research communications
II-based CoII-containing one-dimensional coordination polymer poly[[aqua{μ4-2,2′-[(4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylidene)]bis(4-oxo-4H-pyran-3-olato)}perchloratocobaltbarium] perchlorate]
of the BaaDepartment of Industrial Engineering, University of Firenze, via Santa Marta 3, I-50139 Firenze, Italy, and bDepartment of Pure and Applied Sciences, Lab of Supramolecular Chemistry, University of Urbino, via della Stazione, 4, I-61029 Urbino, Italy
*Correspondence e-mail: eleonora.macedi@unifi.it
The title compound, {[Ba{Co(H-2L1)}(ClO4)(H2O)]ClO4}n, L1 = 4,10-bis[(3-hydroxy-4-pyron-2-yl)methyl]-1,7-dimethyl-1,4,7,10-tetraazacyclododecane, is a one-dimensional coordination polymer. The consists of a {Ba[Co(H–2L1)](ClO4)(H2O)}+ cationic fragment and a non-coordinating ClO4− anion. In the neutral [Co(H–2L1)] moiety, the cobalt ion is hexacoordinated in a trigonal–prismatic fashion by the surrounding N4O2 donor set. The Ba2+ ion is nine-coordinated and exhibits a distorted [BaO9] monocapped square-antiprismatic geometry, the six oxygen atoms coming from three distinct [Co(H–2L1)] moieties, while the remaining three vertices are occupied by the oxygen atoms of a bidentate perchlorate anion and a water molecule. A barium–μ2-oxygen motif develops along the a axis, connecting symmetry-related dinuclear BaII–CoII cationic fragments in a wave-like chain, forming a one-dimensional metal coordination polymer. Non-coordinating ClO4− anions are located in the space between the chains. Weak C—H⋯O hydrogen bonds involving both coordinating and non-coordinating perchlorate anions build the whole crystal architecture. To our knowledge, this is the first example of a macrocyclic ligand forming a BaII-based one-dimensional coordination polymer, containing CoII ions surrounded by a N4O2 donor set.
Keywords: crystal structure; coordination polymer; barium; cobalt; macrocycle.
CCDC reference: 1582341
1. Chemical context
Metal coordination polymers (CPs) have witnessed continuous growth, owing to their fascinating structural diversity in terms of architecture and topology and also their numerous potential applications, such as gas storage (Banerjee et al., 2016; Fracaroli et al., 2014; Sumida et al., 2012; Suh et al., 2012), chemical sensing (Campbell et al., 2015; Hu et al., 2014; Wang et al., 2013; Kreno et al., 2012), catalysis (Chughtai et al., 2015; Mo et al., 2014; Yoon et al., 2012; Liu, Xuan et al., 2010) and so forth. Recently, the interest in alkaline-earth metal ion-based CPs has been growing due to their unusual advantages such as low toxicity, wide distribution and low cost, which are of benefit for applications in the field of materials science (Raja et al., 2014; Foo et al., 2012, 2013; Xiao et al., 2012).
According to a Cambridge Structural Database (CSD, Version 5.38, May 2017; Groom et al., 2016) search, alkaline-earth metal-based CPs are less common compared to the reported transition metal and rare-earth metal CPs (Cai et al., 2017). Indeed, the study of alkaline-earth–metal systems is limited by challenges in the synthesis (Lian et al., 2016; Douvali et al., 2015; Mali et al., 2015; Chakraborty et al., 2014; Zhang, Huang et al., 2012; Liu, Tsao et al., 2010), the main reason being the variable coordination numbers (the most preferred coordination numbers are six for magnesium, six to eight for calcium, and six to twelve for strontium and barium), which lead to uncontrolled coordination geometries around the metal centre (Cai et al., 2016; Feng et al., 2015; Shi et al., 2015; Zheng et al., 2015; Jia et al., 2014; Zhang, Yuan et al., 2013; Smith et al., 2013; Zhai et al., 2013; Zhang, Guo et al., 2013; Deng et al., 2012; Foo et al., 2012; Xiao et al., 2012; Xie et al., 2012; Zhang, Luo et al., 2012; Jing et al., 2010; Zhang et al., 2010; Li et al., 2009).
Besides, the ability of a system to bind alkaline-earth metal ions in aqueous solution is highly desirable and can be achieved thanks to the presence of oxygenated ligands and the preorganization of the receptor, which satisfies the need for a high
without specific coordination requirements.Ligand L1 {4,10-bis[(3-hydroxy-4-pyron-2-yl)methyl]-1,7-dimethyl-1,4,7,10-tetraazacyclododecane} is a Maltol-based macrocycle (Amatori et al., 2012) and is able to form discrete heteropolynuclear complexes. It has already proved to able form a CoII species (Borgogelli et al., 2013) that is able to bind hard metal ions such as LnIII (Ln = Gd, Eu) and Na(I). In the case of LnIII ions, heterotrinuclear CoII–LnIII–CoII systems form, where the CoII cation preorganizes the system and two CoII species are involved in the coordination of one LnIII ion (Benelli et al., 2013; Rossi et al., 2017). In the case of the alkaline ion, a heterodinuclear complex forms, involving only one CoII species (Borgogelli et al., 2013).
Herein we present a BaII–CoII heterodinuclear metal coordination compound of L1, where a one-dimensional wave-like infinite array of barium ions bridges the [Co(H–2L1)] moieties through a barium–μ2-oxygen motif. This is the first time that L1 has proven able to form a coordination polymer and, to our knowledge, this is the first example of a macrocyclic ligand forming a BaII-based 1D-CP containing CoII ions surrounded by an N4O2 donor set.
2. Structural commentary
The title compound is the BaII-based CoII-containing 1D-CP of L1 of formula {{Ba[Co(H–2L1)](ClO4)(H2O)}·ClO4}n and crystallizes in the monoclinic system in P21/n, with a {Ba[Co(H–2L1)](ClO4)(H2O)}+ cationic fragment (Fig. 1) and a (ClO4)− anion in the asymmetric unit.
In the neutral [Co(H-2L1)] moiety, the Co2+ ion is hexacoordinated and exhibits a distorted trigonal–prismatic geometry (Muetterties & Guggenberger, 1974), where the cobalt ion is surrounded by four nitrogen atoms of the macrocyclic base and two deprotonated hydroxyl oxygen atoms provided by both maltolate rings of the ligand. In the distorted trigonal prism, the O1,N2,N3/O4,N1,N4 atoms define the two triangular faces, which are parallel within 12.51 (11)° (Fig. 2). The cobalt ion is displaced 1.0971 (5) Å above the mean plane described by the four nitrogen atoms of the tetraazamacrocycle [maximum deviation of 0.068 (4) Å for N3] and falls, together with the Co—N(CH3) and Co—O bond distances (Table 1), in the expected range for Co-[12]aneN4 complexes where the cobalt ion is hexacoordinated with a N4O2 donor set (Fig. 3, left). The Co—N(Maltol) bond distances, instead, are longer (Table 1) than the Co—N(CH3) ones and longer with respect to those reported for other Co–L1 complexes [Co—N(Maltol): range 2.26–2.44; Co—N(CH3) range: 2.13–2.19; Benelli et al., 2013; Borgogelli et al., 2013; Rossi et al., 2017].
The conformation of the [12]aneN4 macrocycle is the usual [3333]C-corners one (Meurant, 1987) with the trans nitrogen distances in agreement with those reported in the CSD for this conformation type, but the N2⋯N4 distance being longer than the N1⋯N3 one by 0.26 Å (Table 1), as found only in 36% of cases. This is probably due to the fact that the Maltol units linked to atoms N2 and N4 are involved in chelate six-membered rings, which stiffen the system and force those nitrogen atoms to move farther apart.
The two maltolate rings are almost orthogonal to each other (dihedral angle between ring mean planes about 71°); both rings form similar angles (about 55°) with the mean plane N1,N2,N3,N4. The dimensions of the binding area defined by the four oxygen donor atoms of the ligand, as roughly estimated by the distances separating the opposite O1⋯O5 and O2⋯O4 atoms, are quite similar (about 4.5 Å).
Tha Ba2+ ion is nine-coordinated and exhibits a distorted [BaO9] monocapped square-antiprismatic geometry (Guggenberger & Muetterties, 1976), Fig. 2, where the barium cation is surrounded by six oxygen atoms from three distinct [Co(H–2L1)] moieties {four from two maltolate groups of a moiety and two from the carbonyl groups belonging to two distinct symmetry-related moieties, O2i and O5ii [symmetry codes: (i) −x + 1, −y, −z; (ii) −x + 2, −y, −z]}, an oxygen atom of a disordered water molecule and two oxygen atoms of a disordered perchlorate anion, the latter acting as a bidentate ligand (Fig. 1). In the distorted monocapped square antiprism, the O5 oxygen atom caps the O5ii, O4, O1W, O12 face (Fig. 2, right). All bond distances (Table 1) are in agreement with data found in the CSD.
The Ba2+ and Co2+ cations are located 3.9799 (7) Å apart from each other, the line connecting them being normal to the mean plane described by the four nitrogen atoms of the macrocycle [angle value: 87.59 (7)°; Fig. 1]. As for the bridged Co–O–Ba moiety (Fig. 3, right), while the Ba—O and Co—O bond distances and the Ba⋯Co distance are in agreement with those found in the CSD, the corresponding Ba—O—Co angles (Table 1) are outside the observed range (89.5–111.4°).
3. Supramolecular features
The title compound forms wave-like chains with a repeating unit comprising a dinuclear BaII–CoII cationic fragment with associated coordinating water molecules and perchlorate ions (Fig. 4). Non-coordinating ClO4− anions are located in the space between the chains.
A barium–μ2-oxygen motif develops along the a axis, the angle between the two mean planes formed by atoms Ba, O2, Bai and O2i and atoms Ba, O5, Baii and O5ii is about 40° [symmetry codes: (i) −x + 1, −y, −z; (ii) −x + 2, −y, −z], Fig. 4. The Ba—O bond distances, the O⋯O and Ba⋯Ba distances and the Ba—O—Ba angle values within each plane and the Bai⋯Baii distance (Table 1) are in agreement with data reported in the CSD.
Weak C—H⋯O hydrogen bonds (Desiraju & Steiner, 1999) involving both coordinating and non-coordinating perchlorate anions build the whole crystal architecture (Table 2). Distinct 1D-CPs are held together by weak C—H⋯O interactions between the coordinating perchlorate anions belonging to a CP and methylene hydrogen atoms belonging to the adjacent CPs (Fig. 5).
|
The non-coordinating perchlorate anion connects, via a net of weak hydrogen bonds, three {Ba[Co(H-2L1)](ClO4)(H2O)}+ cationic fragments belonging to two different 1D-CPs wave-like disposed along the b axis (Fig. 6).
4. Database survey
Five structures containing L1 were found in a search of the CSD (Version 5.38, May 2017; Groom et al., 2016), three of them containing CoII: a hetero-trinuclear GdIII–CoII–GdIII dimer, a hetero-dinuclear NaI–CoII complex and a CoII complex (Benelli et al., 2013; Amatori et al., 2012; Borgogelli et al., 2013). In addition, our group recently published the corresponding hetero-trinuclear Eu–Co–Eu dimer (Rossi et al., 2017).
A general search for structures containing both CoII and BaII ions revealed 61 hits, 20 of which are polymeric structures formed by organic ligands containing both oxygen and nitrogen donor atoms and only two being 1D-CPs. It is noteworthy that none of the 20 structures contains either macrocyclic ligands or an N4O2 donor set around the CoII ion. In eight out of those 20 polymeric structures, the BaII and CoII ions are bridged by oxygen atoms and ten out of 20 show oxygen-bridged BaII ions (only eight forming an infinite chain). Finally, only six out of the 20 polymeric structures contain both oxygen-bridged BaII ions and oxygen-bridged BaII and CoII ions.
All these data suggest that structures containing both oxygen-bridged BaII ions and oxygen-bridged BaII and CoII ions are not common and that no BaII-based 1D-CPs formed by macrocyclic ligands and containing CoII ions surrounded by an N4O2 donor set are present in the CSD.
5. Synthesis and crystallization
Compound L1 was obtained following the synthetic procedure previously reported (Amatori et al., 2012).
To obtain the BaII-based CoII-containing 1D-CP of L1, {{Ba[Co(H–2L1)](ClO4)(H2O)}·ClO4}n, 0.1 mmol of CoCl2· 6H2O in water (10 mL) were added to an aqueous solution (20 mL) containing 0.1 mmol of L1·3HClO4·H2O. The solution was adjusted to pH 7 with 0.1 M N(CH3)4OH and then 0.05 mmol of BaCl2· 2H2O were added. The solution was saturated with NaClO4. The BaII–CoII 1D-CP of L1 quickly precipitated as a microcrystalline pink solid. Crystals suitable for X-ray analysis were instead obtained by slow evaporation of a more diluted aqueous solution.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms of the macrocycle were positioned geometrically and refined as riding with C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. Both perchlorate anions are disordered, all oxygen and chlorine atoms were set in double positions [anion 1: Cl1A/B, O11A/B, O12A/B, O13A/B, O14A/B, occupancy factor: 0.40 (3) and 0.60 (3); anion 2: Cl2A/B, O21A/B, O22A/B, O23A/B, O24A/B, occupancy factor: 0.78 (3) and 0.22 (3)]. The water molecule is disordered over three positions [SUMP command was used, occupancies 0.49 (3), 0.27 (3) and 0.24 (3)], the hydrogen atoms were not found in the Fourier-difference map and they were not introduced in the All non-hydrogen atoms were anisotropically refined: as for the disordered perchlorate anions, the SIMU instruction was used to restrain the anisotropic displacement parameters of the disordered atoms, while the ISOR instruction was used to model the disordered water oxygen atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1582341
https://doi.org/10.1107/S2056989017015638/bq2404sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017015638/bq2404Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017015638/bq2404Isup3.mol
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2014 (Burla, 2015); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXL2014/7 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).[BaCo(C22H28N4O6)(ClO4)(H2O)]ClO4 | F(000) = 1708 |
Mr = 857.67 | Dx = 1.867 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.8965 (2) Å | Cell parameters from 4989 reflections |
b = 18.0995 (4) Å | θ = 2.2–27.7° |
c = 19.0103 (6) Å | µ = 2.08 mm−1 |
β = 94.572 (2)° | T = 120 K |
V = 3051.34 (14) Å3 | Prism, pink |
Z = 4 | 0.45 × 0.38 × 0.27 mm |
Rigaku OD Xcalibur, Sapphire3 diffractometer | 6966 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 5315 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 16.4547 pixels mm-1 | θmax = 29.0°, θmin = 2.2° |
ω scans | h = −12→11 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −22→22 |
Tmin = 0.884, Tmax = 1.000 | l = −22→24 |
15496 measured reflections |
Refinement on F2 | 133 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.037P)2 + 2.9358P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
6966 reflections | Δρmax = 1.00 e Å−3 |
519 parameters | Δρmin = −0.72 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ba1 | 0.75388 (3) | 0.05421 (2) | 0.01055 (2) | 0.03237 (9) | |
Co1 | 0.75301 (6) | 0.26481 (3) | 0.07072 (3) | 0.02836 (14) | |
O1 | 0.6344 (3) | 0.19069 (15) | 0.00703 (16) | 0.0351 (7) | |
N1 | 0.9308 (4) | 0.33476 (19) | 0.03199 (19) | 0.0336 (8) | |
C1 | 0.5130 (6) | 0.3782 (3) | 0.1078 (3) | 0.0545 (14) | |
H1A | 0.4189 | 0.3897 | 0.1300 | 0.065* | |
H1B | 0.5870 | 0.4177 | 0.1210 | 0.065* | |
O2 | 0.4340 (3) | 0.07423 (16) | −0.00434 (18) | 0.0400 (8) | |
N2 | 0.6147 (4) | 0.35215 (19) | −0.00548 (19) | 0.0350 (8) | |
C2 | 0.4817 (5) | 0.3772 (3) | 0.0300 (3) | 0.0461 (12) | |
H2A | 0.3957 | 0.3438 | 0.0172 | 0.055* | |
H2B | 0.4530 | 0.4275 | 0.0133 | 0.055* | |
O3 | 0.3318 (3) | 0.26420 (17) | −0.11008 (16) | 0.0374 (7) | |
N3 | 0.5736 (4) | 0.3060 (2) | 0.1354 (2) | 0.0389 (9) | |
C3 | 0.7199 (5) | 0.4133 (3) | −0.0140 (3) | 0.0445 (11) | |
H3A | 0.7282 | 0.4440 | 0.0292 | 0.053* | |
H3B | 0.6818 | 0.4449 | −0.0541 | 0.053* | |
O4 | 0.8695 (3) | 0.16663 (15) | 0.09010 (15) | 0.0340 (7) | |
N4 | 0.8905 (4) | 0.30110 (18) | 0.17530 (19) | 0.0324 (8) | |
C4 | 0.8729 (5) | 0.3827 (3) | −0.0275 (3) | 0.0434 (11) | |
H4A | 0.8650 | 0.3537 | −0.0718 | 0.052* | |
H4B | 0.9442 | 0.4239 | −0.0330 | 0.052* | |
O5 | 1.0650 (3) | 0.05816 (16) | 0.05118 (17) | 0.0406 (8) | |
C5 | 0.9983 (5) | 0.3822 (2) | 0.0890 (3) | 0.0422 (11) | |
H5A | 0.9293 | 0.4240 | 0.0962 | 0.051* | |
H5B | 1.0941 | 0.4029 | 0.0746 | 0.051* | |
O6 | 1.1536 (4) | 0.16710 (18) | 0.23669 (17) | 0.0462 (8) | |
C6 | 1.0284 (5) | 0.3412 (3) | 0.1570 (3) | 0.0414 (11) | |
H6A | 1.1114 | 0.3055 | 0.1527 | 0.050* | |
H6B | 1.0601 | 0.3764 | 0.1952 | 0.050* | |
C7 | 0.7907 (5) | 0.3517 (3) | 0.2110 (3) | 0.0426 (11) | |
H7A | 0.7868 | 0.4003 | 0.1870 | 0.051* | |
H7B | 0.8308 | 0.3593 | 0.2606 | 0.051* | |
C8 | 0.6351 (5) | 0.3191 (3) | 0.2090 (3) | 0.0442 (12) | |
H8A | 0.6387 | 0.2719 | 0.2353 | 0.053* | |
H8B | 0.5678 | 0.3533 | 0.2324 | 0.053* | |
C9 | 0.4532 (6) | 0.2506 (3) | 0.1367 (3) | 0.0589 (15) | |
H9A | 0.4106 | 0.2409 | 0.0885 | 0.088* | |
H9B | 0.4947 | 0.2047 | 0.1576 | 0.088* | |
H9C | 0.3738 | 0.2691 | 0.1650 | 0.088* | |
C10 | 1.0466 (5) | 0.2848 (3) | 0.0060 (3) | 0.0500 (13) | |
H10A | 1.0003 | 0.2536 | −0.0319 | 0.075* | |
H10B | 1.1274 | 0.3143 | −0.0121 | 0.075* | |
H10C | 1.0886 | 0.2536 | 0.0448 | 0.075* | |
C11 | 0.5658 (5) | 0.3217 (2) | −0.0762 (2) | 0.0395 (10) | |
H11A | 0.5112 | 0.3604 | −0.1049 | 0.047* | |
H11B | 0.6556 | 0.3072 | −0.1006 | 0.047* | |
C12 | 0.4661 (5) | 0.2566 (2) | −0.0707 (2) | 0.0318 (9) | |
C13 | 0.5033 (4) | 0.1960 (2) | −0.0315 (2) | 0.0316 (9) | |
C14 | 0.3993 (4) | 0.1344 (2) | −0.0339 (2) | 0.0325 (9) | |
C15 | 0.2580 (4) | 0.1477 (2) | −0.0733 (2) | 0.0310 (9) | |
H15 | 0.1815 | 0.1109 | −0.0739 | 0.037* | |
C16 | 0.2308 (5) | 0.2098 (3) | −0.1090 (2) | 0.0367 (10) | |
H16 | 0.1358 | 0.2158 | −0.1349 | 0.044* | |
C17 | 0.9321 (5) | 0.2400 (2) | 0.2241 (2) | 0.0404 (11) | |
H17A | 0.9863 | 0.2604 | 0.2673 | 0.048* | |
H17B | 0.8390 | 0.2160 | 0.2380 | 0.048* | |
C18 | 1.0276 (5) | 0.1841 (2) | 0.1936 (2) | 0.0354 (10) | |
C19 | 0.9936 (4) | 0.1509 (2) | 0.1305 (2) | 0.0307 (9) | |
C20 | 1.0956 (5) | 0.0936 (2) | 0.1072 (2) | 0.0364 (10) | |
C21 | 1.2276 (5) | 0.0819 (3) | 0.1537 (3) | 0.0479 (12) | |
H21 | 1.3017 | 0.0479 | 0.1404 | 0.058* | |
C22 | 1.2496 (6) | 0.1168 (3) | 0.2147 (3) | 0.0536 (14) | |
H22 | 1.3377 | 0.1056 | 0.2443 | 0.064* | |
Cl1A | 0.800 (2) | 0.1249 (9) | −0.1620 (10) | 0.047 (2) | 0.40 (3) |
O11A | 0.658 (2) | 0.0849 (10) | −0.1333 (10) | 0.047 (3) | 0.40 (3) |
O12A | 0.9088 (18) | 0.1007 (11) | −0.1140 (9) | 0.052 (3) | 0.40 (3) |
O13A | 0.860 (3) | 0.0808 (10) | −0.2136 (12) | 0.063 (4) | 0.40 (3) |
O14A | 0.810 (3) | 0.2057 (12) | −0.1686 (12) | 0.074 (4) | 0.40 (3) |
Cl1B | 0.7844 (14) | 0.1280 (7) | −0.1622 (6) | 0.0479 (16) | 0.60 (3) |
O11B | 0.6498 (15) | 0.1036 (8) | −0.1448 (7) | 0.051 (2) | 0.60 (3) |
O12B | 0.8977 (12) | 0.1255 (8) | −0.1006 (6) | 0.056 (2) | 0.60 (3) |
O13B | 0.8144 (15) | 0.0963 (8) | −0.2287 (6) | 0.064 (3) | 0.60 (3) |
O14B | 0.750 (2) | 0.2000 (8) | −0.1816 (7) | 0.076 (3) | 0.60 (3) |
Cl2A | 0.6555 (9) | 0.0780 (5) | 0.3226 (4) | 0.0424 (12) | 0.78 (3) |
O21A | 0.5765 (11) | 0.1464 (5) | 0.3243 (6) | 0.066 (2) | 0.78 (3) |
O22A | 0.7030 (10) | 0.0638 (6) | 0.3946 (4) | 0.062 (2) | 0.78 (3) |
O23A | 0.5501 (11) | 0.0220 (4) | 0.2981 (6) | 0.065 (2) | 0.78 (3) |
O24A | 0.7821 (9) | 0.0858 (7) | 0.2801 (4) | 0.081 (3) | 0.78 (3) |
Cl2B | 0.661 (4) | 0.073 (2) | 0.317 (2) | 0.060 (5) | 0.22 (3) |
O21B | 0.610 (4) | 0.1450 (16) | 0.2989 (19) | 0.053 (6) | 0.22 (3) |
O22B | 0.733 (4) | 0.0437 (17) | 0.381 (2) | 0.065 (5) | 0.22 (3) |
O23B | 0.571 (4) | 0.027 (2) | 0.272 (2) | 0.066 (5) | 0.22 (3) |
O24B | 0.783 (3) | 0.049 (2) | 0.2882 (15) | 0.071 (5) | 0.22 (3) |
O1WA | 0.6542 (14) | 0.0192 (9) | 0.1411 (7) | 0.079 (4) | 0.493 (3) |
O1WB | 0.721 (2) | 0.0144 (13) | 0.1481 (12) | 0.054 (5) | 0.268 (3) |
O1WC | 0.842 (2) | −0.0011 (8) | 0.1552 (8) | 0.058 (4) | 0.239 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.02904 (15) | 0.02521 (14) | 0.04255 (17) | 0.00132 (10) | 0.00089 (10) | −0.00540 (11) |
Co1 | 0.0275 (3) | 0.0241 (3) | 0.0336 (3) | 0.0011 (2) | 0.0035 (2) | −0.0029 (2) |
O1 | 0.0309 (15) | 0.0251 (15) | 0.0476 (19) | 0.0022 (12) | −0.0083 (13) | −0.0040 (13) |
N1 | 0.0362 (19) | 0.0289 (19) | 0.037 (2) | −0.0018 (15) | 0.0072 (15) | −0.0018 (16) |
C1 | 0.052 (3) | 0.049 (3) | 0.065 (4) | 0.019 (2) | 0.015 (3) | −0.007 (3) |
O2 | 0.0332 (16) | 0.0273 (16) | 0.058 (2) | −0.0005 (12) | −0.0026 (14) | 0.0005 (15) |
N2 | 0.0336 (19) | 0.031 (2) | 0.040 (2) | 0.0002 (15) | 0.0013 (15) | −0.0011 (16) |
C2 | 0.041 (3) | 0.041 (3) | 0.056 (3) | 0.013 (2) | 0.005 (2) | −0.007 (2) |
O3 | 0.0348 (16) | 0.0409 (18) | 0.0354 (18) | 0.0054 (13) | −0.0043 (13) | 0.0019 (14) |
N3 | 0.0327 (19) | 0.045 (2) | 0.040 (2) | 0.0041 (17) | 0.0069 (16) | −0.0030 (18) |
C3 | 0.057 (3) | 0.029 (2) | 0.048 (3) | −0.001 (2) | 0.000 (2) | 0.008 (2) |
O4 | 0.0332 (16) | 0.0265 (15) | 0.0403 (18) | 0.0056 (12) | −0.0102 (12) | −0.0067 (13) |
N4 | 0.0350 (19) | 0.0272 (18) | 0.035 (2) | 0.0008 (15) | 0.0057 (15) | −0.0068 (15) |
C4 | 0.047 (3) | 0.041 (3) | 0.043 (3) | −0.011 (2) | 0.008 (2) | 0.007 (2) |
O5 | 0.0372 (17) | 0.0359 (18) | 0.047 (2) | 0.0083 (13) | −0.0064 (14) | −0.0124 (15) |
C5 | 0.039 (3) | 0.033 (2) | 0.054 (3) | −0.008 (2) | 0.002 (2) | −0.003 (2) |
O6 | 0.051 (2) | 0.0442 (19) | 0.040 (2) | 0.0051 (15) | −0.0151 (15) | −0.0055 (16) |
C6 | 0.037 (2) | 0.036 (2) | 0.050 (3) | −0.005 (2) | −0.001 (2) | −0.005 (2) |
C7 | 0.045 (3) | 0.041 (3) | 0.043 (3) | 0.003 (2) | 0.007 (2) | −0.015 (2) |
C8 | 0.048 (3) | 0.041 (3) | 0.046 (3) | 0.006 (2) | 0.016 (2) | −0.008 (2) |
C9 | 0.047 (3) | 0.072 (4) | 0.059 (4) | −0.016 (3) | 0.016 (3) | −0.007 (3) |
C10 | 0.043 (3) | 0.051 (3) | 0.059 (3) | 0.002 (2) | 0.020 (2) | −0.008 (3) |
C11 | 0.045 (3) | 0.034 (2) | 0.039 (3) | 0.000 (2) | 0.001 (2) | 0.002 (2) |
C12 | 0.034 (2) | 0.033 (2) | 0.028 (2) | −0.0013 (18) | −0.0015 (17) | 0.0001 (18) |
C13 | 0.027 (2) | 0.030 (2) | 0.038 (2) | 0.0033 (17) | −0.0002 (17) | −0.0061 (18) |
C14 | 0.030 (2) | 0.033 (2) | 0.035 (2) | 0.0061 (17) | 0.0020 (17) | −0.0075 (19) |
C15 | 0.025 (2) | 0.037 (2) | 0.029 (2) | −0.0004 (17) | −0.0038 (16) | −0.0079 (18) |
C16 | 0.032 (2) | 0.047 (3) | 0.031 (2) | 0.003 (2) | −0.0022 (17) | −0.003 (2) |
C17 | 0.048 (3) | 0.038 (3) | 0.035 (3) | 0.001 (2) | 0.001 (2) | −0.003 (2) |
C18 | 0.034 (2) | 0.032 (2) | 0.039 (3) | 0.0022 (18) | −0.0061 (18) | 0.0016 (19) |
C19 | 0.031 (2) | 0.026 (2) | 0.034 (2) | −0.0013 (16) | −0.0025 (17) | −0.0028 (18) |
C20 | 0.035 (2) | 0.029 (2) | 0.043 (3) | 0.0009 (18) | −0.0058 (19) | −0.002 (2) |
C21 | 0.040 (3) | 0.037 (3) | 0.064 (4) | 0.010 (2) | −0.013 (2) | −0.011 (2) |
C22 | 0.044 (3) | 0.049 (3) | 0.063 (4) | 0.012 (2) | −0.024 (2) | −0.007 (3) |
Cl1A | 0.049 (4) | 0.040 (4) | 0.054 (4) | −0.001 (3) | 0.010 (3) | 0.013 (3) |
O11A | 0.047 (5) | 0.039 (5) | 0.055 (5) | −0.001 (4) | 0.003 (4) | 0.015 (4) |
O12A | 0.050 (5) | 0.049 (5) | 0.058 (5) | 0.007 (4) | 0.003 (4) | 0.005 (4) |
O13A | 0.065 (7) | 0.063 (6) | 0.062 (7) | 0.013 (5) | 0.022 (5) | 0.006 (5) |
O14A | 0.073 (8) | 0.053 (7) | 0.093 (8) | 0.006 (7) | −0.019 (7) | 0.024 (6) |
Cl1B | 0.049 (3) | 0.057 (3) | 0.037 (2) | 0.0143 (18) | 0.0014 (18) | 0.0026 (18) |
O11B | 0.042 (3) | 0.064 (5) | 0.049 (4) | 0.011 (4) | 0.008 (3) | 0.006 (4) |
O12B | 0.049 (3) | 0.066 (4) | 0.051 (4) | 0.009 (4) | −0.006 (3) | 0.001 (4) |
O13B | 0.058 (5) | 0.100 (6) | 0.035 (4) | 0.024 (5) | 0.006 (4) | −0.002 (4) |
O14B | 0.081 (7) | 0.063 (5) | 0.080 (6) | 0.004 (6) | −0.018 (5) | 0.025 (4) |
Cl2A | 0.0529 (19) | 0.035 (2) | 0.0386 (17) | −0.0050 (18) | −0.0023 (13) | 0.0003 (14) |
O21A | 0.076 (5) | 0.045 (3) | 0.074 (5) | 0.008 (3) | −0.011 (4) | −0.010 (4) |
O22A | 0.074 (4) | 0.065 (5) | 0.046 (4) | 0.015 (3) | −0.001 (3) | 0.007 (3) |
O23A | 0.082 (4) | 0.034 (3) | 0.074 (5) | −0.020 (3) | −0.022 (4) | 0.006 (4) |
O24A | 0.097 (4) | 0.070 (6) | 0.083 (4) | −0.021 (4) | 0.046 (3) | −0.011 (4) |
Cl2B | 0.075 (8) | 0.034 (6) | 0.069 (9) | 0.014 (5) | 0.002 (6) | −0.003 (5) |
O21B | 0.071 (10) | 0.020 (8) | 0.066 (12) | −0.001 (7) | −0.002 (9) | 0.004 (8) |
O22B | 0.086 (10) | 0.039 (9) | 0.068 (10) | 0.012 (7) | −0.003 (8) | −0.002 (7) |
O23B | 0.086 (9) | 0.043 (9) | 0.069 (11) | 0.000 (7) | 0.008 (8) | −0.007 (8) |
O24B | 0.091 (9) | 0.046 (8) | 0.076 (10) | 0.009 (7) | 0.012 (7) | −0.006 (7) |
O1WA | 0.100 (8) | 0.095 (7) | 0.042 (5) | 0.000 (7) | 0.005 (6) | −0.007 (5) |
O1WB | 0.067 (9) | 0.056 (8) | 0.038 (8) | −0.005 (8) | 0.004 (8) | 0.001 (6) |
O1WC | 0.077 (8) | 0.045 (7) | 0.052 (8) | −0.012 (6) | 0.010 (6) | −0.012 (6) |
Ba1—O1 | 2.688 (3) | C5—H5B | 0.9900 |
Ba1—O4 | 2.690 (3) | O6—C22 | 1.339 (6) |
Ba1—O1WB | 2.75 (2) | O6—C18 | 1.370 (5) |
Ba1—O1WA | 2.774 (14) | C6—H6A | 0.9900 |
Ba1—O5 | 2.814 (3) | C6—H6B | 0.9900 |
Ba1—O11A | 2.853 (19) | C7—C8 | 1.503 (6) |
Ba1—O2i | 2.860 (3) | C7—H7A | 0.9900 |
Ba1—O2 | 2.861 (3) | C7—H7B | 0.9900 |
Ba1—O12B | 2.863 (10) | C8—H8A | 0.9900 |
Ba1—O5ii | 2.901 (3) | C8—H8B | 0.9900 |
Ba1—O12A | 2.955 (15) | C9—H9A | 0.9800 |
Ba1—O1WC | 2.972 (17) | C9—H9B | 0.9800 |
Co1—O1 | 2.044 (3) | C9—H9C | 0.9800 |
Co1—O4 | 2.075 (3) | C10—H10A | 0.9800 |
Co1—N1 | 2.199 (3) | C10—H10B | 0.9800 |
Co1—N3 | 2.220 (3) | C10—H10C | 0.9800 |
Co1—N4 | 2.344 (4) | C11—C12 | 1.484 (6) |
Co1—N2 | 2.414 (4) | C11—H11A | 0.9900 |
O1—C13 | 1.330 (5) | C11—H11B | 0.9900 |
N1—C5 | 1.472 (6) | C12—C13 | 1.351 (6) |
N1—C10 | 1.484 (5) | C13—C14 | 1.448 (6) |
N1—C4 | 1.485 (6) | C14—C15 | 1.432 (5) |
C1—C2 | 1.484 (7) | C15—C16 | 1.326 (6) |
C1—N3 | 1.492 (6) | C15—H15 | 0.9500 |
C1—H1A | 0.9900 | C16—H16 | 0.9500 |
C1—H1B | 0.9900 | C17—C18 | 1.471 (6) |
O2—C14 | 1.252 (5) | C17—H17A | 0.9900 |
O2—Ba1i | 2.860 (3) | C17—H17B | 0.9900 |
N2—C3 | 1.466 (6) | C18—C19 | 1.353 (6) |
N2—C2 | 1.479 (5) | C19—C20 | 1.469 (6) |
N2—C11 | 1.486 (6) | C20—C21 | 1.429 (6) |
C2—H2A | 0.9900 | C21—C22 | 1.320 (7) |
C2—H2B | 0.9900 | C21—H21 | 0.9500 |
O3—C16 | 1.334 (5) | C22—H22 | 0.9500 |
O3—C12 | 1.366 (5) | Cl1A—O12A | 1.35 (2) |
N3—C9 | 1.470 (6) | Cl1A—O13A | 1.40 (2) |
N3—C8 | 1.481 (6) | Cl1A—O14A | 1.47 (3) |
C3—C4 | 1.511 (6) | Cl1A—O11A | 1.59 (2) |
C3—H3A | 0.9900 | Cl1B—O11B | 1.342 (18) |
C3—H3B | 0.9900 | Cl1B—O14B | 1.383 (17) |
O4—C19 | 1.325 (5) | Cl1B—O13B | 1.433 (15) |
N4—C17 | 1.471 (5) | Cl1B—O12B | 1.484 (15) |
N4—C7 | 1.477 (5) | Cl2A—O22A | 1.423 (11) |
N4—C6 | 1.490 (5) | Cl2A—O21A | 1.425 (12) |
C4—H4A | 0.9900 | Cl2A—O23A | 1.434 (10) |
C4—H4B | 0.9900 | Cl2A—O24A | 1.444 (11) |
O5—C20 | 1.254 (5) | Cl2B—O24B | 1.33 (5) |
O5—Ba1ii | 2.901 (3) | Cl2B—O23B | 1.40 (4) |
C5—C6 | 1.497 (6) | Cl2B—O21B | 1.42 (4) |
C5—H5A | 0.9900 | Cl2B—O22B | 1.43 (5) |
O1—Ba1—O4 | 56.75 (8) | N1—C4—H4A | 109.6 |
O1—Ba1—O1WB | 101.1 (5) | C3—C4—H4A | 109.6 |
O4—Ba1—O1WB | 74.2 (5) | N1—C4—H4B | 109.6 |
O1—Ba1—O1WA | 94.5 (3) | C3—C4—H4B | 109.6 |
O4—Ba1—O1WA | 78.8 (3) | H4A—C4—H4B | 108.1 |
O1—Ba1—O5 | 111.22 (8) | C20—O5—Ba1 | 112.8 (3) |
O4—Ba1—O5 | 60.20 (8) | C20—O5—Ba1ii | 127.8 (3) |
O1WB—Ba1—O5 | 85.5 (4) | Ba1—O5—Ba1ii | 115.92 (10) |
O1WA—Ba1—O5 | 97.9 (3) | N1—C5—C6 | 112.4 (4) |
O1—Ba1—O11A | 73.1 (4) | N1—C5—H5A | 109.1 |
O4—Ba1—O11A | 117.6 (4) | C6—C5—H5A | 109.1 |
O1WA—Ba1—O11A | 144.0 (5) | N1—C5—H5B | 109.1 |
O5—Ba1—O11A | 118.1 (4) | C6—C5—H5B | 109.1 |
O1—Ba1—O2i | 121.15 (8) | H5A—C5—H5B | 107.9 |
O4—Ba1—O2i | 146.50 (9) | C22—O6—C18 | 118.5 (4) |
O1WB—Ba1—O2i | 73.8 (5) | N4—C6—C5 | 110.4 (4) |
O1WA—Ba1—O2i | 67.9 (3) | N4—C6—H6A | 109.6 |
O5—Ba1—O2i | 126.20 (8) | C5—C6—H6A | 109.6 |
O11A—Ba1—O2i | 89.4 (4) | N4—C6—H6B | 109.6 |
O1—Ba1—O2 | 59.51 (8) | C5—C6—H6B | 109.6 |
O4—Ba1—O2 | 107.01 (8) | H6A—C6—H6B | 108.1 |
O1WB—Ba1—O2 | 87.0 (5) | N4—C7—C8 | 109.4 (4) |
O1WA—Ba1—O2 | 74.4 (3) | N4—C7—H7A | 109.8 |
O5—Ba1—O2 | 166.61 (9) | C8—C7—H7A | 109.8 |
O11A—Ba1—O2 | 70.2 (4) | N4—C7—H7B | 109.8 |
O2i—Ba1—O2 | 61.66 (10) | C8—C7—H7B | 109.8 |
O1—Ba1—O12B | 76.5 (3) | H7A—C7—H7B | 108.2 |
O4—Ba1—O12B | 84.3 (3) | N3—C8—C7 | 110.9 (4) |
O1WB—Ba1—O12B | 155.1 (5) | N3—C8—H8A | 109.5 |
O5—Ba1—O12B | 72.8 (2) | C7—C8—H8A | 109.5 |
O2i—Ba1—O12B | 129.0 (3) | N3—C8—H8B | 109.5 |
O2—Ba1—O12B | 111.7 (2) | C7—C8—H8B | 109.5 |
O1—Ba1—O5ii | 149.97 (9) | H8A—C8—H8B | 108.1 |
O4—Ba1—O5ii | 123.92 (8) | N3—C9—H9A | 109.5 |
O1WB—Ba1—O5ii | 107.8 (5) | N3—C9—H9B | 109.5 |
O1WA—Ba1—O5ii | 115.4 (3) | H9A—C9—H9B | 109.5 |
O5—Ba1—O5ii | 64.08 (10) | N3—C9—H9C | 109.5 |
O11A—Ba1—O5ii | 83.3 (4) | H9A—C9—H9C | 109.5 |
O2i—Ba1—O5ii | 75.82 (9) | H9B—C9—H9C | 109.5 |
O2—Ba1—O5ii | 128.99 (9) | N1—C10—H10A | 109.5 |
O12B—Ba1—O5ii | 73.8 (3) | N1—C10—H10B | 109.5 |
O1—Ba1—O12A | 85.8 (4) | H10A—C10—H10B | 109.5 |
O4—Ba1—O12A | 93.0 (4) | N1—C10—H10C | 109.5 |
O1WA—Ba1—O12A | 169.9 (4) | H10A—C10—H10C | 109.5 |
O5—Ba1—O12A | 72.6 (3) | H10B—C10—H10C | 109.5 |
O11A—Ba1—O12A | 45.6 (5) | C12—C11—N2 | 111.3 (4) |
O2i—Ba1—O12A | 120.5 (4) | C12—C11—H11A | 109.4 |
O2—Ba1—O12A | 114.1 (3) | N2—C11—H11A | 109.4 |
O5ii—Ba1—O12A | 64.3 (4) | C12—C11—H11B | 109.4 |
O1—Ba1—O1WC | 114.0 (3) | N2—C11—H11B | 109.4 |
O4—Ba1—O1WC | 71.0 (3) | H11A—C11—H11B | 108.0 |
O5—Ba1—O1WC | 64.8 (3) | C13—C12—O3 | 123.3 (4) |
O2i—Ba1—O1WC | 82.8 (3) | C13—C12—C11 | 124.2 (4) |
O2—Ba1—O1WC | 108.7 (3) | O3—C12—C11 | 112.5 (4) |
O5ii—Ba1—O1WC | 91.4 (3) | O1—C13—C12 | 121.8 (4) |
O1—Co1—O4 | 76.70 (11) | O1—C13—C14 | 119.4 (4) |
O1—Co1—N1 | 122.08 (13) | C12—C13—C14 | 118.7 (4) |
O4—Co1—N1 | 100.96 (12) | O2—C14—C15 | 123.7 (4) |
O1—Co1—N3 | 100.86 (13) | O2—C14—C13 | 121.5 (4) |
O4—Co1—N3 | 124.07 (13) | C15—C14—C13 | 114.8 (4) |
N1—Co1—N3 | 124.08 (13) | C16—C15—C14 | 121.8 (4) |
O1—Co1—N4 | 153.71 (12) | C16—C15—H15 | 119.1 |
O4—Co1—N4 | 82.53 (11) | C14—C15—H15 | 119.1 |
N1—Co1—N4 | 77.40 (13) | C15—C16—O3 | 122.6 (4) |
N3—Co1—N4 | 77.62 (12) | C15—C16—H16 | 118.7 |
O1—Co1—N2 | 81.95 (12) | O3—C16—H16 | 118.7 |
O4—Co1—N2 | 152.96 (12) | C18—C17—N4 | 113.1 (4) |
N1—Co1—N2 | 76.58 (12) | C18—C17—H17A | 109.0 |
N3—Co1—N2 | 75.99 (13) | N4—C17—H17A | 109.0 |
N4—Co1—N2 | 122.15 (12) | C18—C17—H17B | 109.0 |
C13—O1—Co1 | 131.9 (2) | N4—C17—H17B | 109.0 |
C13—O1—Ba1 | 114.1 (2) | H17A—C17—H17B | 107.8 |
Co1—O1—Ba1 | 113.82 (11) | C19—C18—O6 | 123.0 (4) |
C5—N1—C10 | 110.3 (4) | C19—C18—C17 | 124.1 (4) |
C5—N1—C4 | 108.4 (3) | O6—C18—C17 | 112.9 (4) |
C10—N1—C4 | 108.1 (4) | O4—C19—C18 | 122.3 (4) |
C5—N1—Co1 | 110.6 (3) | O4—C19—C20 | 118.9 (4) |
C10—N1—Co1 | 107.3 (3) | C18—C19—C20 | 118.7 (4) |
C4—N1—Co1 | 112.1 (3) | O5—C20—C21 | 124.2 (4) |
C2—C1—N3 | 112.0 (4) | O5—C20—C19 | 121.3 (4) |
C2—C1—H1A | 109.2 | C21—C20—C19 | 114.5 (4) |
N3—C1—H1A | 109.2 | C22—C21—C20 | 122.0 (4) |
C2—C1—H1B | 109.2 | C22—C21—H21 | 119.0 |
N3—C1—H1B | 109.2 | C20—C21—H21 | 119.0 |
H1A—C1—H1B | 107.9 | C21—C22—O6 | 123.1 (4) |
C14—O2—Ba1i | 124.5 (3) | C21—C22—H22 | 118.4 |
C14—O2—Ba1 | 111.2 (2) | O6—C22—H22 | 118.4 |
Ba1i—O2—Ba1 | 118.33 (10) | O12A—Cl1A—O13A | 89.8 (18) |
C3—N2—C2 | 111.1 (4) | O12A—Cl1A—O14A | 109.8 (13) |
C3—N2—C11 | 108.9 (4) | O13A—Cl1A—O14A | 118.6 (14) |
C2—N2—C11 | 109.8 (3) | O12A—Cl1A—O11A | 99.6 (12) |
C3—N2—Co1 | 105.2 (3) | O13A—Cl1A—O11A | 109.7 (13) |
C2—N2—Co1 | 108.4 (3) | O14A—Cl1A—O11A | 122.2 (15) |
C11—N2—Co1 | 113.5 (3) | O12A—Cl1A—Ba1 | 52.5 (8) |
N2—C2—C1 | 111.4 (4) | O13A—Cl1A—Ba1 | 121.1 (11) |
N2—C2—H2A | 109.3 | O14A—Cl1A—Ba1 | 116.5 (12) |
C1—C2—H2A | 109.3 | O11A—Cl1A—Ba1 | 51.0 (8) |
N2—C2—H2B | 109.3 | Cl1A—O11A—Ba1 | 103.3 (10) |
C1—C2—H2B | 109.3 | Cl1A—O12A—Ba1 | 106.3 (10) |
H2A—C2—H2B | 108.0 | O11B—Cl1B—O14B | 101.1 (12) |
C16—O3—C12 | 118.6 (3) | O11B—Cl1B—O13B | 108.6 (9) |
C9—N3—C8 | 108.0 (4) | O14B—Cl1B—O13B | 101.2 (12) |
C9—N3—C1 | 111.1 (4) | O11B—Cl1B—O12B | 111.0 (10) |
C8—N3—C1 | 106.7 (4) | O14B—Cl1B—O12B | 111.2 (9) |
C9—N3—Co1 | 109.7 (3) | O13B—Cl1B—O12B | 121.5 (12) |
C8—N3—Co1 | 110.5 (2) | O11B—Cl1B—Ba1 | 61.1 (7) |
C1—N3—Co1 | 110.8 (3) | O14B—Cl1B—Ba1 | 124.5 (8) |
N2—C3—C4 | 109.5 (4) | O13B—Cl1B—Ba1 | 134.0 (9) |
N2—C3—H3A | 109.8 | O12B—Cl1B—Ba1 | 50.2 (5) |
C4—C3—H3A | 109.8 | Cl1B—O11B—Ba1 | 97.0 (7) |
N2—C3—H3B | 109.8 | Cl1B—O12B—Ba1 | 106.3 (6) |
C4—C3—H3B | 109.8 | O22A—Cl2A—O21A | 104.2 (9) |
H3A—C3—H3B | 108.2 | O22A—Cl2A—O23A | 108.7 (6) |
C19—O4—Co1 | 132.0 (2) | O21A—Cl2A—O23A | 108.1 (7) |
C19—O4—Ba1 | 115.2 (2) | O22A—Cl2A—O24A | 111.8 (8) |
Co1—O4—Ba1 | 112.64 (11) | O21A—Cl2A—O24A | 109.6 (6) |
C17—N4—C7 | 107.8 (3) | O23A—Cl2A—O24A | 113.9 (9) |
C17—N4—C6 | 110.0 (3) | O24B—Cl2B—O23B | 90 (3) |
C7—N4—C6 | 109.9 (3) | O24B—Cl2B—O21B | 116 (3) |
C17—N4—Co1 | 114.3 (3) | O23B—Cl2B—O21B | 104 (3) |
C7—N4—Co1 | 105.7 (3) | O24B—Cl2B—O22B | 85 (3) |
C6—N4—Co1 | 108.8 (3) | O23B—Cl2B—O22B | 120 (3) |
N1—C4—C3 | 110.4 (4) | O21B—Cl2B—O22B | 131 (3) |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y, −z. |
Co1—N1 | 2.199 (3) |
Co1—N2 | 2.414 (3) |
Co1—N3 | 2.220 (4) |
Co1—N4 | 2.344 (3) |
Co1—O1 | 2.044 (3) |
Co1—O4 | 2.075 (3) |
Ba1—O1 | 2.688 (3) |
Ba1—O2 | 2.861 (3) |
Ba1—O4 | 2.690 (3) |
Ba1—O5 | 2.814 (3) |
Ba1—O1W | 2.774 (14)/2.75 (2)/2.972 (15)a |
Ba1—O11 | 2.853 (19)/3.154 (13)b |
Ba1—O12 | 2.955 (18)/2.863 (12)b |
N1···N3 | 3.903 (5) |
N2···N4 | 4.164 (5) |
Ba1···Ba1i | 4.9123 (4) |
Ba1···O2i | 2.860 (3) |
O2···O2i | 2.932 (4) |
Ba1···Ba1ii | 4.8443 (4) |
Ba1···O5ii | 2.900 (3) |
O5···O5ii | 3.033 (4) |
Ba1i···Ba1ii | 8.8965 (4) |
Ba1—O1—Co1 | 113.82 (12) |
Ba1—O4—Co1 | 112.64 (11) |
Ba1—O2—Ba1i | 118.34 (10) |
Ba1—O5—Ba1ii | 115.92 (10) |
Symmetry codes: (i) = -x + 1, -y, -z; (ii) = -x + 2, -y, -z. Notes: (a) the values refer to O1WA/B/C atoms, respectively; (b) the values refer to the A/B oxygen atoms, respectively, of the disordered perchlorate anion (see Refinement section). |
The first and second values for each entry refer to the A and B oxygen atoms, respectively, of the disordered perchlorate anion (see Refinement section). |
D—H··· | D—H | H···A | D···A | D—H···A |
C8—H8A···O21 | 0.99 | 2.91/2.62 | 3.877 (12)/3.60 (3) | 165.3/172.3 |
C3—H3A···O22iii | 0.99 | 2.65/2.48 | 3.577 (11)/3.46 (3) | 155.7/166.7 |
C8—H8B···O13iv | 0.99 | 2.49/2.59 | 3.46 (2)/3.524 (15) | 168.5/156.6 |
C22—H22···O21v | 0.95 | 2.62/2.66 | 3.482 (11)/3.51 (3) | 151.4/149.2 |
C22—H22···O23v | 0.95 | 2.57/2.54 | 3.455 (11)/3.39 (4) | 155.1/149.9 |
Symmetry codes: (iii) -x + 3/2, y - 1/2, -z + 1/2; (iv) x + 1/2, -y + 1/2, z - 1/2; (v) x - 1, y, z. |
Acknowledgements
The authors acknowledge the CRIST (Centro di Cristallografia Strutturale, University of Firenze) where the data collection was performed.
Funding information
Funding for this research was provided by: MIUR PRIN 2015.
References
Amatori, S., Ambrosi, G., Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2012). J. Org. Chem. 77, 2207–2218. Web of Science CSD CrossRef CAS PubMed
Banerjee, D., Simon, C. M., Plonka, A. M., Motkuri, R. K., Liu, J., Chen, X. Y., Smit, B., Parise, J. B., Haranczyk, M. & Thallapally, P. K. (2016). Nat. Commun. 7, 11831. Web of Science CSD CrossRef
Benelli, C., Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 5848–5859. Web of Science CSD CrossRef CAS PubMed
Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 2902–2912. Web of Science CSD CrossRef CAS PubMed
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals
Cai, S.-L., He, Z.-H., Wu, W.-H., Liu, F.-X., Huang, X.-L., Zheng, S.-R., Fan, J. & Zhang, W. (2017). CrystEngComm, 19, 3003–3016. Web of Science CSD CrossRef CAS
Cai, S. L., Zheng, S. R., Fan, J., Zeng, R. H. & Zhang, W. G. (2016). CrystEngComm, 18, 1174–1183. Web of Science CSD CrossRef CAS
Campbell, M. G., Sheberla, D., Liu, S. F., Swager, T. M. & Dincă, M. (2015). Angew. Chem. Int. Ed. 54, 4349–4352. Web of Science CrossRef CAS
Chakraborty, A. & Maji, T. K. (2014). APL Mater 2, 124107-7. Web of Science CrossRef
Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A. & Verpoort, F. (2015). Chem. Soc. Rev. 44, 6804–6849. Web of Science CrossRef CAS PubMed
Deng, J. H., Zhong, D. C., Luo, X. Z., Liu, H. J. & Lu, T. B. (2012). Cryst. Growth Des. 12, 4861–4869. Web of Science CSD CrossRef CAS
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. IUCr Monographs on Crystallography, Vol. 9. New York: Oxford University Press.
Douvali, A., Papaefstathiou, G. S., Gullo, M. P., Barbieri, A., Tsipis, A. C., Malliakas, C. D., Kanatzidis, M. G., Papadas, I., Armatas, G. S., Hatzidimitriou, A. G., Lazarides, T. & Manos, M. J. (2015). Inorg. Chem. 54, 5813–5826. Web of Science CSD CrossRef CAS PubMed
Feng, X., Feng, Y. Q., Chen, J. J., Ng, S. W., Wang, L. Y. & Guo, J. Z. (2015). Dalton Trans. 44, 804–816. Web of Science CSD CrossRef CAS PubMed
Foo, M. L., Horike, S., Duan, J., Chen, W. & Kitagawa, S. (2013). Cryst. Growth Des. 13, 2965–2972. Web of Science CSD CrossRef CAS
Foo, M. L., Horike, S., Inubushi, Y. & Kitagawa, S. (2012). Angew. Chem. Int. Ed. 51, 6107–6111. Web of Science CSD CrossRef CAS
Fracaroli, A. M., Furukawa, H., Suzuki, M., Dodd, M., Okajima, S., Gándara, F., Reimer, J. A. & Yaghi, O. M. (2014). J. Am. Chem. Soc. 136, 8863–8866. Web of Science CSD CrossRef CAS PubMed
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals
Guggenberger, L. J. & Muetterties, E. L. (1976). J. Am. Chem. Soc. 98, 7221–7225. CrossRef CAS Web of Science
Hu, Z. C., Deibert, B. J. & Li, J. (2014). Chem. Soc. Rev. 43, 5815–5840. Web of Science CrossRef CAS PubMed
Jia, H. L., Li, Y. L., Xiong, Z. F., Wang, C. J. & Li, G. (2014). Dalton Trans. 43, 3704–3715. Web of Science CSD CrossRef CAS PubMed
Jing, X. M., Zhang, L. R., Ma, T. L., Li, G. H., Yu, Y., Huo, Q. S., Eddaoudi, M. & Liu, Y. L. (2010). Cryst. Growth Des. 10, 492–494. Web of Science CSD CrossRef CAS
Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125. Web of Science CrossRef CAS PubMed
Li, X., Wu, B. L., Niu, C. Y., Niu, Y. Y. & Zhang, H. Y. (2009). Cryst. Growth Des. 9, 3423–3431. Web of Science CSD CrossRef CAS
Lian, C., Liu, L., Guo, X., Long, Y., Jia, S., Li, H. & Yang, L. (2016). J. Solid State Chem. 233, 229–235. Web of Science CrossRef CAS
Liu, H. K., Tsao, T. H., Lin, C. H. & Zima, V. (2010). CrystEngComm, 12, 1044–1047. Web of Science CSD CrossRef CAS
Liu, Y., Xuan, W. M. & Cui, Y. (2010). Adv. Mater. 22, 4112–4135. Web of Science CrossRef CAS PubMed
Mali, G., Trebosc, J., Martineau, C. & Mazaj, M. (2015). J. Phys. Chem. C, 119, 7831–7841. Web of Science CrossRef CAS
Meurant, G. (1987). Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal. Amsterdam; New York: Elsevier.
Mo, K., Yang, Y. & Cui, Y. (2014). J. Am. Chem. Soc. 136, 1746–1749. Web of Science CSD CrossRef CAS PubMed
Muetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748–1756. CrossRef CAS Web of Science
Raja, D. S., Luo, J. H., Yeh, C. T., Jiang, Y. C., Hsu, K. F. & Lin, C. H. (2014). CrystEngComm, 16, 1985–1994. Web of Science CSD CrossRef CAS
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Abingdon, UK.
Rossi, P., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M. & Paoli, P. (2017). Inorg. Chim. Acta, doi: 10.1016/j. ica. 2017.06.033.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals
Shi, B. B., Zhong, Y. H., Guo, L. L. & Li, G. (2015). Dalton Trans. 44, 4362–4369. Web of Science CSD CrossRef CAS PubMed
Smith, N. D., Roppe, J. R., Bonnefous, C., Payne, J. E., Zhang, H., Chen, X. H., Lindstrom, A. K., Duron, S. G., Hassing, C. A. & Noble, S. A. (2013). US patent 20080139558–A1.
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D. W. (2012). Chem. Rev. 112, 782–835. Web of Science CrossRef CAS PubMed
Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H. & Long, J. R. (2012). Chem. Rev. 112, 724–781. Web of Science CrossRef CAS PubMed
Wang, J. H., Li, M. & Li, D. (2013). Chem. Sci. 4, 1793–1801. Web of Science CSD CrossRef CAS
Xiao, D., Chen, H., Sun, D., He, J., Yan, S., Yang, J., Wang, X., Yuan, R. & Wang, E. (2012). CrystEngComm, 14, 2849–2858. Web of Science CSD CrossRef CAS
Xie, L. X., Hou, X. W., Fan, Y. T. & Hou, H. W. (2012). Cryst. Growth Des. 12, 1282–1291. Web of Science CSD CrossRef CAS
Yoon, M., Srirambalaji, R. & Kim, K. (2012). Chem. Rev. 112, 1196–1231. Web of Science CrossRef CAS PubMed
Zhai, Q. G., Zeng, R. R., Li, S. N., Jiang, Y. C. & Hu, M. C. (2013). CrystEngComm, 15, 965–976. Web of Science CSD CrossRef CAS
Zhang, Y., Guo, B. B., Li, L., Liu, S. F. & Li, G. (2013). Cryst. Growth Des. 13, 367–376. Web of Science CSD CrossRef
Zhang, X., Huang, Y.-Y., Zhang, M.-J., Zhang, J. & Yao, Y.-G. (2012). Cryst. Growth Des. 12, 3231–3238. Web of Science CSD CrossRef CAS
Zhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. & Zhu, Y. Y. (2010). Inorg. Chem. 49, 3776–3788. Web of Science CSD CrossRef CAS PubMed
Zhang, Y., Luo, X. B., Yang, Z. L. & Li, G. (2012). CrystEngComm, 14, 7382–7397. Web of Science CSD CrossRef CAS
Zhang, Y., Yuan, P., Zhu, Y. & Li, G. (2013). Dalton Trans. 42, 14776–14785. Web of Science CSD CrossRef CAS PubMed
Zheng, S. R., Wen, Z. Z., Chen, Y. Y., Cai, S. L., Fan, J. & Zhang, W. G. (2015). Inorg. Chem. Commun. 55, 165–168. Web of Science CrossRef CAS
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.