research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the BaII-based CoII-containing one-dimensional coordination polymer poly[[aqua{μ4-2,2′-[(4,10-di­methyl-1,4,7,10-tetra­aza­cyclo­do­decane-1,7-di­yl)bis­(methyl­idene)]bis­­(4-oxo-4H-pyran-3-olato)}­perchloratocobaltbarium] perchlorate]

CROSSMARK_Color_square_no_text.svg

aDepartment of Industrial Engineering, University of Firenze, via Santa Marta 3, I-50139 Firenze, Italy, and bDepartment of Pure and Applied Sciences, Lab of Supramolecular Chemistry, University of Urbino, via della Stazione, 4, I-61029 Urbino, Italy
*Correspondence e-mail: eleonora.macedi@unifi.it

Edited by O. Büyükgüngör, Ondokuz Mayıs University, Turkey (Received 30 September 2017; accepted 26 October 2017; online 3 November 2017)

The title compound, {[Ba{Co(H-2L1)}(ClO4)(H2O)]ClO4}n, L1 = 4,10-bis­[(3-hy­droxy-4-pyron-2-yl)meth­yl]-1,7-dimethyl-1,4,7,10-tetra­aza­cyclo­dodeca­ne, is a one-dimensional coordination polymer. The asymmetric unit consists of a {Ba[Co(H–2L1)](ClO4)(H2O)}+ cationic fragment and a non-coordinating ClO4 anion. In the neutral [Co(H–2L1)] moiety, the cobalt ion is hexa­coordinated in a trigonal–prismatic fashion by the surrounding N4O2 donor set. The Ba2+ ion is nine-coordinated and exhibits a distorted [BaO9] monocapped square-anti­prismatic geometry, the six oxygen atoms coming from three distinct [Co(H–2L1)] moieties, while the remaining three vertices are occupied by the oxygen atoms of a bidentate perchlorate anion and a water mol­ecule. A barium–μ2-oxygen motif develops along the a axis, connecting symmetry-related dinuclear BaII–CoII cationic fragments in a wave-like chain, forming a one-dimensional metal coordination polymer. Non-coordinating ClO4 anions are located in the space between the chains. Weak C—H⋯O hydrogen bonds involving both coordinating and non-coordinating perchlorate anions build the whole crystal architecture. To our knowledge, this is the first example of a macrocyclic ligand forming a BaII-based one-dimensional coordination polymer, containing CoII ions surrounded by a N4O2 donor set.

1. Chemical context

Metal coordination polymers (CPs) have witnessed continuous growth, owing to their fascinating structural diversity in terms of architecture and topology and also their numerous potential applications, such as gas storage (Banerjee et al., 2016[Banerjee, D., Simon, C. M., Plonka, A. M., Motkuri, R. K., Liu, J., Chen, X. Y., Smit, B., Parise, J. B., Haranczyk, M. & Thallapally, P. K. (2016). Nat. Commun. 7, 11831.]; Fracaroli et al., 2014[Fracaroli, A. M., Furukawa, H., Suzuki, M., Dodd, M., Okajima, S., Gándara, F., Reimer, J. A. & Yaghi, O. M. (2014). J. Am. Chem. Soc. 136, 8863-8866.]; Sumida et al., 2012[Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H. & Long, J. R. (2012). Chem. Rev. 112, 724-781.]; Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D. W. (2012). Chem. Rev. 112, 782-835.]), chemical sensing (Campbell et al., 2015[Campbell, M. G., Sheberla, D., Liu, S. F., Swager, T. M. & Dincă, M. (2015). Angew. Chem. Int. Ed. 54, 4349-4352.]; Hu et al., 2014[Hu, Z. C., Deibert, B. J. & Li, J. (2014). Chem. Soc. Rev. 43, 5815-5840.]; Wang et al., 2013[Wang, J. H., Li, M. & Li, D. (2013). Chem. Sci. 4, 1793-1801.]; Kreno et al., 2012[Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105-1125.]), catalysis (Chughtai et al., 2015[Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A. & Verpoort, F. (2015). Chem. Soc. Rev. 44, 6804-6849.]; Mo et al., 2014[Mo, K., Yang, Y. & Cui, Y. (2014). J. Am. Chem. Soc. 136, 1746-1749.]; Yoon et al., 2012[Yoon, M., Srirambalaji, R. & Kim, K. (2012). Chem. Rev. 112, 1196-1231.]; Liu, Xuan et al., 2010[Liu, Y., Xuan, W. M. & Cui, Y. (2010). Adv. Mater. 22, 4112-4135.]) and so forth. Recently, the inter­est in alkaline-earth metal ion-based CPs has been growing due to their unusual advantages such as low toxicity, wide distribution and low cost, which are of benefit for applications in the field of materials science (Raja et al., 2014[Raja, D. S., Luo, J. H., Yeh, C. T., Jiang, Y. C., Hsu, K. F. & Lin, C. H. (2014). CrystEngComm, 16, 1985-1994.]; Foo et al., 2012[Foo, M. L., Horike, S., Inubushi, Y. & Kitagawa, S. (2012). Angew. Chem. Int. Ed. 51, 6107-6111.], 2013[Foo, M. L., Horike, S., Duan, J., Chen, W. & Kitagawa, S. (2013). Cryst. Growth Des. 13, 2965-2972.]; Xiao et al., 2012[Xiao, D., Chen, H., Sun, D., He, J., Yan, S., Yang, J., Wang, X., Yuan, R. & Wang, E. (2012). CrystEngComm, 14, 2849-2858.]).

According to a Cambridge Structural Database (CSD, Version 5.38, May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) search, alkaline-earth metal-based CPs are less common compared to the reported transition metal and rare-earth metal CPs (Cai et al., 2017[Cai, S.-L., He, Z.-H., Wu, W.-H., Liu, F.-X., Huang, X.-L., Zheng, S.-R., Fan, J. & Zhang, W. (2017). CrystEngComm, 19, 3003-3016.]). Indeed, the study of alkaline-earth–metal systems is limited by challenges in the synthesis (Lian et al., 2016[Lian, C., Liu, L., Guo, X., Long, Y., Jia, S., Li, H. & Yang, L. (2016). J. Solid State Chem. 233, 229-235.]; Douvali et al., 2015[Douvali, A., Papaefstathiou, G. S., Gullo, M. P., Barbieri, A., Tsipis, A. C., Malliakas, C. D., Kanatzidis, M. G., Papadas, I., Armatas, G. S., Hatzidimitriou, A. G., Lazarides, T. & Manos, M. J. (2015). Inorg. Chem. 54, 5813-5826.]; Mali et al., 2015[Mali, G., Trebosc, J., Martineau, C. & Mazaj, M. (2015). J. Phys. Chem. C, 119, 7831-7841.]; Chakraborty et al., 2014[Chakraborty, A. & Maji, T. K. (2014). APL Mater 2, 124107-7.]; Zhang, Huang et al., 2012[Zhang, X., Huang, Y.-Y., Zhang, M.-J., Zhang, J. & Yao, Y.-G. (2012). Cryst. Growth Des. 12, 3231-3238.]; Liu, Tsao et al., 2010[Liu, H. K., Tsao, T. H., Lin, C. H. & Zima, V. (2010). CrystEngComm, 12, 1044-1047.]), the main reason being the variable coordination numbers (the most preferred coordination numbers are six for magnesium, six to eight for calcium, and six to twelve for strontium and barium), which lead to uncontrolled coordination geometries around the metal centre (Cai et al., 2016[Cai, S. L., Zheng, S. R., Fan, J., Zeng, R. H. & Zhang, W. G. (2016). CrystEngComm, 18, 1174-1183.]; Feng et al., 2015[Feng, X., Feng, Y. Q., Chen, J. J., Ng, S. W., Wang, L. Y. & Guo, J. Z. (2015). Dalton Trans. 44, 804-816.]; Shi et al., 2015[Shi, B. B., Zhong, Y. H., Guo, L. L. & Li, G. (2015). Dalton Trans. 44, 4362-4369.]; Zheng et al., 2015[Zheng, S. R., Wen, Z. Z., Chen, Y. Y., Cai, S. L., Fan, J. & Zhang, W. G. (2015). Inorg. Chem. Commun. 55, 165-168.]; Jia et al., 2014[Jia, H. L., Li, Y. L., Xiong, Z. F., Wang, C. J. & Li, G. (2014). Dalton Trans. 43, 3704-3715.]; Zhang, Yuan et al., 2013[Zhang, Y., Yuan, P., Zhu, Y. & Li, G. (2013). Dalton Trans. 42, 14776-14785.]; Smith et al., 2013[Smith, N. D., Roppe, J. R., Bonnefous, C., Payne, J. E., Zhang, H., Chen, X. H., Lindstrom, A. K., Duron, S. G., Hassing, C. A. & Noble, S. A. (2013). US patent 20080139558-A1.]; Zhai et al., 2013[Zhai, Q. G., Zeng, R. R., Li, S. N., Jiang, Y. C. & Hu, M. C. (2013). CrystEngComm, 15, 965-976.]; Zhang, Guo et al., 2013[Zhang, Y., Guo, B. B., Li, L., Liu, S. F. & Li, G. (2013). Cryst. Growth Des. 13, 367-376.]; Deng et al., 2012[Deng, J. H., Zhong, D. C., Luo, X. Z., Liu, H. J. & Lu, T. B. (2012). Cryst. Growth Des. 12, 4861-4869.]; Foo et al., 2012[Foo, M. L., Horike, S., Inubushi, Y. & Kitagawa, S. (2012). Angew. Chem. Int. Ed. 51, 6107-6111.]; Xiao et al., 2012[Xiao, D., Chen, H., Sun, D., He, J., Yan, S., Yang, J., Wang, X., Yuan, R. & Wang, E. (2012). CrystEngComm, 14, 2849-2858.]; Xie et al., 2012[Xie, L. X., Hou, X. W., Fan, Y. T. & Hou, H. W. (2012). Cryst. Growth Des. 12, 1282-1291.]; Zhang, Luo et al., 2012[Zhang, Y., Luo, X. B., Yang, Z. L. & Li, G. (2012). CrystEngComm, 14, 7382-7397.]; Jing et al., 2010[Jing, X. M., Zhang, L. R., Ma, T. L., Li, G. H., Yu, Y., Huo, Q. S., Eddaoudi, M. & Liu, Y. L. (2010). Cryst. Growth Des. 10, 492-494.]; Zhang et al., 2010[Zhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. & Zhu, Y. Y. (2010). Inorg. Chem. 49, 3776-3788.]; Li et al., 2009[Li, X., Wu, B. L., Niu, C. Y., Niu, Y. Y. & Zhang, H. Y. (2009). Cryst. Growth Des. 9, 3423-3431.]).

Besides, the ability of a system to bind alkaline-earth metal ions in aqueous solution is highly desirable and can be achieved thanks to the presence of oxygenated ligands and the preorganization of the receptor, which satisfies the need for a high coordination number without specific coordination requirements.

Ligand L1 {4,10-bis­[(3-hy­droxy-4-pyron-2-yl)meth­yl]-1,7-dimethyl-1,4,7,10-tetra­aza­cyclo­dodeca­ne} is a Maltol-based macrocycle (Amatori et al., 2012[Amatori, S., Ambrosi, G., Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2012). J. Org. Chem. 77, 2207-2218.]) and is able to form discrete heteropolynuclear complexes. It has already proved to able form a CoII species (Borgogelli et al., 2013[Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 2902-2912.]) that is able to bind hard metal ions such as LnIII (Ln = Gd, Eu) and Na(I). In the case of LnIII ions, heterotrinuclear CoIILnIII–CoII systems form, where the CoII cation preorganizes the system and two CoII species are involved in the coordination of one LnIII ion (Benelli et al., 2013[Benelli, C., Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 5848-5859.]; Rossi et al., 2017[Rossi, P., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M. & Paoli, P. (2017). Inorg. Chim. Acta, doi: 10.1016/j. ica. 2017.06.033.]). In the case of the alkaline ion, a heterodinuclear complex forms, involving only one CoII species (Borgogelli et al., 2013[Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 2902-2912.]).

Herein we present a BaII–CoII heterodinuclear metal coordination compound of L1, where a one-dimensional wave-like infinite array of barium ions bridges the [Co(H–2L1)] moieties through a barium–μ2-oxygen motif. This is the first time that L1 has proven able to form a coordination polymer and, to our knowledge, this is the first example of a macrocyclic ligand forming a BaII-based 1D-CP containing CoII ions surrounded by an N4O2 donor set.

[Scheme 1]

2. Structural commentary

The title compound is the BaII-based CoII-containing 1D-CP of L1 of formula {{Ba[Co(H–2L1)](ClO4)(H2O)}·ClO4}n and crystallizes in the monoclinic system in space group P21/n, with a {Ba[Co(H–2L1)](ClO4)(H2O)}+ cationic fragment (Fig. 1[link]) and a (ClO4) anion in the asymmetric unit.

[Figure 1]
Figure 1
The mol­ecular structure of the {Ba[Co(H–2L1)](ClO4)(H2O)}+ cationic fragment, with the atom labelling and 30% probability displacement ellipsoids. Only one component of the disordered perchlorate anion and water mol­ecule is shown. H atoms have been omitted for clarity. Symmetry codes: (i) −x + 1, −y, −z; (ii) −x + 2, −y, −z.

In the neutral [Co(H-2L1)] moiety, the Co2+ ion is hexa­coordinated and exhibits a distorted trigonal–prismatic geometry (Muetterties & Guggenberger, 1974[Muetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748-1756.]), where the cobalt ion is surrounded by four nitro­gen atoms of the macrocyclic base and two deprotonated hydroxyl oxygen atoms provided by both maltolate rings of the ligand. In the distorted trigonal prism, the O1,N2,N3/O4,N1,N4 atoms define the two triangular faces, which are parallel within 12.51 (11)° (Fig. 2[link]). The cobalt ion is displaced 1.0971 (5) Å above the mean plane described by the four nitro­gen atoms of the tetra­aza­macrocycle [maximum deviation of 0.068 (4) Å for N3] and falls, together with the Co—N(CH3) and Co—O bond distances (Table 1[link]), in the expected range for Co-[12]aneN4 complexes where the cobalt ion is hexa­coordinated with a N4O2 donor set (Fig. 3[link], left). The Co—N(Maltol) bond distances, instead, are longer (Table 1[link]) than the Co—N(CH3) ones and longer with respect to those reported for other Co–L1 complexes [Co—N(Maltol): range 2.26–2.44; Co—N(CH3) range: 2.13–2.19; Benelli et al., 2013[Benelli, C., Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 5848-5859.]; Borgogelli et al., 2013[Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 2902-2912.]; Rossi et al., 2017[Rossi, P., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M. & Paoli, P. (2017). Inorg. Chim. Acta, doi: 10.1016/j. ica. 2017.06.033.]].

Table 1
Selected bond lengths and angles (Å, °)

Co1—N1 2.199 (3)
Co1—N2 2.414 (3)
Co1—N3 2.220 (4)
Co1—N4 2.344 (3)
Co1—O1 2.044 (3)
Co1—O4 2.075 (3)
Ba1—O1 2.688 (3)
Ba1—O2 2.861 (3)
Ba1—O4 2.690 (3)
Ba1—O5 2.814 (3)
Ba1—O1W 2.774 (14)/2.75 (2)/2.972 (15)a
Ba1—O11 2.853 (19)/3.154 (13)b
Ba1—O12 2.955 (18)/2.863 (12)b
N1⋯N3 3.903 (5)
N2⋯N4 4.164 (5)
Ba1⋯Ba1i 4.9123 (4)
Ba1⋯O2i 2.860 (3)
O2⋯O2i 2.932 (4)
Ba1⋯Ba1ii 4.8443 (4)
Ba1⋯O5ii 2.900 (3)
O5⋯O5ii 3.033 (4)
Ba1i⋯Ba1ii 8.8965 (4)
   
Ba1—O1—Co1 113.82 (12)
Ba1—O4—Co1 112.64 (11)
Ba1—O2—Ba1i 118.34 (10)
Ba1—O5—Ba1ii 115.92 (10)
Symmetry codes: (i) = −x + 1, −y, −z; (ii) = −x + 2, −y, −z. Notes: (a) the values refer to O1WA/B/C atoms, respectively; (b) the values refer to the A/B oxygen atoms, respectively, of the disordered perchlorate anion (see Refinement section).
[Figure 2]
Figure 2
Coordination polyhedra around cobalt (left) and barium (right) ions. [Symmetry codes: (i) −x + 1, −y, −z; (ii) −x + 2, −y, −z.]
[Figure 3]
Figure 3
Fragments searched in the CSD.

The conformation of the [12]aneN4 macrocycle is the usual [3333]C-corners one (Meurant, 1987[Meurant, G. (1987). Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal. Amsterdam; New York: Elsevier.]) with the trans nitro­gen distances in agreement with those reported in the CSD for this conformation type, but the N2⋯N4 distance being longer than the N1⋯N3 one by 0.26 Å (Table 1[link]), as found only in 36% of cases. This is probably due to the fact that the Maltol units linked to atoms N2 and N4 are involved in chelate six-membered rings, which stiffen the system and force those nitro­gen atoms to move farther apart.

The two maltolate rings are almost orthogonal to each other (dihedral angle between ring mean planes about 71°); both rings form similar angles (about 55°) with the mean plane N1,N2,N3,N4. The dimensions of the binding area defined by the four oxygen donor atoms of the ligand, as roughly estimated by the distances separating the opposite O1⋯O5 and O2⋯O4 atoms, are quite similar (about 4.5 Å).

Tha Ba2+ ion is nine-coordinated and exhibits a distorted [BaO9] monocapped square-anti­prismatic geometry (Guggenberger & Muetterties, 1976[Guggenberger, L. J. & Muetterties, E. L. (1976). J. Am. Chem. Soc. 98, 7221-7225.]), Fig. 2[link], where the barium cation is surrounded by six oxygen atoms from three distinct [Co(H–2L1)] moieties {four from two maltolate groups of a moiety and two from the carbonyl groups belonging to two distinct symmetry-related moieties, O2i and O5ii [symmetry codes: (i) −x + 1, −y, −z; (ii) −x + 2, −y, −z]}, an oxygen atom of a disordered water mol­ecule and two oxygen atoms of a disordered perchlorate anion, the latter acting as a bidentate ligand (Fig. 1[link]). In the distorted monocapped square anti­prism, the O5 oxygen atom caps the O5ii, O4, O1W, O12 face (Fig. 2[link], right). All bond distances (Table 1[link]) are in agreement with data found in the CSD.

The Ba2+ and Co2+ cations are located 3.9799 (7) Å apart from each other, the line connecting them being normal to the mean plane described by the four nitro­gen atoms of the macrocycle [angle value: 87.59 (7)°; Fig. 1[link]]. As for the bridged Co–O–Ba moiety (Fig. 3[link], right), while the Ba—O and Co—O bond distances and the Ba⋯Co distance are in agreement with those found in the CSD, the corresponding Ba—O—Co angles (Table 1[link]) are outside the observed range (89.5–111.4°).

3. Supra­molecular features

The title compound forms wave-like chains with a repeating unit comprising a dinuclear BaII–CoII cationic fragment with associated coordinating water mol­ecules and perchlorate ions (Fig. 4[link]). Non-coordinating ClO4 anions are located in the space between the chains.

[Figure 4]
Figure 4
Wave-like one-dimensional BaII-based coordination polymer that develops along the a axis. The oxygen and barium atoms belonging to the barium–μ2-oxygen motif are depicted in ball and stick mode. Only one component of the disordered perchlorate anion and water mol­ecule is shown. H atoms and the non-coordinating ClO4 anions have been omitted for clarity. [Symmetry codes: (i) −x + 1, −y, −z; (ii) −x + 2, −y, −z.]

A barium–μ2-oxygen motif develops along the a axis, the angle between the two mean planes formed by atoms Ba, O2, Bai and O2i and atoms Ba, O5, Baii and O5ii is about 40° [symmetry codes: (i) −x + 1, −y, −z; (ii) −x + 2, −y, −z], Fig. 4[link]. The Ba—O bond distances, the O⋯O and Ba⋯Ba distances and the Ba—O—Ba angle values within each plane and the Bai⋯Baii distance (Table 1[link]) are in agreement with data reported in the CSD.

Weak C—H⋯O hydrogen bonds (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. IUCr Monographs on Crystallography, Vol. 9. New York: Oxford University Press.]) involving both coordinating and non-coordinating perchlorate anions build the whole crystal architecture (Table 2[link]). Distinct 1D-CPs are held together by weak C—H⋯O inter­actions between the coordinating perchlorate anions belonging to a CP and methyl­ene hydrogen atoms belonging to the adjacent CPs (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯ D—H H⋯A DA D—H⋯A
C8—H8A⋯O21 0.99 2.91/2.62 3.877 (12)/3.60 (3) 165.3/172.3
C3—H3A⋯O22iii 0.99 2.65/2.48 3.577 (11)/3.46 (3) 155.7/166.7
C8—H8B⋯O13iv 0.99 2.49/2.59 3.46 (2)/3.524 (15) 168.5/156.6
C22—H22⋯O21v 0.95 2.62/2.66 3.482 (11)/3.51 (3) 151.4/149.2
C22—H22⋯O23v 0.95 2.57/2.54 3.455 (11)/3.39 (4) 155.1/149.9
Symmetry codes: (iii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (iv) x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (v) x − 1, y, z. Note: the first and second values for each entry refer to the A and B oxygen atoms, respectively, of the disordered perchlorate anion (see Refinement section).
[Figure 5]
Figure 5
Adjacent CPs connected via hydrogen bonds involving the coordinating ClO4 anions as viewed along the b axis. The coordinating ClO4 anions are depicted in ball and stick mode. Hydrogen bonds are depicted as light-blue dotted lines. Only H atoms involved in the C—H⋯O inter­actions and only one component of the disordered perchlorate anion and water mol­ecule are shown.

The non-coordinating perchlorate anion connects, via a net of weak hydrogen bonds, three {Ba[Co(H-2L1)](ClO4)(H2O)}+ cationic fragments belonging to two different 1D-CPs wave-like disposed along the b axis (Fig. 6[link]).

[Figure 6]
Figure 6
Crystal packing of the title compound as viewed along the a axis. The non-coordinating ClO4 anions are depicted in ball and stick mode. Hydrogen bonds involving the non-coordinating ClO4 anion and two {Ba[Co(H–2L1)](ClO4)(H2O)}+ cationic fragments on the same plane are depicted in light-blue dotted lines. Hydrogen bonds involving the non-coordinating ClO4 anion and a {Ba[Co(H–2L1)](ClO4)(H2O)}+ cationic fragment out of plane (symmetry operation x − 1, y, z) are depicted in grey dotted lines. Only H atoms involved in the C—H⋯O inter­actions and only one component of the disordered perchlorate anion and water mol­ecule are shown.

4. Database survey

Five structures containing L1 were found in a search of the CSD (Version 5.38, May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), three of them containing CoII: a hetero-trinuclear GdIII–CoII–GdIII dimer, a hetero-dinuclear NaI–CoII complex and a CoII complex (Benelli et al., 2013[Benelli, C., Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 5848-5859.]; Amatori et al., 2012[Amatori, S., Ambrosi, G., Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2012). J. Org. Chem. 77, 2207-2218.]; Borgogelli et al., 2013[Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 2902-2912.]). In addition, our group recently published the corresponding hetero-trinuclear Eu–Co–Eu dimer (Rossi et al., 2017[Rossi, P., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M. & Paoli, P. (2017). Inorg. Chim. Acta, doi: 10.1016/j. ica. 2017.06.033.]).

A general search for structures containing both CoII and BaII ions revealed 61 hits, 20 of which are polymeric structures formed by organic ligands containing both oxygen and nitro­gen donor atoms and only two being 1D-CPs. It is noteworthy that none of the 20 structures contains either macrocyclic ligands or an N4O2 donor set around the CoII ion. In eight out of those 20 polymeric structures, the BaII and CoII ions are bridged by oxygen atoms and ten out of 20 show oxygen-bridged BaII ions (only eight forming an infinite chain). Finally, only six out of the 20 polymeric structures contain both oxygen-bridged BaII ions and oxygen-bridged BaII and CoII ions.

All these data suggest that structures containing both oxygen-bridged BaII ions and oxygen-bridged BaII and CoII ions are not common and that no BaII-based 1D-CPs formed by macrocyclic ligands and containing CoII ions surrounded by an N4O2 donor set are present in the CSD.

5. Synthesis and crystallization

Compound L1 was obtained following the synthetic procedure previously reported (Amatori et al., 2012[Amatori, S., Ambrosi, G., Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2012). J. Org. Chem. 77, 2207-2218.]).

To obtain the BaII-based CoII-containing 1D-CP of L1, {{Ba[Co(H–2L1)](ClO4)(H2O)}·ClO4}n, 0.1 mmol of CoCl2· 6H2O in water (10 mL) were added to an aqueous solution (20 mL) containing 0.1 mmol of L1·3HClO4·H2O. The solution was adjusted to pH 7 with 0.1 M N(CH3)4OH and then 0.05 mmol of BaCl2· 2H2O were added. The solution was saturated with NaClO4. The BaII–CoII 1D-CP of L1 quickly precipitated as a microcrystalline pink solid. Crystals suitable for X-ray analysis were instead obtained by slow evaporation of a more diluted aqueous solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms of the macrocycle were positioned geometrically and refined as riding with C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and = 1.2Ueq(C) for other H atoms. Both perchlorate anions are disordered, all oxygen and chlorine atoms were set in double positions [anion 1: Cl1A/B, O11A/B, O12A/B, O13A/B, O14A/B, occupancy factor: 0.40 (3) and 0.60 (3); anion 2: Cl2A/B, O21A/B, O22A/B, O23A/B, O24A/B, occupancy factor: 0.78 (3) and 0.22 (3)]. The water mol­ecule is disordered over three positions [SUMP command was used, occupancies 0.49 (3), 0.27 (3) and 0.24 (3)], the hydrogen atoms were not found in the Fourier-difference map and they were not introduced in the refinement. All non-hydrogen atoms were anisotropically refined: as for the disordered perchlorate anions, the SIMU instruction was used to restrain the anisotropic displacement parameters of the disordered atoms, while the ISOR instruction was used to model the disordered water oxygen atoms.

Table 3
Experimental details

Crystal data
Chemical formula [BaCo(C22H28N4O6)(ClO4)(H2O)]·ClO4
Mr 857.67
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 8.8965 (2), 18.0995 (4), 19.0103 (6)
β (°) 94.572 (2)
V3) 3051.34 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.08
Crystal size (mm) 0.45 × 0.38 × 0.27
 
Data collection
Diffractometer Rigaku OD Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Abingdon, UK.]). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Tmin, Tmax 0.884, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15496, 6966, 5315
Rint 0.037
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.06
No. of reflections 6966
No. of parameters 519
No. of restraints 133
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.00, −0.72
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Abingdon, UK.]), SIR2014 (Burla, 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2014 (Burla, 2015); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXL2014/7 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

Poly[[aqua{µ4-2,2'-[(4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylidene)]bis(4-oxo-4H-pyran-3-olato)}perchloratocobaltbarium] perchlorate] top
Crystal data top
[BaCo(C22H28N4O6)(ClO4)(H2O)]ClO4F(000) = 1708
Mr = 857.67Dx = 1.867 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.8965 (2) ÅCell parameters from 4989 reflections
b = 18.0995 (4) Åθ = 2.2–27.7°
c = 19.0103 (6) ŵ = 2.08 mm1
β = 94.572 (2)°T = 120 K
V = 3051.34 (14) Å3Prism, pink
Z = 40.45 × 0.38 × 0.27 mm
Data collection top
Rigaku OD Xcalibur, Sapphire3
diffractometer
6966 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source5315 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.4547 pixels mm-1θmax = 29.0°, θmin = 2.2°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2222
Tmin = 0.884, Tmax = 1.000l = 2224
15496 measured reflections
Refinement top
Refinement on F2133 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.037P)2 + 2.9358P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6966 reflectionsΔρmax = 1.00 e Å3
519 parametersΔρmin = 0.72 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.75388 (3)0.05421 (2)0.01055 (2)0.03237 (9)
Co10.75301 (6)0.26481 (3)0.07072 (3)0.02836 (14)
O10.6344 (3)0.19069 (15)0.00703 (16)0.0351 (7)
N10.9308 (4)0.33476 (19)0.03199 (19)0.0336 (8)
C10.5130 (6)0.3782 (3)0.1078 (3)0.0545 (14)
H1A0.41890.38970.13000.065*
H1B0.58700.41770.12100.065*
O20.4340 (3)0.07423 (16)0.00434 (18)0.0400 (8)
N20.6147 (4)0.35215 (19)0.00548 (19)0.0350 (8)
C20.4817 (5)0.3772 (3)0.0300 (3)0.0461 (12)
H2A0.39570.34380.01720.055*
H2B0.45300.42750.01330.055*
O30.3318 (3)0.26420 (17)0.11008 (16)0.0374 (7)
N30.5736 (4)0.3060 (2)0.1354 (2)0.0389 (9)
C30.7199 (5)0.4133 (3)0.0140 (3)0.0445 (11)
H3A0.72820.44400.02920.053*
H3B0.68180.44490.05410.053*
O40.8695 (3)0.16663 (15)0.09010 (15)0.0340 (7)
N40.8905 (4)0.30110 (18)0.17530 (19)0.0324 (8)
C40.8729 (5)0.3827 (3)0.0275 (3)0.0434 (11)
H4A0.86500.35370.07180.052*
H4B0.94420.42390.03300.052*
O51.0650 (3)0.05816 (16)0.05118 (17)0.0406 (8)
C50.9983 (5)0.3822 (2)0.0890 (3)0.0422 (11)
H5A0.92930.42400.09620.051*
H5B1.09410.40290.07460.051*
O61.1536 (4)0.16710 (18)0.23669 (17)0.0462 (8)
C61.0284 (5)0.3412 (3)0.1570 (3)0.0414 (11)
H6A1.11140.30550.15270.050*
H6B1.06010.37640.19520.050*
C70.7907 (5)0.3517 (3)0.2110 (3)0.0426 (11)
H7A0.78680.40030.18700.051*
H7B0.83080.35930.26060.051*
C80.6351 (5)0.3191 (3)0.2090 (3)0.0442 (12)
H8A0.63870.27190.23530.053*
H8B0.56780.35330.23240.053*
C90.4532 (6)0.2506 (3)0.1367 (3)0.0589 (15)
H9A0.41060.24090.08850.088*
H9B0.49470.20470.15760.088*
H9C0.37380.26910.16500.088*
C101.0466 (5)0.2848 (3)0.0060 (3)0.0500 (13)
H10A1.00030.25360.03190.075*
H10B1.12740.31430.01210.075*
H10C1.08860.25360.04480.075*
C110.5658 (5)0.3217 (2)0.0762 (2)0.0395 (10)
H11A0.51120.36040.10490.047*
H11B0.65560.30720.10060.047*
C120.4661 (5)0.2566 (2)0.0707 (2)0.0318 (9)
C130.5033 (4)0.1960 (2)0.0315 (2)0.0316 (9)
C140.3993 (4)0.1344 (2)0.0339 (2)0.0325 (9)
C150.2580 (4)0.1477 (2)0.0733 (2)0.0310 (9)
H150.18150.11090.07390.037*
C160.2308 (5)0.2098 (3)0.1090 (2)0.0367 (10)
H160.13580.21580.13490.044*
C170.9321 (5)0.2400 (2)0.2241 (2)0.0404 (11)
H17A0.98630.26040.26730.048*
H17B0.83900.21600.23800.048*
C181.0276 (5)0.1841 (2)0.1936 (2)0.0354 (10)
C190.9936 (4)0.1509 (2)0.1305 (2)0.0307 (9)
C201.0956 (5)0.0936 (2)0.1072 (2)0.0364 (10)
C211.2276 (5)0.0819 (3)0.1537 (3)0.0479 (12)
H211.30170.04790.14040.058*
C221.2496 (6)0.1168 (3)0.2147 (3)0.0536 (14)
H221.33770.10560.24430.064*
Cl1A0.800 (2)0.1249 (9)0.1620 (10)0.047 (2)0.40 (3)
O11A0.658 (2)0.0849 (10)0.1333 (10)0.047 (3)0.40 (3)
O12A0.9088 (18)0.1007 (11)0.1140 (9)0.052 (3)0.40 (3)
O13A0.860 (3)0.0808 (10)0.2136 (12)0.063 (4)0.40 (3)
O14A0.810 (3)0.2057 (12)0.1686 (12)0.074 (4)0.40 (3)
Cl1B0.7844 (14)0.1280 (7)0.1622 (6)0.0479 (16)0.60 (3)
O11B0.6498 (15)0.1036 (8)0.1448 (7)0.051 (2)0.60 (3)
O12B0.8977 (12)0.1255 (8)0.1006 (6)0.056 (2)0.60 (3)
O13B0.8144 (15)0.0963 (8)0.2287 (6)0.064 (3)0.60 (3)
O14B0.750 (2)0.2000 (8)0.1816 (7)0.076 (3)0.60 (3)
Cl2A0.6555 (9)0.0780 (5)0.3226 (4)0.0424 (12)0.78 (3)
O21A0.5765 (11)0.1464 (5)0.3243 (6)0.066 (2)0.78 (3)
O22A0.7030 (10)0.0638 (6)0.3946 (4)0.062 (2)0.78 (3)
O23A0.5501 (11)0.0220 (4)0.2981 (6)0.065 (2)0.78 (3)
O24A0.7821 (9)0.0858 (7)0.2801 (4)0.081 (3)0.78 (3)
Cl2B0.661 (4)0.073 (2)0.317 (2)0.060 (5)0.22 (3)
O21B0.610 (4)0.1450 (16)0.2989 (19)0.053 (6)0.22 (3)
O22B0.733 (4)0.0437 (17)0.381 (2)0.065 (5)0.22 (3)
O23B0.571 (4)0.027 (2)0.272 (2)0.066 (5)0.22 (3)
O24B0.783 (3)0.049 (2)0.2882 (15)0.071 (5)0.22 (3)
O1WA0.6542 (14)0.0192 (9)0.1411 (7)0.079 (4)0.493 (3)
O1WB0.721 (2)0.0144 (13)0.1481 (12)0.054 (5)0.268 (3)
O1WC0.842 (2)0.0011 (8)0.1552 (8)0.058 (4)0.239 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.02904 (15)0.02521 (14)0.04255 (17)0.00132 (10)0.00089 (10)0.00540 (11)
Co10.0275 (3)0.0241 (3)0.0336 (3)0.0011 (2)0.0035 (2)0.0029 (2)
O10.0309 (15)0.0251 (15)0.0476 (19)0.0022 (12)0.0083 (13)0.0040 (13)
N10.0362 (19)0.0289 (19)0.037 (2)0.0018 (15)0.0072 (15)0.0018 (16)
C10.052 (3)0.049 (3)0.065 (4)0.019 (2)0.015 (3)0.007 (3)
O20.0332 (16)0.0273 (16)0.058 (2)0.0005 (12)0.0026 (14)0.0005 (15)
N20.0336 (19)0.031 (2)0.040 (2)0.0002 (15)0.0013 (15)0.0011 (16)
C20.041 (3)0.041 (3)0.056 (3)0.013 (2)0.005 (2)0.007 (2)
O30.0348 (16)0.0409 (18)0.0354 (18)0.0054 (13)0.0043 (13)0.0019 (14)
N30.0327 (19)0.045 (2)0.040 (2)0.0041 (17)0.0069 (16)0.0030 (18)
C30.057 (3)0.029 (2)0.048 (3)0.001 (2)0.000 (2)0.008 (2)
O40.0332 (16)0.0265 (15)0.0403 (18)0.0056 (12)0.0102 (12)0.0067 (13)
N40.0350 (19)0.0272 (18)0.035 (2)0.0008 (15)0.0057 (15)0.0068 (15)
C40.047 (3)0.041 (3)0.043 (3)0.011 (2)0.008 (2)0.007 (2)
O50.0372 (17)0.0359 (18)0.047 (2)0.0083 (13)0.0064 (14)0.0124 (15)
C50.039 (3)0.033 (2)0.054 (3)0.008 (2)0.002 (2)0.003 (2)
O60.051 (2)0.0442 (19)0.040 (2)0.0051 (15)0.0151 (15)0.0055 (16)
C60.037 (2)0.036 (2)0.050 (3)0.005 (2)0.001 (2)0.005 (2)
C70.045 (3)0.041 (3)0.043 (3)0.003 (2)0.007 (2)0.015 (2)
C80.048 (3)0.041 (3)0.046 (3)0.006 (2)0.016 (2)0.008 (2)
C90.047 (3)0.072 (4)0.059 (4)0.016 (3)0.016 (3)0.007 (3)
C100.043 (3)0.051 (3)0.059 (3)0.002 (2)0.020 (2)0.008 (3)
C110.045 (3)0.034 (2)0.039 (3)0.000 (2)0.001 (2)0.002 (2)
C120.034 (2)0.033 (2)0.028 (2)0.0013 (18)0.0015 (17)0.0001 (18)
C130.027 (2)0.030 (2)0.038 (2)0.0033 (17)0.0002 (17)0.0061 (18)
C140.030 (2)0.033 (2)0.035 (2)0.0061 (17)0.0020 (17)0.0075 (19)
C150.025 (2)0.037 (2)0.029 (2)0.0004 (17)0.0038 (16)0.0079 (18)
C160.032 (2)0.047 (3)0.031 (2)0.003 (2)0.0022 (17)0.003 (2)
C170.048 (3)0.038 (3)0.035 (3)0.001 (2)0.001 (2)0.003 (2)
C180.034 (2)0.032 (2)0.039 (3)0.0022 (18)0.0061 (18)0.0016 (19)
C190.031 (2)0.026 (2)0.034 (2)0.0013 (16)0.0025 (17)0.0028 (18)
C200.035 (2)0.029 (2)0.043 (3)0.0009 (18)0.0058 (19)0.002 (2)
C210.040 (3)0.037 (3)0.064 (4)0.010 (2)0.013 (2)0.011 (2)
C220.044 (3)0.049 (3)0.063 (4)0.012 (2)0.024 (2)0.007 (3)
Cl1A0.049 (4)0.040 (4)0.054 (4)0.001 (3)0.010 (3)0.013 (3)
O11A0.047 (5)0.039 (5)0.055 (5)0.001 (4)0.003 (4)0.015 (4)
O12A0.050 (5)0.049 (5)0.058 (5)0.007 (4)0.003 (4)0.005 (4)
O13A0.065 (7)0.063 (6)0.062 (7)0.013 (5)0.022 (5)0.006 (5)
O14A0.073 (8)0.053 (7)0.093 (8)0.006 (7)0.019 (7)0.024 (6)
Cl1B0.049 (3)0.057 (3)0.037 (2)0.0143 (18)0.0014 (18)0.0026 (18)
O11B0.042 (3)0.064 (5)0.049 (4)0.011 (4)0.008 (3)0.006 (4)
O12B0.049 (3)0.066 (4)0.051 (4)0.009 (4)0.006 (3)0.001 (4)
O13B0.058 (5)0.100 (6)0.035 (4)0.024 (5)0.006 (4)0.002 (4)
O14B0.081 (7)0.063 (5)0.080 (6)0.004 (6)0.018 (5)0.025 (4)
Cl2A0.0529 (19)0.035 (2)0.0386 (17)0.0050 (18)0.0023 (13)0.0003 (14)
O21A0.076 (5)0.045 (3)0.074 (5)0.008 (3)0.011 (4)0.010 (4)
O22A0.074 (4)0.065 (5)0.046 (4)0.015 (3)0.001 (3)0.007 (3)
O23A0.082 (4)0.034 (3)0.074 (5)0.020 (3)0.022 (4)0.006 (4)
O24A0.097 (4)0.070 (6)0.083 (4)0.021 (4)0.046 (3)0.011 (4)
Cl2B0.075 (8)0.034 (6)0.069 (9)0.014 (5)0.002 (6)0.003 (5)
O21B0.071 (10)0.020 (8)0.066 (12)0.001 (7)0.002 (9)0.004 (8)
O22B0.086 (10)0.039 (9)0.068 (10)0.012 (7)0.003 (8)0.002 (7)
O23B0.086 (9)0.043 (9)0.069 (11)0.000 (7)0.008 (8)0.007 (8)
O24B0.091 (9)0.046 (8)0.076 (10)0.009 (7)0.012 (7)0.006 (7)
O1WA0.100 (8)0.095 (7)0.042 (5)0.000 (7)0.005 (6)0.007 (5)
O1WB0.067 (9)0.056 (8)0.038 (8)0.005 (8)0.004 (8)0.001 (6)
O1WC0.077 (8)0.045 (7)0.052 (8)0.012 (6)0.010 (6)0.012 (6)
Geometric parameters (Å, º) top
Ba1—O12.688 (3)C5—H5B0.9900
Ba1—O42.690 (3)O6—C221.339 (6)
Ba1—O1WB2.75 (2)O6—C181.370 (5)
Ba1—O1WA2.774 (14)C6—H6A0.9900
Ba1—O52.814 (3)C6—H6B0.9900
Ba1—O11A2.853 (19)C7—C81.503 (6)
Ba1—O2i2.860 (3)C7—H7A0.9900
Ba1—O22.861 (3)C7—H7B0.9900
Ba1—O12B2.863 (10)C8—H8A0.9900
Ba1—O5ii2.901 (3)C8—H8B0.9900
Ba1—O12A2.955 (15)C9—H9A0.9800
Ba1—O1WC2.972 (17)C9—H9B0.9800
Co1—O12.044 (3)C9—H9C0.9800
Co1—O42.075 (3)C10—H10A0.9800
Co1—N12.199 (3)C10—H10B0.9800
Co1—N32.220 (3)C10—H10C0.9800
Co1—N42.344 (4)C11—C121.484 (6)
Co1—N22.414 (4)C11—H11A0.9900
O1—C131.330 (5)C11—H11B0.9900
N1—C51.472 (6)C12—C131.351 (6)
N1—C101.484 (5)C13—C141.448 (6)
N1—C41.485 (6)C14—C151.432 (5)
C1—C21.484 (7)C15—C161.326 (6)
C1—N31.492 (6)C15—H150.9500
C1—H1A0.9900C16—H160.9500
C1—H1B0.9900C17—C181.471 (6)
O2—C141.252 (5)C17—H17A0.9900
O2—Ba1i2.860 (3)C17—H17B0.9900
N2—C31.466 (6)C18—C191.353 (6)
N2—C21.479 (5)C19—C201.469 (6)
N2—C111.486 (6)C20—C211.429 (6)
C2—H2A0.9900C21—C221.320 (7)
C2—H2B0.9900C21—H210.9500
O3—C161.334 (5)C22—H220.9500
O3—C121.366 (5)Cl1A—O12A1.35 (2)
N3—C91.470 (6)Cl1A—O13A1.40 (2)
N3—C81.481 (6)Cl1A—O14A1.47 (3)
C3—C41.511 (6)Cl1A—O11A1.59 (2)
C3—H3A0.9900Cl1B—O11B1.342 (18)
C3—H3B0.9900Cl1B—O14B1.383 (17)
O4—C191.325 (5)Cl1B—O13B1.433 (15)
N4—C171.471 (5)Cl1B—O12B1.484 (15)
N4—C71.477 (5)Cl2A—O22A1.423 (11)
N4—C61.490 (5)Cl2A—O21A1.425 (12)
C4—H4A0.9900Cl2A—O23A1.434 (10)
C4—H4B0.9900Cl2A—O24A1.444 (11)
O5—C201.254 (5)Cl2B—O24B1.33 (5)
O5—Ba1ii2.901 (3)Cl2B—O23B1.40 (4)
C5—C61.497 (6)Cl2B—O21B1.42 (4)
C5—H5A0.9900Cl2B—O22B1.43 (5)
O1—Ba1—O456.75 (8)N1—C4—H4A109.6
O1—Ba1—O1WB101.1 (5)C3—C4—H4A109.6
O4—Ba1—O1WB74.2 (5)N1—C4—H4B109.6
O1—Ba1—O1WA94.5 (3)C3—C4—H4B109.6
O4—Ba1—O1WA78.8 (3)H4A—C4—H4B108.1
O1—Ba1—O5111.22 (8)C20—O5—Ba1112.8 (3)
O4—Ba1—O560.20 (8)C20—O5—Ba1ii127.8 (3)
O1WB—Ba1—O585.5 (4)Ba1—O5—Ba1ii115.92 (10)
O1WA—Ba1—O597.9 (3)N1—C5—C6112.4 (4)
O1—Ba1—O11A73.1 (4)N1—C5—H5A109.1
O4—Ba1—O11A117.6 (4)C6—C5—H5A109.1
O1WA—Ba1—O11A144.0 (5)N1—C5—H5B109.1
O5—Ba1—O11A118.1 (4)C6—C5—H5B109.1
O1—Ba1—O2i121.15 (8)H5A—C5—H5B107.9
O4—Ba1—O2i146.50 (9)C22—O6—C18118.5 (4)
O1WB—Ba1—O2i73.8 (5)N4—C6—C5110.4 (4)
O1WA—Ba1—O2i67.9 (3)N4—C6—H6A109.6
O5—Ba1—O2i126.20 (8)C5—C6—H6A109.6
O11A—Ba1—O2i89.4 (4)N4—C6—H6B109.6
O1—Ba1—O259.51 (8)C5—C6—H6B109.6
O4—Ba1—O2107.01 (8)H6A—C6—H6B108.1
O1WB—Ba1—O287.0 (5)N4—C7—C8109.4 (4)
O1WA—Ba1—O274.4 (3)N4—C7—H7A109.8
O5—Ba1—O2166.61 (9)C8—C7—H7A109.8
O11A—Ba1—O270.2 (4)N4—C7—H7B109.8
O2i—Ba1—O261.66 (10)C8—C7—H7B109.8
O1—Ba1—O12B76.5 (3)H7A—C7—H7B108.2
O4—Ba1—O12B84.3 (3)N3—C8—C7110.9 (4)
O1WB—Ba1—O12B155.1 (5)N3—C8—H8A109.5
O5—Ba1—O12B72.8 (2)C7—C8—H8A109.5
O2i—Ba1—O12B129.0 (3)N3—C8—H8B109.5
O2—Ba1—O12B111.7 (2)C7—C8—H8B109.5
O1—Ba1—O5ii149.97 (9)H8A—C8—H8B108.1
O4—Ba1—O5ii123.92 (8)N3—C9—H9A109.5
O1WB—Ba1—O5ii107.8 (5)N3—C9—H9B109.5
O1WA—Ba1—O5ii115.4 (3)H9A—C9—H9B109.5
O5—Ba1—O5ii64.08 (10)N3—C9—H9C109.5
O11A—Ba1—O5ii83.3 (4)H9A—C9—H9C109.5
O2i—Ba1—O5ii75.82 (9)H9B—C9—H9C109.5
O2—Ba1—O5ii128.99 (9)N1—C10—H10A109.5
O12B—Ba1—O5ii73.8 (3)N1—C10—H10B109.5
O1—Ba1—O12A85.8 (4)H10A—C10—H10B109.5
O4—Ba1—O12A93.0 (4)N1—C10—H10C109.5
O1WA—Ba1—O12A169.9 (4)H10A—C10—H10C109.5
O5—Ba1—O12A72.6 (3)H10B—C10—H10C109.5
O11A—Ba1—O12A45.6 (5)C12—C11—N2111.3 (4)
O2i—Ba1—O12A120.5 (4)C12—C11—H11A109.4
O2—Ba1—O12A114.1 (3)N2—C11—H11A109.4
O5ii—Ba1—O12A64.3 (4)C12—C11—H11B109.4
O1—Ba1—O1WC114.0 (3)N2—C11—H11B109.4
O4—Ba1—O1WC71.0 (3)H11A—C11—H11B108.0
O5—Ba1—O1WC64.8 (3)C13—C12—O3123.3 (4)
O2i—Ba1—O1WC82.8 (3)C13—C12—C11124.2 (4)
O2—Ba1—O1WC108.7 (3)O3—C12—C11112.5 (4)
O5ii—Ba1—O1WC91.4 (3)O1—C13—C12121.8 (4)
O1—Co1—O476.70 (11)O1—C13—C14119.4 (4)
O1—Co1—N1122.08 (13)C12—C13—C14118.7 (4)
O4—Co1—N1100.96 (12)O2—C14—C15123.7 (4)
O1—Co1—N3100.86 (13)O2—C14—C13121.5 (4)
O4—Co1—N3124.07 (13)C15—C14—C13114.8 (4)
N1—Co1—N3124.08 (13)C16—C15—C14121.8 (4)
O1—Co1—N4153.71 (12)C16—C15—H15119.1
O4—Co1—N482.53 (11)C14—C15—H15119.1
N1—Co1—N477.40 (13)C15—C16—O3122.6 (4)
N3—Co1—N477.62 (12)C15—C16—H16118.7
O1—Co1—N281.95 (12)O3—C16—H16118.7
O4—Co1—N2152.96 (12)C18—C17—N4113.1 (4)
N1—Co1—N276.58 (12)C18—C17—H17A109.0
N3—Co1—N275.99 (13)N4—C17—H17A109.0
N4—Co1—N2122.15 (12)C18—C17—H17B109.0
C13—O1—Co1131.9 (2)N4—C17—H17B109.0
C13—O1—Ba1114.1 (2)H17A—C17—H17B107.8
Co1—O1—Ba1113.82 (11)C19—C18—O6123.0 (4)
C5—N1—C10110.3 (4)C19—C18—C17124.1 (4)
C5—N1—C4108.4 (3)O6—C18—C17112.9 (4)
C10—N1—C4108.1 (4)O4—C19—C18122.3 (4)
C5—N1—Co1110.6 (3)O4—C19—C20118.9 (4)
C10—N1—Co1107.3 (3)C18—C19—C20118.7 (4)
C4—N1—Co1112.1 (3)O5—C20—C21124.2 (4)
C2—C1—N3112.0 (4)O5—C20—C19121.3 (4)
C2—C1—H1A109.2C21—C20—C19114.5 (4)
N3—C1—H1A109.2C22—C21—C20122.0 (4)
C2—C1—H1B109.2C22—C21—H21119.0
N3—C1—H1B109.2C20—C21—H21119.0
H1A—C1—H1B107.9C21—C22—O6123.1 (4)
C14—O2—Ba1i124.5 (3)C21—C22—H22118.4
C14—O2—Ba1111.2 (2)O6—C22—H22118.4
Ba1i—O2—Ba1118.33 (10)O12A—Cl1A—O13A89.8 (18)
C3—N2—C2111.1 (4)O12A—Cl1A—O14A109.8 (13)
C3—N2—C11108.9 (4)O13A—Cl1A—O14A118.6 (14)
C2—N2—C11109.8 (3)O12A—Cl1A—O11A99.6 (12)
C3—N2—Co1105.2 (3)O13A—Cl1A—O11A109.7 (13)
C2—N2—Co1108.4 (3)O14A—Cl1A—O11A122.2 (15)
C11—N2—Co1113.5 (3)O12A—Cl1A—Ba152.5 (8)
N2—C2—C1111.4 (4)O13A—Cl1A—Ba1121.1 (11)
N2—C2—H2A109.3O14A—Cl1A—Ba1116.5 (12)
C1—C2—H2A109.3O11A—Cl1A—Ba151.0 (8)
N2—C2—H2B109.3Cl1A—O11A—Ba1103.3 (10)
C1—C2—H2B109.3Cl1A—O12A—Ba1106.3 (10)
H2A—C2—H2B108.0O11B—Cl1B—O14B101.1 (12)
C16—O3—C12118.6 (3)O11B—Cl1B—O13B108.6 (9)
C9—N3—C8108.0 (4)O14B—Cl1B—O13B101.2 (12)
C9—N3—C1111.1 (4)O11B—Cl1B—O12B111.0 (10)
C8—N3—C1106.7 (4)O14B—Cl1B—O12B111.2 (9)
C9—N3—Co1109.7 (3)O13B—Cl1B—O12B121.5 (12)
C8—N3—Co1110.5 (2)O11B—Cl1B—Ba161.1 (7)
C1—N3—Co1110.8 (3)O14B—Cl1B—Ba1124.5 (8)
N2—C3—C4109.5 (4)O13B—Cl1B—Ba1134.0 (9)
N2—C3—H3A109.8O12B—Cl1B—Ba150.2 (5)
C4—C3—H3A109.8Cl1B—O11B—Ba197.0 (7)
N2—C3—H3B109.8Cl1B—O12B—Ba1106.3 (6)
C4—C3—H3B109.8O22A—Cl2A—O21A104.2 (9)
H3A—C3—H3B108.2O22A—Cl2A—O23A108.7 (6)
C19—O4—Co1132.0 (2)O21A—Cl2A—O23A108.1 (7)
C19—O4—Ba1115.2 (2)O22A—Cl2A—O24A111.8 (8)
Co1—O4—Ba1112.64 (11)O21A—Cl2A—O24A109.6 (6)
C17—N4—C7107.8 (3)O23A—Cl2A—O24A113.9 (9)
C17—N4—C6110.0 (3)O24B—Cl2B—O23B90 (3)
C7—N4—C6109.9 (3)O24B—Cl2B—O21B116 (3)
C17—N4—Co1114.3 (3)O23B—Cl2B—O21B104 (3)
C7—N4—Co1105.7 (3)O24B—Cl2B—O22B85 (3)
C6—N4—Co1108.8 (3)O23B—Cl2B—O22B120 (3)
N1—C4—C3110.4 (4)O21B—Cl2B—O22B131 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.
Selected bond lengths and angles (Å, °) top
Co1—N12.199 (3)
Co1—N22.414 (3)
Co1—N32.220 (4)
Co1—N42.344 (3)
Co1—O12.044 (3)
Co1—O42.075 (3)
Ba1—O12.688 (3)
Ba1—O22.861 (3)
Ba1—O42.690 (3)
Ba1—O52.814 (3)
Ba1—O1W2.774 (14)/2.75 (2)/2.972 (15)a
Ba1—O112.853 (19)/3.154 (13)b
Ba1—O122.955 (18)/2.863 (12)b
N1···N33.903 (5)
N2···N44.164 (5)
Ba1···Ba1i4.9123 (4)
Ba1···O2i2.860 (3)
O2···O2i2.932 (4)
Ba1···Ba1ii4.8443 (4)
Ba1···O5ii2.900 (3)
O5···O5ii3.033 (4)
Ba1i···Ba1ii8.8965 (4)
Ba1—O1—Co1113.82 (12)
Ba1—O4—Co1112.64 (11)
Ba1—O2—Ba1i118.34 (10)
Ba1—O5—Ba1ii115.92 (10)
Symmetry codes: (i) = -x + 1, -y, -z; (ii) = -x + 2, -y, -z. Notes: (a) the values refer to O1WA/B/C atoms, respectively; (b) the values refer to the A/B oxygen atoms, respectively, of the disordered perchlorate anion (see Refinement section).
Hydrogen-bond geometry (Å, °) top
The first and second values for each entry refer to the A and B oxygen atoms, respectively, of the disordered perchlorate anion (see Refinement section).
D—H···D—HH···AD···AD—H···A
C8—H8A···O210.992.91/2.623.877 (12)/3.60 (3)165.3/172.3
C3—H3A···O22iii0.992.65/2.483.577 (11)/3.46 (3)155.7/166.7
C8—H8B···O13iv0.992.49/2.593.46 (2)/3.524 (15)168.5/156.6
C22—H22···O21v0.952.62/2.663.482 (11)/3.51 (3)151.4/149.2
C22—H22···O23v0.952.57/2.543.455 (11)/3.39 (4)155.1/149.9
Symmetry codes: (iii) -x + 3/2, y - 1/2, -z + 1/2; (iv) x + 1/2, -y + 1/2, z - 1/2; (v) x - 1, y, z.
 

Acknowledgements

The authors acknowledge the CRIST (Centro di Cristallografia Strutturale, University of Firenze) where the data collection was performed.

Funding information

Funding for this research was provided by: MIUR PRIN 2015.

References

First citationAmatori, S., Ambrosi, G., Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2012). J. Org. Chem. 77, 2207–2218.  Web of Science CSD CrossRef CAS PubMed
First citationBanerjee, D., Simon, C. M., Plonka, A. M., Motkuri, R. K., Liu, J., Chen, X. Y., Smit, B., Parise, J. B., Haranczyk, M. & Thallapally, P. K. (2016). Nat. Commun. 7, 11831.  Web of Science CSD CrossRef
First citationBenelli, C., Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 5848–5859.  Web of Science CSD CrossRef CAS PubMed
First citationBorgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 2902–2912.  Web of Science CSD CrossRef CAS PubMed
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals
First citationCai, S.-L., He, Z.-H., Wu, W.-H., Liu, F.-X., Huang, X.-L., Zheng, S.-R., Fan, J. & Zhang, W. (2017). CrystEngComm, 19, 3003–3016.  Web of Science CSD CrossRef CAS
First citationCai, S. L., Zheng, S. R., Fan, J., Zeng, R. H. & Zhang, W. G. (2016). CrystEngComm, 18, 1174–1183.  Web of Science CSD CrossRef CAS
First citationCampbell, M. G., Sheberla, D., Liu, S. F., Swager, T. M. & Dincă, M. (2015). Angew. Chem. Int. Ed. 54, 4349–4352.  Web of Science CrossRef CAS
First citationChakraborty, A. & Maji, T. K. (2014). APL Mater 2, 124107-7.  Web of Science CrossRef
First citationChughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A. & Verpoort, F. (2015). Chem. Soc. Rev. 44, 6804–6849.  Web of Science CrossRef CAS PubMed
First citationDeng, J. H., Zhong, D. C., Luo, X. Z., Liu, H. J. & Lu, T. B. (2012). Cryst. Growth Des. 12, 4861–4869.  Web of Science CSD CrossRef CAS
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. IUCr Monographs on Crystallography, Vol. 9. New York: Oxford University Press.
First citationDouvali, A., Papaefstathiou, G. S., Gullo, M. P., Barbieri, A., Tsipis, A. C., Malliakas, C. D., Kanatzidis, M. G., Papadas, I., Armatas, G. S., Hatzidimitriou, A. G., Lazarides, T. & Manos, M. J. (2015). Inorg. Chem. 54, 5813–5826.  Web of Science CSD CrossRef CAS PubMed
First citationFeng, X., Feng, Y. Q., Chen, J. J., Ng, S. W., Wang, L. Y. & Guo, J. Z. (2015). Dalton Trans. 44, 804–816.  Web of Science CSD CrossRef CAS PubMed
First citationFoo, M. L., Horike, S., Duan, J., Chen, W. & Kitagawa, S. (2013). Cryst. Growth Des. 13, 2965–2972.  Web of Science CSD CrossRef CAS
First citationFoo, M. L., Horike, S., Inubushi, Y. & Kitagawa, S. (2012). Angew. Chem. Int. Ed. 51, 6107–6111.  Web of Science CSD CrossRef CAS
First citationFracaroli, A. M., Furukawa, H., Suzuki, M., Dodd, M., Okajima, S., Gándara, F., Reimer, J. A. & Yaghi, O. M. (2014). J. Am. Chem. Soc. 136, 8863–8866.  Web of Science CSD CrossRef CAS PubMed
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationGuggenberger, L. J. & Muetterties, E. L. (1976). J. Am. Chem. Soc. 98, 7221–7225.  CrossRef CAS Web of Science
First citationHu, Z. C., Deibert, B. J. & Li, J. (2014). Chem. Soc. Rev. 43, 5815–5840.  Web of Science CrossRef CAS PubMed
First citationJia, H. L., Li, Y. L., Xiong, Z. F., Wang, C. J. & Li, G. (2014). Dalton Trans. 43, 3704–3715.  Web of Science CSD CrossRef CAS PubMed
First citationJing, X. M., Zhang, L. R., Ma, T. L., Li, G. H., Yu, Y., Huo, Q. S., Eddaoudi, M. & Liu, Y. L. (2010). Cryst. Growth Des. 10, 492–494.  Web of Science CSD CrossRef CAS
First citationKreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125.  Web of Science CrossRef CAS PubMed
First citationLi, X., Wu, B. L., Niu, C. Y., Niu, Y. Y. & Zhang, H. Y. (2009). Cryst. Growth Des. 9, 3423–3431.  Web of Science CSD CrossRef CAS
First citationLian, C., Liu, L., Guo, X., Long, Y., Jia, S., Li, H. & Yang, L. (2016). J. Solid State Chem. 233, 229–235.  Web of Science CrossRef CAS
First citationLiu, H. K., Tsao, T. H., Lin, C. H. & Zima, V. (2010). CrystEngComm, 12, 1044–1047.  Web of Science CSD CrossRef CAS
First citationLiu, Y., Xuan, W. M. & Cui, Y. (2010). Adv. Mater. 22, 4112–4135.  Web of Science CrossRef CAS PubMed
First citationMali, G., Trebosc, J., Martineau, C. & Mazaj, M. (2015). J. Phys. Chem. C, 119, 7831–7841.  Web of Science CrossRef CAS
First citationMeurant, G. (1987). Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal. Amsterdam; New York: Elsevier.
First citationMo, K., Yang, Y. & Cui, Y. (2014). J. Am. Chem. Soc. 136, 1746–1749.  Web of Science CSD CrossRef CAS PubMed
First citationMuetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748–1756.  CrossRef CAS Web of Science
First citationRaja, D. S., Luo, J. H., Yeh, C. T., Jiang, Y. C., Hsu, K. F. & Lin, C. H. (2014). CrystEngComm, 16, 1985–1994.  Web of Science CSD CrossRef CAS
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Abingdon, UK.
First citationRossi, P., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M. & Paoli, P. (2017). Inorg. Chim. Acta, doi: 10.1016/j. ica. 2017.06.033.
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationShi, B. B., Zhong, Y. H., Guo, L. L. & Li, G. (2015). Dalton Trans. 44, 4362–4369.  Web of Science CSD CrossRef CAS PubMed
First citationSmith, N. D., Roppe, J. R., Bonnefous, C., Payne, J. E., Zhang, H., Chen, X. H., Lindstrom, A. K., Duron, S. G., Hassing, C. A. & Noble, S. A. (2013). US patent 20080139558–A1.
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D. W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed
First citationSumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H. & Long, J. R. (2012). Chem. Rev. 112, 724–781.  Web of Science CrossRef CAS PubMed
First citationWang, J. H., Li, M. & Li, D. (2013). Chem. Sci. 4, 1793–1801.  Web of Science CSD CrossRef CAS
First citationXiao, D., Chen, H., Sun, D., He, J., Yan, S., Yang, J., Wang, X., Yuan, R. & Wang, E. (2012). CrystEngComm, 14, 2849–2858.  Web of Science CSD CrossRef CAS
First citationXie, L. X., Hou, X. W., Fan, Y. T. & Hou, H. W. (2012). Cryst. Growth Des. 12, 1282–1291.  Web of Science CSD CrossRef CAS
First citationYoon, M., Srirambalaji, R. & Kim, K. (2012). Chem. Rev. 112, 1196–1231.  Web of Science CrossRef CAS PubMed
First citationZhai, Q. G., Zeng, R. R., Li, S. N., Jiang, Y. C. & Hu, M. C. (2013). CrystEngComm, 15, 965–976.  Web of Science CSD CrossRef CAS
First citationZhang, Y., Guo, B. B., Li, L., Liu, S. F. & Li, G. (2013). Cryst. Growth Des. 13, 367–376.  Web of Science CSD CrossRef
First citationZhang, X., Huang, Y.-Y., Zhang, M.-J., Zhang, J. & Yao, Y.-G. (2012). Cryst. Growth Des. 12, 3231–3238.  Web of Science CSD CrossRef CAS
First citationZhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. & Zhu, Y. Y. (2010). Inorg. Chem. 49, 3776–3788.  Web of Science CSD CrossRef CAS PubMed
First citationZhang, Y., Luo, X. B., Yang, Z. L. & Li, G. (2012). CrystEngComm, 14, 7382–7397.  Web of Science CSD CrossRef CAS
First citationZhang, Y., Yuan, P., Zhu, Y. & Li, G. (2013). Dalton Trans. 42, 14776–14785.  Web of Science CSD CrossRef CAS PubMed
First citationZheng, S. R., Wen, Z. Z., Chen, Y. Y., Cai, S. L., Fan, J. & Zhang, W. G. (2015). Inorg. Chem. Commun. 55, 165–168.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds