendly bleaching compounds (Jakob et al., 2012[Jakob, H., Leininger, S., Lehmann, T., Jacobi, S. & Gutewort, S. (2012). Ullmann's Encyclopedia of Industrial Chemistry, pp. 1-33. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.]) and oxidizing agents in organic synthesis (Ahn et al., 2015[Ahn, S. H., Cluff, K. J., Bhuvanesh, N. & Blümel, J. (2015). Angew. Chem. Int. Ed. 54, 13341-13345.]). Hydrogen bonding in peroxosolvates is of particular inter­est since it may be used for modelling of hydrogen peroxide behaviour in various significant biochemical processes (Kapustin et al., 2014[Kapustin, E. A., Minkov, V. S. & Boldyreva, E. V. (2014). CrystEngComm, 16, 10165-10168.]).

[Scheme 1]

It is known that nitro­nes R1–CH=N(O)–R2 [R1, R2 = aryl (Ar) or alkyl (Alk)] are readily available by oxidation of secondary amines using hydrogen peroxide (Goti et al., 2005[Goti, A., Cardona, F. & Soldaini, G. (2005). Org. Synth. 81, 204-212.]). We supposed that the combination of oxidizing and cocrystallizing properties of hydrogen peroxide might afford an opportunity to obtain nitrone peroxosolvates in one step. We prepared the title 1:1 adduct of (Z)-N-benzyl­idene-1-phenyl­methanamine oxide with hydrogen peroxide and the structure is reported herein.

2. Structural commentary

In the structure of the title adduct (Fig. 1[link]), all bond lengths and angles in the organic coformer exhibit normal values for nitrone derivatives (Cambridge Structural Database, Version 5.38, May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The nitrone fragment Ph—CH=N(O)—C is planar to within 0.128 (3) Å. It is almost perpendicular to the benzyl substituent C11–C17, with an O3—N1—C11—C12 torsion angle of 72.7 (4)°, and forms a dihedral angle between the two aryl rings of 81.9 (2)°. This is the same conformation as was previously observed in the structure of the pure coformer (Herrera et al., 2001[Herrera, R., Nagarajan, A., Morales, M. A., Méndez, F., Jiménez-Vázquez, H. A., Zepeda, L. G. & Tamariz, J. (2001). J. Org. Chem. 66, 1252-1263.]). The organic mol­ecule forms two hydrogen bonds, involving the negatively charged oxide atom O3, with adjacent peroxide mol­ecules and the conformation is stabilized by an aromatic C27—H⋯O3 hydrogen bond (Table 1[link]). As expected, the N1—O3⋯O(peroxo) angles are close to trigonal [117.9 (2) and 126.2 (2)°].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 1.05 (5) 1.66 (5) 2.707 (5) 174 (4)
O2—H2⋯O3i 1.06 (5) 1.64 (5) 2.681 (5) 166 (4)
C21—H21⋯O1ii 0.95 2.46 3.304 (6) 148
C27—H27⋯O3 0.95 2.29 2.902 (6) 121
C11—H111⋯O1ii 0.99 2.44 3.364 (7) 155
C11—H111⋯O2ii 0.99 2.47 3.394 (7) 155
C11—H112⋯O2 0.99 2.52 3.407 (7) 149
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit in the title structure. Displacement ellipsoids are shown at the 50% probability level and the hydrogen bond is drawn as a dashed line.

In the peroxide mol­ecule, the O—O distance is 1.467 (4) Å. This value is close to those previously observed in the accurately determined structures of crystalline hydrogen peroxide [1.461 (3) Å; Savariault et al., 1980[Savariault, J. & Lehmann, M. S. (1980). J. Am. Chem. Soc. 102, 1298-1303.]] and urea perhydrate [1.4573 (8) Å; Fritchie & McMullan, 1981[Fritchie, C. J. & McMullan, R. K. (1981). Acta Cryst. B37, 1086-1091.]]. Partial substitutional disorder of hydrogen peroxide by water mol­ecules (Pedersen, 1972[Pedersen, B. F. (1972). Acta Cryst. B28, 746-754.]) was not observed in the present structure since no residual peaks with an intensity of 0.14 e Å−3 were seen in the hydrogen peroxide mol­ecule region (Churakov et al., 2005[Churakov, A. V., Prikhodchenko, P. V. & Howard, J. A. K. (2005). CrystEngComm, 7, 664-669.]). The H2O2 mol­ecule lies on a general position and presents a skew geometry, with the H—O—O—H torsion angle equal to 88 (4)°, and forms just two donor hydrogen bonds. It should be noted that the maximum possible number of hydrogen bonds formed by H2O2 is six (two donor and four acceptor; Chernyshov et al., 2017[Chernyshov, I. Yu., Vener, M. V., Prikhodchenko, P. V., Medvedev, A. G., Lev, O. & Churakov, A. V. (2017). Cryst. Growth Des. 17, 214-220.]).

3. Supra­molecular features

In the title crystal, the organic and peroxide mol­ecules are linked into hydrogen-bonded chains extending along the b axis through charge-supported moderate HOOH⋯O—N hydrogen bonds, with O⋯O separations of 2.707 (5) and 2.681 (5) Å (Table 1[link] and Fig. 2[link]). Similar chains formed by N-oxide and H2O2 mol­ecules were previously observed in the structure of risperidone N-oxide hydrogen peroxide methanol solvate (Ravikumar et al., 2005[Ravikumar, K., Sridhar, B., Manjunatha, S. G. & Thomas, S. (2005). Acta Cryst. E61, o2515-o2517.]). In the present one-dimensional structure, minor weak non-aromatic C—H⋯O(peroxide) hydrogen-bonding inter­actions are also present.

[Figure 2]
Figure 2
Hydrogen-bonded chains extending along the b axis. H atoms on C atoms have been omitted for clarity. Hydrogen bonds are drawn as dashed lines.

4. Database survey

The Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains data for nine peroxosolvates of N- and P-oxides with one or two R3X+ → O functional groups (X = N, P; R = Alk, Ar). It is of inter­est that all of these were obtained by oxidation of the corresponding amines (phosphines) using hydrogen peroxide, followed by immediate crystallization from the reaction mixtures. Analysis of the crystal packing for these compounds reveals three main supra­molecular motifs (Fig. 3[link]a–3c). Compounds BAFGOH (Ahn et al., 2015[Ahn, S. H., Cluff, K. J., Bhuvanesh, N. & Blümel, J. (2015). Angew. Chem. Int. Ed. 54, 13341-13345.]), BAFJUQ (Ahn et al., 2015[Ahn, S. H., Cluff, K. J., Bhuvanesh, N. & Blümel, J. (2015). Angew. Chem. Int. Ed. 54, 13341-13345.]), VANVOX (Hilliard et al., 2012[Hilliard, C. R., Bhuvanesh, N. J., Gladysz, A. & Blümel, J. (2012). Dalton Trans. 41, 1742-1754.]) and XETSUK (Čermák et al., 2001[Čermák, J., Kvíčalová, M., Šabata, S., Blechta, V., Vojtíšek, P., Podlaha, J. & Shaw, B. L. (2001). Inorg. Chim. Acta, 313, 77-86.]) belong to type a [R42(10)]; compounds EKULUR (Chandrasekaran et al., 2002[Chandrasekaran, A., Timosheva, N. V., Day, R. O. & Holmes, R. R. (2002). Inorg. Chem. 41, 5235-5240.]), TPPOPH (Thierbach et al., 1980[Thierbach, D., Huber, F. & Preut, H. (1980). Acta Cryst. B36, 974-977.]) and UKEFEV (Sevcik et al., 2003[Sevcik, R., Necas, M. & Novosad, J. (2003). Polyhedron, 22, 1585-1593.]) represent type b [D22(6)]. Finally, the title compound and DATHIQ (Ravikumar et al., 2005[Wolanov, Y., Lev, O., Churakov, A. V., Medvedev, A. G., Novotortsev, V. M. & Prikhodchenko, P. V. (2010). Tetrahedron, 66, 5130-5133.]) are of type c [C21(5)]. The relative simplicity of these motifs is caused by the absence of active H atoms in coformers of the aforementioned compounds. The special case is the three-dimensional structure of tri­ethyl­enedi­amine N,N′-dioxide triperoxosolvate (FURFIH; Kay Hon & Mak, 1987[Kay Hon, P. & Mak, T. C. W. (1987). J. Crystallogr. Spectrosc. Res. 17, 419-429.]).

[Figure 3]
Figure 3
Hydrogen-bonded motifs in the structures of N- and P-oxides.

5. Synthesis and crystallization

Needle-shaped crystals of the title compound crystallized spontaneously from a saturated solution of di­benzyl­amine in 50% hydrogen peroxide after holding for 3 d at room temperature. Caution! Handling procedures for concentrated hydrogen peroxide (danger of explosion) are described in detail by Wolanov et al. (2010[Wolanov, Y., Lev, O., Churakov, A. V., Medvedev, A. G., Novotortsev, V. M. & Prikhodchenko, P. V. (2010). Tetrahedron, 66, 5130-5133.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Peroxide H atoms were found from a difference electron-density map and refined with individual isotropic displacement parameters and restrained O—H distances. All other H atoms were placed in calculated positions, with C—H = 0.95 (aromatic) or 0.99 Å (methyl­ene), and treated as riding atoms, with relative isotropic displacement parameters Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C14H13NO·H2O2
Mr 245.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 21.802 (15), 4.597 (3), 12.742 (9)
β (°) 97.598 (11)
V3) 1265.8 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.40 × 0.04 × 0.04
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.965, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 7458, 2227, 1113
Rint 0.108
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.218, 1.05
No. of reflections 2227
No. of parameters 172
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.26
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(Z)-N-Benzylidene-1-phenylmethanamine oxide hydrogen peroxide monosolvate top
Crystal data top
C14H13NO·H2O2F(000) = 520
Mr = 245.27Dx = 1.287 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 737 reflections
a = 21.802 (15) Åθ = 3.2–21.9°
b = 4.597 (3) ŵ = 0.09 mm1
c = 12.742 (9) ÅT = 150 K
β = 97.598 (11)°Needle, colourless
V = 1265.8 (16) Å30.40 × 0.04 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2227 independent reflections
Radiation source: fine-focus sealed tube1113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.108
ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2525
Tmin = 0.965, Tmax = 0.996k = 55
7458 measured reflectionsl = 1514
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.077H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.218 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2227 reflectionsΔρmax = 0.27 e Å3
172 parametersΔρmin = 0.26 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23321 (15)0.7522 (7)1.0077 (3)0.0427 (9)
O20.28942 (16)0.9116 (7)0.9911 (3)0.0442 (10)
O30.22608 (15)0.3093 (6)0.8666 (2)0.0377 (9)
N10.23366 (18)0.3713 (7)0.7676 (3)0.0319 (10)
C110.2883 (2)0.5529 (9)0.7569 (4)0.0342 (12)
H1120.28940.72100.80570.041*
H1110.28550.62840.68360.041*
C120.3463 (2)0.3775 (9)0.7821 (4)0.0344 (12)
C130.3802 (2)0.3866 (10)0.8826 (4)0.0438 (13)
H130.36720.50830.93560.053*
C140.4332 (2)0.2183 (12)0.9054 (5)0.0573 (16)
H140.45630.22290.97410.069*
C150.4521 (3)0.0431 (12)0.8270 (5)0.0592 (17)
H150.48880.06940.84220.071*
C160.4190 (2)0.0295 (12)0.7281 (5)0.0521 (15)
H160.43170.09520.67560.063*
C170.3671 (2)0.1997 (10)0.7062 (4)0.0423 (13)
H170.34470.19540.63700.051*
C210.1988 (2)0.2713 (9)0.6851 (4)0.0334 (11)
H210.20830.33660.61840.040*
C220.1470 (2)0.0714 (9)0.6825 (4)0.0330 (12)
C230.1155 (2)0.0141 (11)0.5825 (4)0.0432 (13)
H230.12800.10640.52210.052*
C240.0658 (2)0.1774 (11)0.5704 (4)0.0480 (14)
H240.04380.21290.50220.058*
C250.0486 (2)0.3157 (11)0.6579 (4)0.0479 (14)
H250.01490.44810.64990.057*
C260.0800 (2)0.2629 (11)0.7565 (4)0.0443 (14)
H260.06810.36060.81640.053*
C270.1284 (2)0.0708 (9)0.7696 (4)0.0356 (12)
H270.14950.03410.83840.043*
H10.232 (2)0.588 (9)0.950 (4)0.060 (15)*
H20.268 (2)1.058 (10)0.933 (4)0.057 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.054 (2)0.0379 (19)0.038 (2)0.0100 (17)0.0135 (17)0.0039 (15)
O20.050 (2)0.0394 (19)0.044 (2)0.0075 (17)0.0069 (18)0.0001 (16)
O30.052 (2)0.0361 (17)0.026 (2)0.0051 (15)0.0106 (16)0.0026 (14)
N10.041 (2)0.027 (2)0.029 (2)0.0001 (18)0.012 (2)0.0011 (17)
C110.041 (3)0.033 (2)0.029 (3)0.005 (2)0.008 (2)0.001 (2)
C120.038 (3)0.030 (2)0.036 (3)0.007 (2)0.006 (2)0.004 (2)
C130.043 (3)0.045 (3)0.044 (4)0.000 (3)0.005 (3)0.005 (2)
C140.047 (3)0.064 (4)0.058 (4)0.003 (3)0.002 (3)0.019 (3)
C150.052 (4)0.048 (3)0.080 (5)0.004 (3)0.020 (4)0.016 (3)
C160.044 (3)0.054 (3)0.060 (4)0.004 (3)0.014 (3)0.006 (3)
C170.042 (3)0.043 (3)0.043 (3)0.002 (3)0.012 (3)0.004 (2)
C210.038 (3)0.031 (2)0.031 (3)0.004 (2)0.001 (2)0.001 (2)
C220.035 (3)0.034 (2)0.030 (3)0.004 (2)0.007 (2)0.000 (2)
C230.046 (3)0.047 (3)0.035 (3)0.000 (3)0.004 (3)0.003 (2)
C240.039 (3)0.056 (3)0.046 (4)0.005 (3)0.005 (3)0.007 (3)
C250.042 (3)0.051 (3)0.053 (4)0.008 (3)0.016 (3)0.013 (3)
C260.051 (3)0.042 (3)0.043 (3)0.002 (3)0.017 (3)0.005 (2)
C270.033 (3)0.038 (3)0.037 (3)0.001 (2)0.009 (2)0.004 (2)
Geometric parameters (Å, º) top
O1—O21.467 (4)C16—C171.375 (7)
O1—H11.05 (4)C16—H160.9500
O2—H21.06 (4)C17—H170.9500
O3—N11.325 (4)C21—C221.454 (6)
N1—C211.297 (6)C21—H210.9500
N1—C111.475 (6)C22—C231.390 (6)
C11—C121.498 (6)C22—C271.393 (6)
C11—H1120.9900C23—C241.388 (7)
C11—H1110.9900C23—H230.9500
C12—C171.388 (6)C24—C251.378 (7)
C12—C131.392 (7)C24—H240.9500
C13—C141.388 (7)C25—C261.371 (7)
C13—H130.9500C25—H250.9500
C14—C151.389 (8)C26—C271.368 (7)
C14—H140.9500C26—H260.9500
C15—C161.368 (8)C27—H270.9500
C15—H150.9500
O2—O1—H1102 (3)C17—C16—H16120.6
O1—O2—H297 (3)C16—C17—C12122.0 (5)
C21—N1—O3124.2 (4)C16—C17—H17119.0
C21—N1—C11121.3 (4)C12—C17—H17119.0
O3—N1—C11114.4 (4)N1—C21—C22127.8 (4)
N1—C11—C12110.1 (3)N1—C21—H21116.1
N1—C11—H112109.6C22—C21—H21116.1
C12—C11—H112109.6C23—C22—C27118.8 (4)
N1—C11—H111109.6C23—C22—C21115.4 (4)
C12—C11—H111109.6C27—C22—C21125.8 (5)
H112—C11—H111108.1C24—C23—C22120.3 (5)
C17—C12—C13118.4 (5)C24—C23—H23119.8
C17—C12—C11120.8 (5)C22—C23—H23119.8
C13—C12—C11120.9 (4)C25—C24—C23119.6 (5)
C14—C13—C12120.2 (5)C25—C24—H24120.2
C14—C13—H13119.9C23—C24—H24120.2
C12—C13—H13119.9C26—C25—C24120.2 (5)
C13—C14—C15119.3 (6)C26—C25—H25119.9
C13—C14—H14120.3C24—C25—H25119.9
C15—C14—H14120.3C27—C26—C25120.6 (5)
C16—C15—C14121.3 (6)C27—C26—H26119.7
C16—C15—H15119.4C25—C26—H26119.7
C14—C15—H15119.4C26—C27—C22120.4 (5)
C15—C16—C17118.8 (5)C26—C27—H27119.8
C15—C16—H16120.6C22—C27—H27119.8
C21—N1—C11—C12103.9 (5)C11—N1—C21—C22174.4 (4)
O3—N1—C11—C1272.7 (4)N1—C21—C22—C23176.4 (4)
N1—C11—C12—C1782.7 (5)N1—C21—C22—C276.0 (7)
N1—C11—C12—C1396.6 (5)C27—C22—C23—C241.2 (7)
C17—C12—C13—C140.7 (7)C21—C22—C23—C24179.0 (4)
C11—C12—C13—C14178.7 (4)C22—C23—C24—C251.4 (7)
C12—C13—C14—C150.5 (7)C23—C24—C25—C260.5 (7)
C13—C14—C15—C161.1 (8)C24—C25—C26—C270.6 (7)
C14—C15—C16—C171.8 (8)C25—C26—C27—C220.8 (7)
C15—C16—C17—C122.0 (7)C23—C22—C27—C260.1 (7)
C13—C12—C17—C161.4 (7)C21—C22—C27—C26177.6 (4)
C11—C12—C17—C16178.0 (4)H1—O1—O2—H288 (4)
O3—N1—C21—C221.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O31.05 (5)1.66 (5)2.707 (5)174 (4)
O2—H2···O3i1.06 (5)1.64 (5)2.681 (5)166 (4)
C21—H21···O1ii0.952.463.304 (6)148
C27—H27···O30.952.292.902 (6)121
C11—H111···O1ii0.992.443.364 (7)155
C11—H111···O2ii0.992.473.394 (7)155
C11—H112···O20.992.523.407 (7)149
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2.
 

Acknowledgements

X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS. Publication was supported by the Federal Agency of Scientific Organizations within the State Assignment on Fundamental Research to the Kurnakov Institute of General and Inorganic Chemistry.

References

First citationAhn, S. H., Cluff, K. J., Bhuvanesh, N. & Blümel, J. (2015). Angew. Chem. Int. Ed. 54, 13341–13345.  CAS
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationČermák, J., Kvíčalová, M., Šabata, S., Blechta, V., Vojtíšek, P., Podlaha, J. & Shaw, B. L. (2001). Inorg. Chim. Acta, 313, 77–86.
First citationChandrasekaran, A., Timosheva, N. V., Day, R. O. & Holmes, R. R. (2002). Inorg. Chem. 41, 5235–5240.  Web of Science CSD CrossRef PubMed CAS
First citationChernyshov, I. Yu., Vener, M. V., Prikhodchenko, P. V., Medvedev, A. G., Lev, O. & Churakov, A. V. (2017). Cryst. Growth Des. 17, 214–220.  CAS
First citationChurakov, A. V., Prikhodchenko, P. V. & Howard, J. A. K. (2005). CrystEngComm, 7, 664–669.  Web of Science CSD CrossRef CAS
First citationFritchie, C. J. & McMullan, R. K. (1981). Acta Cryst. B37, 1086–1091.  CSD CrossRef CAS Web of Science IUCr Journals
First citationGoti, A., Cardona, F. & Soldaini, G. (2005). Org. Synth. 81, 204–212.  CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHerrera, R., Nagarajan, A., Morales, M. A., Méndez, F., Jiménez-Vázquez, H. A., Zepeda, L. G. & Tamariz, J. (2001). J. Org. Chem. 66, 1252–1263.  PubMed CAS
First citationHilliard, C. R., Bhuvanesh, N. J., Gladysz, A. & Blümel, J. (2012). Dalton Trans. 41, 1742–1754.  CAS PubMed
First citationJakob, H., Leininger, S., Lehmann, T., Jacobi, S. & Gutewort, S. (2012). Ullmann's Encyclopedia of Industrial Chemistry, pp. 1–33. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
First citationKapustin, E. A., Minkov, V. S. & Boldyreva, E. V. (2014). CrystEngComm, 16, 10165–10168.  CAS
First citationKay Hon, P. & Mak, T. C. W. (1987). J. Crystallogr. Spectrosc. Res. 17, 419–429.
First citationPedersen, B. F. (1972). Acta Cryst. B28, 746–754.  CSD CrossRef CAS IUCr Journals Web of Science
First citationRavikumar, K., Sridhar, B., Manjunatha, S. G. & Thomas, S. (2005). Acta Cryst. E61, o2515–o2517.  Web of Science CSD CrossRef IUCr Journals
First citationSavariault, J. & Lehmann, M. S. (1980). J. Am. Chem. Soc. 102, 1298–1303.  CAS
First citationSevcik, R., Necas, M. & Novosad, J. (2003). Polyhedron, 22, 1585–1593.  CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationThierbach, D., Huber, F. & Preut, H. (1980). Acta Cryst. B36, 974–977.  CSD CrossRef CAS IUCr Journals Web of Science
First citationWolanov, Y., Lev, O., Churakov, A. V., Medvedev, A. G., Novotortsev, V. M. & Prikhodchenko, P. V. (2010). Tetrahedron, 66, 5130–5133.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds