research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Buthalital and methitural – 5,5-substituted derivatives of 2-thio­barbituric acid forming the same type of hydrogen-bonded chain

CROSSMARK_Color_square_no_text.svg

aUniversity of Innsbruck, Institute of Pharmacy, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: thomas.gelbrich@uibk.ac.at

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 10 November 2017; accepted 16 November 2017; online 21 November 2017)

The mol­ecule of buthalital, (I) [systematic name: 5-(2-methyl­prop­yl)-5-(prop-2-en-1-yl)-2-sulfanyl­idene-1,3-diazinane-4,6-dione], C11H16N2O2S, exhibits a planar pyrimidine ring, whereas the pyrimidine ring of methitural, (II) [systematic name: 5-(1-methyl­but­yl)-5-[2-(methyl­sulfan­yl)eth­yl]-2-sulfanyl­idene-1,3-diazinane-4,6-dione], C12H20N2O2S2, is slightly puckered. (I) and (II) contain the same hydrogen-bonded chain structure in which each mol­ecule is connected, via four N—H⋯O=C hydrogen bonds, to two other mol­ecules, resulting in a hydrogen-bonded chain displaying a sequence of R22(8) rings. The same type of N—H⋯O=C hydrogen-bonded chain has previously been found in several 5,5-disubstituted derivatives of barbituric acid which are chemically closely related to (I) and (II).

1. Chemical context

Buthalital (I)[link] and methitural (II)[link] are 5,5-disubstituted derivatives of 2-thio­barbituric acid. Compounds of the thio­barbiturate class differ from the corresponding barbiturates in that the ketone group at the 2-position is replaced by a thione group. Thio­barbiturates are used as injection narcotics for the induction of general anaesthesia or to produce complete anaesthesia of short duration. The sodium salt of (I)[link] was originally developed as a short-acting anaesthetic but was found to have an extremely rapid elimination rate. Similarly, (II)[link] was marketed in the 1950s as an ultra-short-acting intra­venous anaesthetic.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], shows an almost planar pyrim­idine ring (N1, C2, N3, C4 C5, C6) with a root-mean-square (r.m.s.) deviation of its six atoms from the mean plane of 0.016 Å (Fig. 1[link]). The (C7, C8, C5, C10, C11) unit defined by ring atom C5 and two atoms of each of the allyl and isobutyl substituents is nearly planar (r.m.s. deviation = 0.050 Å). The mean plane of this fragment forms an angle of 87.5 (1)° with the plane of the six-membered ring. Additionally, it forms an angle of 77.8 (2)° with the plane of the allyl group defined by C7, C8 and C9. The terminal torsion angles C5—C10—C11—C12 and C5—C10— C11—C13 of the isobutyl substituent are −71.7 (3)° and 165.6 (2)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level and H atoms drawn as spheres of arbitrary size.

The pyrimidine ring (N1, C2, N3, C4 C5, C6) in the mol­ecule of (II)[link] deviates somewhat from planarity (r.m.s. deviation = 0.030 Å); specifically, the distance between C6 and the mean plane defined by the other five ring atoms (r.m.s deviation = 0.005 Å) is 0.104 (2) Å (Fig. 2[link]). The mean plane of the (S9, C8, C7, C5, C12, C16) chain, defined by ring atom C6, three atoms of the 2-(methyl­thio)­ethyl substituent and two atoms of the sec-butyl group (r.m.s. deviation = 0.091 Å) forms an angle of 88.64 (5)° with the mean plane of the pyrimidine ring and an angle of 39.0 (1)° with the mean plane of the (C5, C12, C13, C14, C15) fragment of the nearly planar (r.m.s. deviation = 0.070) sec-butyl group. In the 2-(methyl­thio)­ethyl substituent, the C10—S9 and C8—S9 bond lengths are 1.794 (2) and 1.803 (2) Å, respectively, and the C7—C8—S9—C10 torsion angle is 82.5 (2)°. The bond between ring atom C5 and atom C12 of the sec-butyl group [1.582 (2) Å] is somewhat longer than the analogous distance between C5 and atom C7 of the 2-(methyl­thio)­ethyl group [1.547 (2) Å]. This difference is reminiscent of the difference between equatorial and axial bonds at ring atom C5 found in several 5,5-disubstituted barbituric acid derivatives that exhibit a puckered pyrimidine ring (Gelbrich et al., 2016b[Gelbrich, T., Braun, D. E., Oberparleiter, S., Schottenberger, H. & Griesser, U. J. (2016b). Crystals, 6, 47.]).

[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], with displacement ellipsoids drawn at the 50% probability level and H atoms drawn as spheres of arbitrary size.

3. Supra­molecular features

The crystal structure of (I)[link] contains N1—H1⋯O4i and N3—H3⋯O6ii bonds (Fig. 3[link], Table 1[link]). Each mol­ecule is linked to two neighbouring mol­ecules via two-point connections and [R_{2}^{2}](8) rings (Etter et al. 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.], Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The resulting chain structure (topological type 2C1) contains a twofold screw axis and runs parallel to the b axis. The mean planes of neighbouring pyrimidine rings in the chain form an angle of approximately 40° with one another. The chain structure of (I)[link] belongs to the C-2 type, which also occurs in a number of 5,5-disubstituted barbituric acid derivatives (Gelbrich et al., 2016a[Gelbrich, T., Braun, D. E. & Griesser, U. J. (2016a). Chem. Cent. J. 10, 8.]). The four shortest inter­molecular contacts of the sulfur atom (S⋯H distances between 2.97 and 3.01 Å; close to the sum of van der Waals radii) involve both CH2 groups of a neighbouring mol­ecule and one CH3 group belonging to the isobutyl substituent of two other mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.87 (2) 1.95 (2) 2.815 (2) 174 (2)
N3—H3⋯O6ii 0.86 (2) 2.10 (2) 2.922 (2) 160 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
The C-2-type bonded chain of (I)[link]. O and H atoms directly involved in N—H⋯O inter­actions are drawn as balls and H atoms bonded to C atoms are omitted for clarity. The chain displays a twofold screw symmetry and contains just one type of [R_{2}^{2}](8) ring. [Symmetry codes: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}].]

Two independent hydrogen bonds, N1—H1⋯O6i and N3—H3⋯O4ii, are present in the crystal structure of (II)[link]. As in (I)[link], each mol­ecule is linked, by two-point connections, to two neighbouring mol­ecules so that a C-2 chain structure is formed that propagates parallel to the c axis. In this case, the C-2 chain contains two crystallographically distinct [R_{2}^{2}](8) rings which are centred either by a twofold axis or an inversion centre (Fig. 4[link], Table 2[link]). The mean planes of adjacent pyrimidine rings in the same chain are either coplanar with one another (if the corresponding mol­ecules are related by an inversion operation), or they form an angle of 75° (if the mol­ecules are related by a 180° rotation). The sulfur atom S9 of the 2-(methyl­thio)­ethyl substituent forms an inter­molecular contact (S⋯H = 2.86 Å) with the sec-butyl group of a mol­ecule belonging to a neighbouring chain and S2 lies in close proximity to the methyl group of a 2-(methyl­thio)­ethyl substituent (S⋯H = 2.96 Å).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.86 (2) 2.07 (2) 2.921 (2) 170 (2)
N3—H3⋯O4ii 0.86 (2) 2.14 (2) 2.963 (2) 160 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x, y, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
The C-2-type bonded chain of (II)[link]. O and H atoms directly involved in N—H⋯O inter­actions are drawn as balls and H atoms bonded to C atoms are omitted for clarity. The chain displays two types of [R_{2}^{2}](8) ring, which contain an inversion centre (N1—H1⋯O6i) or a twofold axis (N3—H3⋯O4ii). [Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x, y, −z + [{1\over 2}].]

4. Database survey

The crystal structures of three polymorphs of the keto form of 2-thio­barbituric acid, which is a close structural analogue of (I)[link] and (II)[link], have been determined (Chierotti et al., 2010[Chierotti, M. R., Ferrero, L., Garino, N., Gobetto, R., Pellegrino, L., Braga, D., Grepioni, F. & Maini, L. (2010). Chem. Eur. J. 16, 4347-4358.]). Polymorph III (CSD refcode THBARB01) contains an N—H⋯O-bonded layer structure having the hcb topology and polymorph IV (THBARB02) an N—H⋯O-bonded framework. Both these structures contain N—H⋯O-bonded [R_{2}^{2}](8) rings analogous to those present in the hydrogen-bonded chains of (I)[link] and (II)[link], and additionally they contain one-point hydrogen-bond connections between mol­ecules. Form VI of 2-thio­barbituric acid (THBARB03) displays two distinct hydrogen-bonded structures, an N—H⋯O-bonded layer with sql topology whose mol­ecules are linked exclusively by one-point connections and an hcb-type layer based on N—H⋯O as well as N—H⋯S bonds, with the latter inter­action resulting in [R_{2}^{2}](8) rings.

Numerous 5,5-substituted derivatives of barbituric acid are known to form N—H⋯O=C-bonded chains exhibiting the 2C1 topology, with their mol­ecules being linked by two-point connections resulting in the formation of characteristic [R_{2}^{2}](8) rings. Chains exhibiting these specific properties can be classified into two distinct types, denoted as C-1 and C-2 (Gelbrich et al., 2016a[Gelbrich, T., Braun, D. E. & Griesser, U. J. (2016a). Chem. Cent. J. 10, 8.]; see Fig. 5[link]). The less frequent of these two types, C-2, is also the chain motif of (I)[link] and (II)[link]. It is characterized by the employment of each of the topologically equivalent C4 and C6 carbonyl groups, but not the C2 group, as a hydrogen-bond acceptor.

[Figure 5]
Figure 5
(a) Simplified representation of a mol­ecule of a 5,5-disubstituted derivative of barbituric acid. The same scheme can be applied for analogous thio­barbiturates such as (I)[link] and (II)[link] if the O atom of the carbonyl group in position 2 is replaced by a thioxo S atom. (b) and (c) Schematic representation of the N—H⋯O=C-bonded chain types C-1 and C-2 with an underlying 2C1 topology, which are frequently found in barbiturates. The thio­barbiturates (I)[link] and (II)[link] contain chains of the C-2 type.

C-2 chains containing a 21 screw axis occur in polymorph III of phenobarbital (PHBARB09), the CH2Cl2 solvate of the same compound (EPUDEA) (Zencirci et al., 2010[Zencirci, N., Gelbrich, T., Apperley, D. C., Harris, R. K., Kahlenberg, V. & Griesser, U. J. (2010). Cryst. Growth Des. 10, 302-313.], 2014[Zencirci, N., Griesser, U. J., Gelbrich, T., Kahlenberg, V., Jetti, R. K. R., Apperley, D. C. & Harris, R. K. (2014). J. Phys. Chem. B, 118, 3267-3280.]) and in 5-fluoro-5-phenyl­barbituric acid (HEKTOG) (DesMarteau et al., 1994[DesMarteau, D. D., Pennington, W. T. & Resnati, G. (1994). Acta Cryst. C50, 1305-1308.]) as well as in (I)[link]. By contrast, the C-2 chains of 6-oxo­cyclo­barbital (OXCBAR) (Chentli-Benchikha et al., 1977[Chentli-Benchikha, F., Declercq, J. P., Germain, G., Van Meerssche, M., Bouché, R. & Draguet-Brughmans, M. (1977). Acta Cryst. B33, 2739-2743.]) and polymorph III of pentobarbital (FUFTEG02) (Rossi et al., 2012[Rossi, D., Gelbrich, T., Kahlenberg, V. & Griesser, U. J. (2012). CrystEngComm, 14, 2494-2506.]) exhibit glide symmetry. Moreover, polymorph II of barbital (DETBAA02) (Craven et al., 1969[Craven, B. M., Vizzini, E. A. & Rodrigues, M. M. (1969). Acta Cryst. B25, 1978-1993.]) as well as forms I and II of phenobarbital (Zencirci et al., 2010[Zencirci, N., Gelbrich, T., Apperley, D. C., Harris, R. K., Kahlenberg, V. & Griesser, U. J. (2010). Cryst. Growth Des. 10, 302-313.]) exhibit C-2 chains whose [R_{2}^{2}](8) rings contain crystallographic inversion centres. The crystal structure of methitural (II)[link] is the first example of a C-2 chain whose [R_{2}^{2}](8) rings are centred alternately by a twofold rotational axis and an inversion centre.

5. Synthesis and crystallization

Single crystals of (I)[link] were produced by sublimation between two glass slides separated by a spacer ring (height: 1 cm), using a hot bench at a temperature of 403 K. As confirmed by PXRD, the phase investigated by us is identical with that of the original sample from the1940s obtained from our archive. The melting point of this phase of 422 K was determined with hot-stage microscopy. Heating the quench-cooled melt of (I)[link] above 323 K resulted in the crystallization of a second form. Isolated, individual crystals of this second form melted at approximately 387 K. In other experiments, a phase transition from the low-melting form II to a high-melting form I occurred on heating, usually between 378 and 383 K (see Supporting information). These observations are consistent with a previous description by Brandstätter-Kuhnert & Aepkers (1962[Brandstätter-Kuhnert, M. & Aepkers, M. (1962). Mikrochim. Acta, 50, 1055-1074.]).

The crystals of (II)[link] investigated in this study were taken from a sample obtained from Merck AG, Darmstadt, Germany. These crystals melted within a relatively broad temperature range between 361 and 366 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were identified in difference maps. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip and all other H atoms bonded to carbon atoms were positioned geometrically (C—H = 0.95–0.99 Å). The hydrogen atoms in NH groups were refined with restrained distances [N—H = 0.88 (2) Å]. The Uiso parameters of all H atoms were refined freely.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C11H16N2O2S C12H20N2O2S2
Mr 240.32 288.42
Crystal system, space group Monoclinic, P21/n Monoclinic, C2/c
Temperature (K) 120 120
a, b, c (Å) 8.7271 (6), 11.6521 (4), 12.5400 (8) 15.1873 (2), 9.0920 (1), 20.8684 (3)
β (°) 96.539 (2) 96.083 (1)
V3) 1266.89 (13) 2865.34 (6)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.24 0.37
Crystal size (mm) 0.40 × 0.10 × 0.05 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker–Nonius Roper CCD camera on κ-goniostat Bruker–Nonius APEXII CCD camera on κ-goniostat
Absorption correction Multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.924, 1.000 0.974, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9476, 2519, 1833 24772, 2813, 2630
Rint 0.067 0.034
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.108, 1.04 0.038, 0.084, 1.14
No. of reflections 2519 2813
No. of parameters 170 192
No. of restraints 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.27 0.53, −0.30
Computer programs: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and TOPOS (Blatov, 2006[Blatov, V. A. (2006). IUCr Compcomm Newsl. 7, 4-38.]).

Supporting information


Computing details top

For both structures, data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006). Software used to prepare material for publication: PLATON (Spek, 2009), publCIF (Westrip, 2010) and TOPOS (Blatov, 2006) for (I); PLATON (Spek, 2009) and publCIF Westrip (2010) for (II).

5-(2-Methylpropyl)-5-(prop-2-en-1-yl)-2-sulfanylidene-1,3-diazinane-4,6-dione (I) top
Crystal data top
C11H16N2O2SF(000) = 512
Mr = 240.32Dx = 1.260 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.7271 (6) ÅCell parameters from 10435 reflections
b = 11.6521 (4) Åθ = 2.9–27.5°
c = 12.5400 (8) ŵ = 0.24 mm1
β = 96.539 (2)°T = 120 K
V = 1266.89 (13) Å3Prism, colourless
Z = 40.40 × 0.10 × 0.05 mm
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2519 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1833 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 9.091 pixels mm-1θmax = 26.4°, θmin = 3.3°
φ & ω scansh = 910
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1213
Tmin = 0.924, Tmax = 1.000l = 1514
9476 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.281P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2519 reflectionsΔρmax = 0.31 e Å3
170 parametersΔρmin = 0.27 e Å3
2 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.13456 (7)0.87633 (4)0.94050 (5)0.0259 (2)
O40.42805 (18)0.66380 (11)0.69496 (13)0.0256 (4)
O60.26955 (18)1.04475 (11)0.60757 (12)0.0261 (4)
N10.2119 (2)0.95525 (14)0.75707 (14)0.0197 (4)
H10.162 (3)1.0169 (17)0.771 (2)0.036 (7)*
N30.2876 (2)0.76850 (14)0.79944 (14)0.0192 (4)
H30.282 (3)0.7101 (16)0.8409 (17)0.030 (7)*
C20.2138 (2)0.86637 (16)0.82860 (17)0.0181 (5)
C40.3650 (2)0.75482 (16)0.71139 (17)0.0196 (5)
C50.3698 (2)0.85445 (16)0.63413 (17)0.0187 (5)
C60.2810 (2)0.95949 (16)0.66426 (17)0.0193 (5)
C70.2939 (3)0.81243 (17)0.52224 (17)0.0225 (5)
H7A0.30220.87400.46890.034 (7)*
H7B0.35180.74510.50000.034 (7)*
C80.1275 (3)0.7801 (2)0.52146 (18)0.0286 (5)
H80.05380.83980.52360.038 (7)*
C90.0781 (3)0.6733 (2)0.5180 (2)0.0397 (7)
H9A0.14940.61190.51570.054 (9)*
H9B0.02870.65760.51760.051 (8)*
C100.5409 (3)0.88428 (17)0.62406 (17)0.0221 (5)
H10A0.58670.81890.58840.029 (6)*
H10B0.54230.95120.57560.025 (6)*
C110.6456 (3)0.9114 (2)0.7264 (2)0.0322 (6)
H110.63140.85010.78020.052 (8)*
C120.6132 (3)1.0262 (3)0.7760 (2)0.0494 (8)
H12A0.61951.08720.72280.074 (11)*
H12B0.68951.04040.83820.076 (10)*
H12C0.50961.02540.79900.074 (11)*
C130.8130 (3)0.9075 (3)0.7015 (3)0.0484 (8)
H13A0.83660.83050.67640.068 (10)*
H13B0.88190.92560.76660.069 (10)*
H13C0.82780.96390.64560.049 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0311 (4)0.0251 (3)0.0237 (3)0.0012 (2)0.0123 (3)0.0027 (2)
O40.0280 (9)0.0144 (7)0.0365 (10)0.0023 (6)0.0129 (7)0.0001 (6)
O60.0392 (10)0.0170 (8)0.0238 (9)0.0019 (6)0.0113 (7)0.0035 (6)
N10.0239 (11)0.0145 (9)0.0222 (10)0.0010 (7)0.0086 (8)0.0010 (7)
N30.0234 (10)0.0139 (9)0.0212 (10)0.0015 (7)0.0063 (8)0.0034 (7)
C20.0164 (11)0.0172 (10)0.0203 (11)0.0026 (8)0.0002 (9)0.0009 (8)
C40.0164 (11)0.0178 (11)0.0248 (12)0.0042 (8)0.0031 (9)0.0019 (8)
C50.0214 (12)0.0154 (10)0.0205 (11)0.0015 (8)0.0074 (9)0.0004 (8)
C60.0222 (12)0.0160 (10)0.0200 (12)0.0020 (8)0.0042 (9)0.0018 (8)
C70.0262 (13)0.0213 (11)0.0207 (12)0.0024 (9)0.0063 (10)0.0025 (8)
C80.0259 (13)0.0358 (13)0.0240 (13)0.0013 (10)0.0028 (10)0.0040 (10)
C90.0355 (16)0.0477 (16)0.0343 (15)0.0172 (13)0.0032 (12)0.0032 (11)
C100.0238 (12)0.0215 (11)0.0225 (12)0.0024 (8)0.0088 (10)0.0005 (8)
C110.0269 (14)0.0405 (14)0.0287 (14)0.0073 (10)0.0016 (11)0.0039 (10)
C120.0388 (18)0.068 (2)0.0405 (17)0.0152 (14)0.0031 (14)0.0245 (15)
C130.0291 (16)0.066 (2)0.0496 (19)0.0035 (13)0.0025 (14)0.0078 (15)
Geometric parameters (Å, º) top
S2—C21.638 (2)C8—C91.315 (3)
O4—C41.223 (2)C8—H80.9500
O6—C61.219 (2)C9—H9A0.9500
N1—C21.369 (3)C9—H9B0.9500
N1—C61.371 (3)C10—C111.522 (3)
N1—H10.867 (16)C10—H10A0.9900
N3—C41.367 (3)C10—H10B0.9900
N3—C21.379 (3)C11—C121.515 (4)
N3—H30.861 (16)C11—C131.529 (4)
C4—C51.516 (3)C11—H111.0000
C5—C61.519 (3)C12—H12A0.9800
C5—C101.552 (3)C12—H12B0.9800
C5—C71.561 (3)C12—H12C0.9800
C7—C81.499 (3)C13—H13A0.9800
C7—H7A0.9900C13—H13B0.9800
C7—H7B0.9900C13—H13C0.9800
C2—N1—C6127.57 (17)C7—C8—H8118.3
C2—N1—H1117.7 (17)C8—C9—H9A120.0
C6—N1—H1114.8 (17)C8—C9—H9B120.0
C4—N3—C2126.79 (17)H9A—C9—H9B120.0
C4—N3—H3117.7 (16)C11—C10—C5117.95 (18)
C2—N3—H3115.5 (16)C11—C10—H10A107.8
N1—C2—N3115.02 (18)C5—C10—H10A107.8
N1—C2—S2122.21 (15)C11—C10—H10B107.8
N3—C2—S2122.77 (15)C5—C10—H10B107.8
O4—C4—N3120.68 (18)H10A—C10—H10B107.2
O4—C4—C5120.70 (19)C12—C11—C10114.0 (2)
N3—C4—C5118.62 (17)C12—C11—C13109.7 (2)
C4—C5—C6113.95 (17)C10—C11—C13108.5 (2)
C4—C5—C10108.69 (17)C12—C11—H11108.1
C6—C5—C10111.26 (16)C10—C11—H11108.1
C4—C5—C7107.13 (16)C13—C11—H11108.1
C6—C5—C7107.46 (17)C11—C12—H12A109.5
C10—C5—C7108.11 (16)C11—C12—H12B109.5
O6—C6—N1120.64 (18)H12A—C12—H12B109.5
O6—C6—C5121.44 (18)C11—C12—H12C109.5
N1—C6—C5117.91 (17)H12A—C12—H12C109.5
C8—C7—C5113.35 (17)H12B—C12—H12C109.5
C8—C7—H7A108.9C11—C13—H13A109.5
C5—C7—H7A108.9C11—C13—H13B109.5
C8—C7—H7B108.9H13A—C13—H13B109.5
C5—C7—H7B108.9C11—C13—H13C109.5
H7A—C7—H7B107.7H13A—C13—H13C109.5
C9—C8—C7123.4 (2)H13B—C13—H13C109.5
C9—C8—H8118.3
C6—N1—C2—N33.7 (3)C10—C5—C6—O659.5 (3)
C6—N1—C2—S2176.16 (17)C7—C5—C6—O658.7 (2)
C4—N3—C2—N14.2 (3)C4—C5—C6—N12.0 (3)
C4—N3—C2—S2175.64 (17)C10—C5—C6—N1121.3 (2)
C2—N3—C4—O4178.9 (2)C7—C5—C6—N1120.6 (2)
C2—N3—C4—C51.6 (3)C4—C5—C7—C862.7 (2)
O4—C4—C5—C6177.91 (19)C6—C5—C7—C860.1 (2)
N3—C4—C5—C61.6 (3)C10—C5—C7—C8179.67 (17)
O4—C4—C5—C1057.4 (2)C5—C7—C8—C9106.1 (3)
N3—C4—C5—C10123.1 (2)C4—C5—C10—C1155.6 (2)
O4—C4—C5—C759.2 (3)C6—C5—C10—C1170.6 (2)
N3—C4—C5—C7120.3 (2)C7—C5—C10—C11171.58 (18)
C2—N1—C6—O6179.9 (2)C5—C10—C11—C1271.7 (3)
C2—N1—C6—C50.6 (3)C5—C10—C11—C13165.64 (19)
C4—C5—C6—O6177.20 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.87 (2)1.95 (2)2.815 (2)174 (2)
N3—H3···O6ii0.86 (2)2.10 (2)2.922 (2)160 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2.
5-(1-Methylbutyl)-5-[2-(methylsulfanyl)ethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione (II) top
Crystal data top
C12H20N2O2S2F(000) = 1232
Mr = 288.42Dx = 1.337 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.1873 (2) ÅCell parameters from 29667 reflections
b = 9.0920 (1) Åθ = 2.9–27.5°
c = 20.8684 (3) ŵ = 0.37 mm1
β = 96.083 (1)°T = 120 K
V = 2865.34 (6) Å3Block, colourless
Z = 80.15 × 0.15 × 0.10 mm
Data collection top
Bruker–Nonius APEXII CCD camera on κ-goniostat
diffractometer
2813 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2630 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.034
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.2°
φ & ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1111
Tmin = 0.974, Tmax = 1.000l = 2525
24772 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0192P)2 + 6.3729P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
2813 reflectionsΔρmax = 0.53 e Å3
192 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.17769 (3)0.62565 (6)0.34779 (2)0.02411 (13)
S90.14236 (3)1.10685 (5)0.51192 (2)0.02392 (13)
O40.09157 (9)0.87624 (15)0.30012 (6)0.0218 (3)
O60.09747 (9)0.59147 (14)0.49086 (6)0.0220 (3)
N10.02312 (10)0.60656 (17)0.41868 (7)0.0177 (3)
H10.0510 (14)0.551 (2)0.4430 (10)0.031 (6)*
N30.02774 (10)0.75738 (17)0.32870 (7)0.0181 (3)
H30.0574 (14)0.798 (2)0.2962 (9)0.029 (6)*
C20.07264 (12)0.6645 (2)0.36566 (8)0.0173 (4)
C40.06055 (12)0.79499 (19)0.33818 (8)0.0167 (4)
C60.06356 (12)0.63907 (19)0.43924 (8)0.0171 (4)
C70.16068 (12)0.85980 (19)0.43567 (8)0.0161 (4)
H7A0.20880.82080.46670.020 (5)*
H7B0.18750.92810.40630.021 (5)*
C50.11666 (11)0.73082 (19)0.39593 (8)0.0158 (4)
C80.09525 (13)0.9443 (2)0.47235 (9)0.0218 (4)
H8A0.07350.87860.50510.029 (6)*
H8B0.04370.97330.44190.031 (6)*
C100.13117 (16)1.2337 (2)0.44571 (12)0.0345 (5)
H10A0.16051.19350.40990.071 (10)*
H10B0.15861.32770.45940.053 (8)*
H10C0.06821.24920.43160.047 (8)*
C120.18817 (13)0.6231 (2)0.37204 (9)0.0217 (4)
H120.21550.56940.41100.033 (6)*
C130.26315 (13)0.7017 (2)0.34349 (10)0.0258 (4)
H13A0.28800.77770.37420.040 (7)*
H13B0.23900.75230.30340.043 (7)*
C140.33787 (14)0.5984 (2)0.32810 (11)0.0308 (5)
H14A0.35640.53680.36620.029 (6)*
H14B0.31590.53240.29220.054 (8)*
C150.41659 (17)0.6846 (3)0.30960 (13)0.0438 (6)
H15A0.39880.74250.27080.072 (10)*
H15B0.46400.61640.30110.053 (8)*
H15C0.43800.75080.34490.073 (10)*
C160.14371 (14)0.5061 (2)0.32611 (9)0.0250 (4)
H16A0.12260.55210.28490.036 (7)*
H16B0.09350.46280.34520.038 (7)*
H16C0.18670.42900.31900.040 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0188 (2)0.0307 (3)0.0228 (2)0.0057 (2)0.00256 (18)0.0002 (2)
S90.0251 (3)0.0196 (2)0.0270 (3)0.00207 (19)0.00215 (19)0.00781 (19)
O40.0228 (7)0.0243 (7)0.0184 (6)0.0061 (6)0.0029 (5)0.0052 (5)
O60.0248 (7)0.0210 (7)0.0195 (7)0.0020 (6)0.0006 (5)0.0056 (5)
N10.0194 (8)0.0159 (7)0.0183 (8)0.0032 (6)0.0045 (6)0.0025 (6)
N30.0177 (8)0.0212 (8)0.0152 (7)0.0008 (6)0.0009 (6)0.0030 (6)
C20.0211 (9)0.0159 (9)0.0152 (8)0.0005 (7)0.0038 (7)0.0027 (7)
C40.0200 (9)0.0157 (9)0.0145 (8)0.0003 (7)0.0028 (7)0.0030 (7)
C60.0209 (9)0.0119 (8)0.0186 (9)0.0001 (7)0.0029 (7)0.0018 (7)
C70.0164 (9)0.0147 (8)0.0172 (8)0.0012 (7)0.0023 (7)0.0011 (7)
C50.0153 (8)0.0155 (8)0.0169 (8)0.0004 (7)0.0026 (7)0.0000 (7)
C80.0230 (10)0.0169 (9)0.0266 (10)0.0043 (8)0.0081 (8)0.0067 (8)
C100.0388 (13)0.0191 (10)0.0469 (13)0.0002 (9)0.0106 (11)0.0060 (10)
C120.0222 (10)0.0183 (9)0.0250 (10)0.0029 (8)0.0047 (8)0.0032 (8)
C130.0249 (10)0.0237 (10)0.0299 (10)0.0025 (8)0.0081 (8)0.0006 (8)
C140.0283 (11)0.0317 (12)0.0345 (12)0.0080 (9)0.0122 (9)0.0006 (9)
C150.0387 (14)0.0430 (14)0.0528 (15)0.0091 (12)0.0189 (12)0.0070 (13)
C160.0312 (11)0.0189 (9)0.0258 (10)0.0007 (8)0.0078 (8)0.0048 (8)
Geometric parameters (Å, º) top
S2—C21.6381 (19)C8—H8B0.9900
S9—C101.794 (2)C10—H10A0.9800
S9—C81.8033 (19)C10—H10B0.9800
O4—C41.216 (2)C10—H10C0.9800
O6—C61.223 (2)C12—C131.519 (3)
N1—C61.373 (2)C12—C161.539 (3)
N1—C21.375 (2)C12—H121.0000
N1—H10.858 (16)C13—C141.533 (3)
N3—C21.373 (2)C13—H13A0.9900
N3—C41.378 (2)C13—H13B0.9900
N3—H30.856 (16)C14—C151.513 (3)
C4—C51.517 (2)C14—H14A0.9900
C6—C51.522 (2)C14—H14B0.9900
C7—C81.525 (2)C15—H15A0.9800
C7—C51.547 (2)C15—H15B0.9800
C7—H7A0.9900C15—H15C0.9800
C7—H7B0.9900C16—H16A0.9800
C5—C121.582 (2)C16—H16B0.9800
C8—H8A0.9900C16—H16C0.9800
C10—S9—C899.99 (10)S9—C10—H10B109.5
C6—N1—C2126.40 (15)H10A—C10—H10B109.5
C6—N1—H1117.3 (16)S9—C10—H10C109.5
C2—N1—H1116.1 (16)H10A—C10—H10C109.5
C2—N3—C4127.29 (16)H10B—C10—H10C109.5
C2—N3—H3117.3 (16)C13—C12—C16112.25 (16)
C4—N3—H3115.4 (16)C13—C12—C5113.62 (15)
N3—C2—N1115.21 (16)C16—C12—C5110.71 (15)
N3—C2—S2122.31 (14)C13—C12—H12106.6
N1—C2—S2122.47 (14)C16—C12—H12106.6
O4—C4—N3119.72 (16)C5—C12—H12106.6
O4—C4—C5121.92 (16)C12—C13—C14113.35 (17)
N3—C4—C5118.36 (15)C12—C13—H13A108.9
O6—C6—N1119.97 (16)C14—C13—H13A108.9
O6—C6—C5121.12 (16)C12—C13—H13B108.9
N1—C6—C5118.89 (15)C14—C13—H13B108.9
C8—C7—C5112.56 (14)H13A—C13—H13B107.7
C8—C7—H7A109.1C15—C14—C13111.01 (19)
C5—C7—H7A109.1C15—C14—H14A109.4
C8—C7—H7B109.1C13—C14—H14A109.4
C5—C7—H7B109.1C15—C14—H14B109.4
H7A—C7—H7B107.8C13—C14—H14B109.4
C4—C5—C6113.21 (15)H14A—C14—H14B108.0
C4—C5—C7107.99 (14)C14—C15—H15A109.5
C6—C5—C7108.86 (14)C14—C15—H15B109.5
C4—C5—C12109.53 (14)H15A—C15—H15B109.5
C6—C5—C12105.81 (14)C14—C15—H15C109.5
C7—C5—C12111.49 (14)H15A—C15—H15C109.5
C7—C8—S9113.25 (13)H15B—C15—H15C109.5
C7—C8—H8A108.9C12—C16—H16A109.5
S9—C8—H8A108.9C12—C16—H16B109.5
C7—C8—H8B108.9H16A—C16—H16B109.5
S9—C8—H8B108.9C12—C16—H16C109.5
H8A—C8—H8B107.7H16A—C16—H16C109.5
S9—C10—H10A109.5H16B—C16—H16C109.5
C4—N3—C2—N11.7 (3)N1—C6—C5—C7128.90 (16)
C4—N3—C2—S2178.33 (14)O6—C6—C5—C1267.0 (2)
C6—N1—C2—N33.8 (3)N1—C6—C5—C12111.17 (17)
C6—N1—C2—S2176.19 (14)C8—C7—C5—C473.15 (18)
C2—N3—C4—O4178.09 (17)C8—C7—C5—C650.13 (19)
C2—N3—C4—C51.0 (3)C8—C7—C5—C12166.48 (15)
C2—N1—C6—O6172.51 (17)C5—C7—C8—S9173.66 (12)
C2—N1—C6—C59.3 (3)C10—S9—C8—C782.54 (16)
O4—C4—C5—C6176.79 (16)C4—C5—C12—C1373.5 (2)
N3—C4—C5—C64.2 (2)C6—C5—C12—C13164.15 (16)
O4—C4—C5—C756.2 (2)C7—C5—C12—C1346.0 (2)
N3—C4—C5—C7124.77 (16)C4—C5—C12—C1653.9 (2)
O4—C4—C5—C1265.4 (2)C6—C5—C12—C1668.47 (19)
N3—C4—C5—C12113.64 (17)C7—C5—C12—C16173.34 (15)
O6—C6—C5—C4173.00 (16)C16—C12—C13—C1460.5 (2)
N1—C6—C5—C48.8 (2)C5—C12—C13—C14172.91 (17)
O6—C6—C5—C752.9 (2)C12—C13—C14—C15171.28 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.86 (2)2.07 (2)2.921 (2)170 (2)
N3—H3···O4ii0.86 (2)2.14 (2)2.963 (2)160 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1/2.
 

Acknowledgements

We thank Professor S. Coles (Southampton) for providing access to the X-ray diffractometers used in this study.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBlatov, V. A. (2006). IUCr Compcomm Newsl. 7, 4–38.
First citationBrandstätter-Kuhnert, M. & Aepkers, M. (1962). Mikrochim. Acta, 50, 1055–1074.
First citationChentli-Benchikha, F., Declercq, J. P., Germain, G., Van Meerssche, M., Bouché, R. & Draguet-Brughmans, M. (1977). Acta Cryst. B33, 2739–2743.  CSD CrossRef CAS IUCr Journals Web of Science
First citationChierotti, M. R., Ferrero, L., Garino, N., Gobetto, R., Pellegrino, L., Braga, D., Grepioni, F. & Maini, L. (2010). Chem. Eur. J. 16, 4347–4358.  Web of Science CSD CrossRef CAS PubMed
First citationCraven, B. M., Vizzini, E. A. & Rodrigues, M. M. (1969). Acta Cryst. B25, 1978–1993.  CSD CrossRef CAS IUCr Journals Web of Science
First citationDesMarteau, D. D., Pennington, W. T. & Resnati, G. (1994). Acta Cryst. C50, 1305–1308.  CSD CrossRef CAS Web of Science IUCr Journals
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals
First citationGelbrich, T., Braun, D. E. & Griesser, U. J. (2016a). Chem. Cent. J. 10, 8.  CSD CrossRef PubMed
First citationGelbrich, T., Braun, D. E., Oberparleiter, S., Schottenberger, H. & Griesser, U. J. (2016b). Crystals, 6, 47.  CSD CrossRef PubMed
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationRossi, D., Gelbrich, T., Kahlenberg, V. & Griesser, U. J. (2012). CrystEngComm, 14, 2494–2506.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationZencirci, N., Gelbrich, T., Apperley, D. C., Harris, R. K., Kahlenberg, V. & Griesser, U. J. (2010). Cryst. Growth Des. 10, 302–313.  Web of Science CSD CrossRef CAS
First citationZencirci, N., Griesser, U. J., Gelbrich, T., Kahlenberg, V., Jetti, R. K. R., Apperley, D. C. & Harris, R. K. (2014). J. Phys. Chem. B, 118, 3267–3280.  Web of Science CSD CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds