research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3,6,6-tri­methyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetra­hydro-1H-indazol-7-aminium chloride and its monohydrate

CROSSMARK_Color_square_no_text.svg

aLatvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia, and bInstitute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
*Correspondence e-mail: mishnevs@osi.lv

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 26 September 2017; accepted 20 November 2017; online 24 November 2017)

The title compounds, C15H19N4O+·Cl and C15H19N4O+·Cl·H2O, obtained in attempts to synthesize metal complexes using tetra­hydro­indazole as a ligand, were characterized by NMR, IR and X-ray diffraction techniques. The partially saturated ring in the tetra­hydro­indazole core adopts a sofa conformation. An intra­molecular N—H⋯N hydrogen bond formed by the protonated amino group and the N atom of the pyridyl substituent is found in the first structure. In the hydro­chloride, the organic moieties are linked by two N—H⋯Cl hydrogen bonds, forming a C(4) graph-set. In the hydrate crystal, a Cl anion and a water mol­ecule assemble the moieties into infinite bands showing hydrogen-bond patterns with graph sets C(6), R64(12) and R42(8). Organic moieties form ππ stacked supra­molecular structures running along the b axis in both structures.

1. Chemical context

Tetra­hydro­indazoles can be regarded as annulated pyrazole analogs (Ansari et al., 2017[Ansari, A., Ali, A., Asif, M. & Shamsuzzaman (2017). New J. Chem. 41, 16-41.]) or as partially saturated indazoles (Gaikwad et al., 2015[Gaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P. & Domb, A. J. (2015). Eur. J. Med. Chem. 90, 707-731.]). In either of these categories they play an important role in medicinal chemistry. Tetra­hydro­indazoles are reported to be peripherally selective cannabinoid-1 receptor inverse agonists (Matthews et al., 2016[Matthews, J. M., McNally, J. J., Connolly, P. J., Xia, M., Zhu, B., Black, S., Chen, C., Hou, C., Liang, Y., Tang, Y. & Macielag, M. J. (2016). Bioorg. Med. Chem. Lett. 26, 5346-5349.]), sigma-2 receptor ligands(Wu et al., 2015[Wu, Z.-W., Song, S.-Y., Li, L., Lu, H.-L., Lieberman, B., Huang, Y.-S. & Mach, R. H. (2015). Bioorg. Med. Chem. 23, 1463-1471.]), and inter­leukin-2 inducible T-cell kinase inhibitors (Burch et al., 2015[Burch, J. D., Barrett, K., Chen, Y., DeVoss, J., Eigenbrot, C., Goldsmith, R., Ismaili, M. H. A., Lau, K., Lin, Z., Ortwine, D. F., Zarrin, A. A., McEwan, P. A., Barker, J. J., Ellebrandt, C., Kordt, D., Stein, D. B., Wang, X., Chen, Y., Hu, B., Xu, X., Yuen, P.-W., Zhang, Y. & Pei, Z. (2015). J. Med. Chem. 58, 3806-3816.]; Heifetz et al., 2016[Heifetz, A., Trani, G., Aldeghi, M., MacKinnon, C. H., McEwan, P. A., Brookfield, F. A., Chudyk, E. I., Bodkin, M., Pei, Z., Burch, J. D. & Ortwine, D. F. (2016). J. Med. Chem. 59, 4352-4363.]). Heterocyclic compounds containing a tetra­hydro­indazole core have been researched as anti­viral agents (Bassyouni et al., 2016[Bassyouni, F., El Din Gaffer, A., Roaiah, H., El-Senousy, W. M., El Nakkady, S. S. & &Rehim, M. A. (2016). Res. J. Pharm. Biol. Chem. Sci, 7, 24-37.]) and compounds with anti­oxidant properties (Polo et al., 2016[Polo, E., Trilleras, J., Ramos, J., Galdámez, A., Quiroga, J. & Gutierrez, M. (2016). Molecules, 21, article number 903.]). With appropriate side-chain decorations, they also possess COX-2 inhibitory activity (Abdel-Rahman et al., 2012[Abdel-Rahman, H. M. & Ozadali, K. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 878-883.]) and can inhibit bacterial type II topoisomerases (Wiener et al., 2007[Wiener, J. J. M., Gomez, L., Venkatesan, H., Santillán, A. Jr, Allison, B. D., Schwarz, K. L., Shinde, S., Tang, L., Hack, M. D., Morrow, B. J., Motley, S. T., Goldschmidt, R. M., Shaw, K. J., Jones, T. K. & Grice, C. A. (2007). Bioorg. Med. Chem. Lett. 17, 2718-2722.]). The latter has led to the development of compounds with both anti­tumor and anti­microbial activity (Faidallah et al., 2013[Faidallah, H. M., Khan, K. A., Rostom, S. A. F. & Asiri, A. M. (2013). J. Enzyme Inhib. Med. Chem. 28, 495-508.]), including novel anti­tuberculosis agents (Guo et al., 2010[Guo, S., Song, Y., Huang, Q., Yuan, H., Wan, B., Wang, Y., He, R., Beconi, M. G., Franzblau, S. G. & Kozikowski, A. P. (2010). J. Med. Chem. 53, 649-659.]).

[Scheme 1]

The broad application spectrum of tetra­hydro­indazoles has led to the development of synthetic methodologies. Thus, traditional approaches using a combination of either α,β-unsaturated ketones (Nakhai & Bergman, 2009[Nakhai, A. & Bergman, J. (2009). Tetrahedron, 65, 2298-2306.]) or dicarbonyl compounds (Murugavel et al., 2010[Murugavel, K., Amirthaganesan, S. & R. T. S. (2010). Chem. Heterocycl. C. 46, 302-306.]), or tricarbonyl compounds (Kim et al., 2010[Kim, J., Song, H. & Park, S. B. (2010). Eur. J. Org. Chem. pp. 3815-3822.]; Scala et al., 2015[Scala, A., Piperno, A., Risitano, F., Cirmi, S., Navarra, M. & Grassi, G. (2015). Mol. Divers. 19, 473-480.]) with hydrazines have been significantly updated and improved. In addition, the microwave-assisted synthesis of tetra­hydro­indazoles has been reported (Silva et al., 2006[Silva, V. L. M., Silva, A. M. S., Pinto, D. C. G. A. & Cavaleiro, J. (2006). Synlett, pp. 1369-1373.]; Polo et al., 2016[Polo, E., Trilleras, J., Ramos, J., Galdámez, A., Quiroga, J. & Gutierrez, M. (2016). Molecules, 21, article number 903.]). It is inter­esting to note that compounds possessing free NH-functionality in the pyrazole ring have been studied thoroughly for their tautomeric equilibria (Claramunt et al., 2006[Claramunt, R. M., López, C., Pérez-Medina, C., Pinilla, E., Torres, M. R. & Elguero, J. (2006). Tetrahedron, 62, 11704-11713.]). Additionally, tetra­hydro­indazolones substituted with 2-amino­benzamides have been studied as fluorescent probes (Jia et al., 2012[Jia, J., Xu, Q.-C., Li, R.-C., Tang, X., He, Y.-F., Zhang, M.-Y., Zhang, Y. & Xing, G.-W. (2012). Org. Biomol. Chem. 10, 6279-6286.]). Other studies on side-chain modifications include the synthesis of polyfluoro­alkyl-substituted analogs (Khlebnikova et al., 2012[Khlebnikova, T. S., Piven', Y. A., Baranovskii, A. V. & Lakhvich, F. A. (2012). Russ. J. Org. Chem. 48, 411-418.]), triazole-functionalized tetra­hydro­indazolones (Strakova et al., 2009[Strakova, I., Turks, M. & Strakovs, A. (2009). Tetrahedron Lett. 50, 3046-3049.]) and their conjugation with biologically active natural products such as lupane triterpenoids (Khlebnicova et al., 2017[Khlebnicova, T. S., Piven, Y. A., Baranovsky, A. V., Lakhvich, F. A., Shishkina, S. V., Zicāne, D., Tetere, Z., Rāviņa, I., Kumpiņš, V., Rijkure, I., Mieriņa, I., Peipiņš, U. & Turks, M. (2017). Steroids, 117, 77-89.]). Among other synthetic approaches, the Ritter reaction provides a fast entry into structural modifications and is applicable to obtain a combinatorial library of compounds (Turks et al., 2012[Turks, M., Strakova, I., Gorovojs, K., Belyakov, S., Piven, Y. A., Khlebnicova, T. S. & Lakhvich, F. A. (2012). Tetrahedron, 68, 6131-6140.]). Combinatorial chemistry methodology has been reported for the construction of tetra­hydro­indazolones in enanti­omerically pure pairs (Song et al., 2012[Song, H., Lee, H., Kim, J. & Park, S. B. (2012). ACS Comb. Sci. 14, 66-74.]). Also, enanti­omerically pure 7-amino-tetra­hydro­indazolones (Strakova et al., 2011[Strakova, I., Kumpiņa, I., Rjabovs, V., Lugiņina, J., Belyakov, S. & Turks, M. (2011). Tetrahedron Asymmetry, 22, 728-739.]) have been obtained. For these reasons, we were inter­ested in the synthesis of 7-amino-3,6,6-trimethyl-1-(pyridin-2-yl)-1,5,6,7-tetra­hydro-4H-indazol-4-one for use as a starting material for further structural modifications. Herein, the structures of the corresponding hydro­chloride 1 and its hydrate 2 are reported.

2. Structural commentary

Figs. 1[link] and 2[link] show the asymmetric units of the hydro­chloride (1) and its hydrate (2) with the symmetry-independent hydrogen bonds. The geometry and conformation of the organic cation in compounds 1 and 2 are substanti­ally similar. The pyrazole ring is planar within an r.m.s. deviation of the fitted atoms of 0.0059 Å in 1 and 0.0092 Å in 2. In both structures, the partially saturated ring adopts a sofa conformation. The distance of atom C6 from the mean plane formed by atoms C3–C5/C7/C8 (r.m.s. deviation of fitted atoms = 0.0495 Å in 1 and 0.0558 Å in 2) is 0.639 (2) Å in 1 and 0.642 (2) Å in 2. The dihedral angle between the latter plane and pyrazole ring is 5.79 (6)° in 1 and 6.48 (4)° in 2. On the other hand, the dihedral angle between the pyrazole ring and its pyridyl substituent is 11.91 (6)° [torsion angle N4—N3—C11—C12 = 10.7 (2)°] in 1 and 7.22 (5)° [torsion angle N4—N3—C11—C12 = 4.6 (2)°] in 2. An intra­molecular N—H⋯N hydrogen bond formed by the protonated amino group and nitro­gen atom of pyridyl substituent is found in 1 (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2 0.97 (2) 2.42 (2) 2.928 (2) 112 (2)
N1—H2N1⋯Cl1i 0.97 (2) 2.08 (2) 3.034 (2) 168 (2)
N1—H3N1⋯Cl1ii 0.93 (2) 2.27 (2) 3.188 (2) 167 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.
[Figure 1]
Figure 1
ORTEP view of the asymmetric unit of 1 showing the atom-numbering scheme and 50% probability displacement ellipsoids. The intra­molecular hydrogen bond is shown with dashed lines.
[Figure 2]
Figure 2
ORTEP view of the asymmetric unit of 2 showing the atom-numbering scheme and 50% probability displacement ellipsoids. The intra­molecular hydrogen bonds are shown with dashed lines.

3. Supra­molecular features

In the crystal of compound 1, the organic moieties are linked by two types of N—H⋯Cl hydrogen bonds into infinite chains along the b-axis direction (Table 1[link]). According to Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]), the hydrogen-bond pattern in 1 can be described by a C(4) graph set. The packing of 1 is shown in Fig. 3[link]. In the structure of 2, in addition to participating in an intra­molecular hydrogen bond, the protonated amino group also forms two inter­molecular hydrogen bonds with the Cl anion and a water mol­ecule (Table 2[link]). Each Cl anion and water mol­ecule takes part in three inter­molecular hydrogen bonds. The organic cations are bridged by a pair of Cl anions and a water mol­ecule, thus assembling the moieties into infinite bands running along the b-axis direction. The hydrogen-bond pattern can be described by graph sets C(6), [R_{6}^{4}](12) and [R_{4}^{2}](8). The packing of 2 is shown in Fig. 4[link].

Table 2
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯Cl1i 0.80 (3) 2.39 (3) 3.185 (2) 176 (3)
O1W—H2W⋯Cl1 0.94 (3) 2.31 (3) 3.247 (2) 179 (2)
N1—H1N1⋯Cl1ii 0.85 (2) 2.40 (2) 3.228 (2) 165 (2)
N1—H3N1⋯O1W 0.95 (2) 1.85 (3) 2.775 (2) 162 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y-1, z.
[Figure 3]
Figure 3
The crystal packing of compound 1, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1[link]).
[Figure 4]
Figure 4
The crystal packing of compound 2, viewed along the c axis. The hydrogen bonds are shown as dashed lines (see Table 2[link]).

In the crystal of 1, the organic moieties form stacks running along the b axis which are stabilized by ππ inter­actions (Fig. 5[link]). The distance between the centroids of the pyridine and pyrazole rings of adjacent mol­ecules is 3.585 (2) Å. The shortest contact is 3.239 (2) Å between atoms N2 and N4 of two inversion-related mol­ecules (Fig. 5[link]). In the crystal of 2, the organic moieties also form ππ-stacked supra­molecular structures running along the b-axis direction (Fig. 6[link]). The distance between the centroids of the pyridine rings of adjacent mol­ecules is 3.748 (2) Å. The shortest contact is 3.170 (2) Å between the N3 atoms of two inversion-related mol­ecules (Fig. 6[link]).

[Figure 5]
Figure 5
View of stacks of organic moieties in the crystal structure of 1. H atoms and chloride anions are not shown for clarity.
[Figure 6]
Figure 6
View of stacks of organic moieties in the crystal structure of 2. H atoms, chloride anions and water mol­ecules are not shown for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 3,6,6-trimethyl-4-oxo-4,5,6,7-tetra­hydro-1H-indazole core revealed five structurally close compounds: UXAQUG, UXARAN, UXARER, UXARIV, UXAROB (Strakova et al., 2011[Strakova, I., Kumpiņa, I., Rjabovs, V., Lugiņina, J., Belyakov, S. & Turks, M. (2011). Tetrahedron Asymmetry, 22, 728-739.]). These compounds differ from compounds 1 and 2 by the substituents at the positions of atoms N3 and C5. In all examples, the partially saturated ring in the indazole fragment adopts a sofa conformation. However, the phenyl ring at the position N3 forms much larger dihedral angles with the pyrazole ring than with the pyridyl substituent in the structures reported here.

5. Synthesis and crystallization

The synthesis of the title compounds is depicted in the reaction scheme below. The 7-amino­tetra­hydro­indazolone derivative 4 was prepared by an analogy of the procedure published by Strakova et al. (2011[Strakova, I., Kumpiņa, I., Rjabovs, V., Lugiņina, J., Belyakov, S. & Turks, M. (2011). Tetrahedron Asymmetry, 22, 728-739.]) from the known precursor 3 (Strakova et al., 2009[Strakova, I., Turks, M. & Strakovs, A. (2009). Tetrahedron Lett. 50, 3046-3049.]). In our attempts to synthesize metal complexes with ligand 4, we obtained the hydro­chloride salt 1 in its anhydrous form. It can be explained by the acidity of cobalt chloride hexa­hydrate, which was used in the selected experiment. This prompted us to develop a preparative synthesis of the hydro­chloride salt. This was achieved by the formation and precipitation of crude hydro­chloride in ethyl acetate solution. Its crystallization from water provided the hydro­chloride hydrate 2.

[Scheme 2]

7-Amino-3,6,6-trimethyl-1-(pyridin-2-yl)-1,5,6,7-tetra­hydro-4H-indazol-4-one (4): Gaseous H2 was bubbled for 10 min. through a solution/suspension of compound 3 (0.80 g, 2.7 mmol) and 10% Pd/C (80 mg) in a mixture of EtOH (10 mL) and THF (2 mL). The resulting reaction mixture was stirred under an H2 atmosphere at standard temperature and pressure for 3 h (TLC control). The catalyst was filtered through a celite pad and the filtrate was evaporated to dryness. The resulting amorphous solid was dried under reduced pressure to yield amine 4 (0.71 g, 97%) as a colorless powder. M.p. 390–392 K; Rf = 0.14 (Hex:EtOAc:Et3N = 8:1:0.5). IR (KBr), υ (cm−1): 3360, 3295, 3055, 2985, 2955, 2945, 2930, 2890, 2865, 1670, 1590, 1575, 1540, 1465, 1455, 1285, 1250, 1145, 1085, 1075, 1035, 995. 1H NMR (CDCl3, 300 MHz) δ (ppm): 8.48 [m, 1H, H-C(Py)], 7.99 [d, J = 8.3 Hz, 1H, H-C(Py)], 7.87 [m, 1H, H-C(Py)], 7.26 [m, 1H, H-C(Py)], 4.27 (s, 1H, H-C7), 2.82 (d, J = 16.8 Hz, 1H, Ha-C5), 2.54 (s, 3H, H3C-C3), 2.18 (d, J = 16.8 Hz, 1H, Hb-C5), 2.08 (bs, 2H, H2N-C7) 1.26, 1.02 (2s, 6H, H3C-C6).13C NMR (75.5 MHz, CDCl3), δ (ppm): 194.1, 153.9, 152.4, 150.4, 148.0, 139.1, 122.1, 116.5, 115.9, 53.8, 47.8, 38.4, 27.3, 26.6, 13.7. Analysis calculated: (C15H18N4O) C, 66.64; H, 6.71; N, 20.73. Found: C, 66.56; H, 6.68; N, 20.74.

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetra­hydro-1H-indazol-7-aminium chloride (1): A solution of CoCl2·6H2O (24 mg, 0.1 mmol) in ethanol (2 mL) was added to a solution of amine 4 (27 mg, 0.1 mmol) in ethanol (2 mL). The resulting reaction mixture was maturated at ambient temperature for 24 h. Then a part of it (1.2 mL) was transferred into an NMR tube and Et2O (0.8 mL) was added carefully on the top of the ethanol solution. After two days, colorless crystals of 1 were collected form the wall of the NMR tube. The product was characterized spectroscopically in its hydrate form (see below).

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetra­hydro-1H-indazol-7-aminium chloride hydrate (2): A solution of HCl in EtOAc (0.5 M, 1.48 mL, 0.74 mmol, 1.0 equiv.) was added to a solution of amine 4 (0.20 g, 0.74 mmol, 1.0 equiv.) in EtOAc (2 mL) at ambient temperature. The resulting precipitate was filtered and washed on the filter with DCM. The the crude product was crystallized from water to obtain colorless crystals of 2 (195 mg, 81%) suitable for X-ray analysis. M.p. 543 K (decomp.); IR (KBr), υ (cm−1): 3430 (br.s), 3145, 3100, 3035, 2965, 2880, 2750, 2575, 1955 (br.s), 1685, 1600, 1545, 1520, 1490, 1465, 1450, 1400, 1375, 1360, 1295, 1245, 1140, 1045, 1000, 955. 1H NMR (300MHz, D2O), δ (ppm): δ 8.55 [m, 1H, H-C(Py)], 8.12 [m,1H,H-C (Py)], 7.90 [d, J = 8.3 Hz, 1H, H-C(Py)], 7.53 [m, 1H, H-C(Py)], 4.84 (s, 1H, H-C7), 3.00 (d, J =17.8 Hz, 1H, Ha-C5), 2.54 (s, 3H, H3C-C3), 2.45 (d, J = 17.8Hz,1H,Hb-C5), 1.36, 1.10 (2s, 6H, H3C-C6). 13C NMR (75.5 MHz, DMSO-d6), δ (ppm):192.3, 151.4, 149.0, 148.0, 144.4, 140.1, 122.8, 118.0, 114.6, 51.4, 47.1, 37.2, 26.8, 25.4, 13.2. Analysis calculated: (C15H18N4O·HCl·H2O) C, 55.47; H, 6.52; N, 17.25. Found: C, 55.78; H,6.40; N, 17.29.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms bonded to heteroatoms were refined isotropically. Other H atoms were included in the refinement at geometrically calculated positions with C—H = 0.95–0.99Å and treated as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).

Table 3
Experimental details

  (1) (2)
Crystal data
Chemical formula C15H19N4O+·Cl C15H19N4O+·Cl·H2O
Mr 306.79 324.81
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 190 190
a, b, c (Å) 13.5411 (4), 7.7421 (2), 19.2457 (5) 10.1855 (2), 7.4951 (2), 20.7961 (4)
β (°) 130.493 (2) 100.545 (1)
V3) 1534.39 (8) 1560.79 (6)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.25 0.26
Crystal size (mm) 0.38 × 0.32 × 0.15 0.42 × 0.25 × 0.14
 
Data collection
Diffractometer Nonius KappaCCD Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 5860, 3486, 2715 5549, 3552, 2874
Rint 0.027 0.023
(sin θ/λ)max−1) 0.649 0.654
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.101, 1.03 0.039, 0.102, 1.06
No. of reflections 3486 3552
No. of parameters 205 222
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.25 0.29, −0.28
Computer programs: COLLECT (Bruker, 2004[Bruker (20014). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride (1) top
Crystal data top
C15H19N4O+·ClF(000) = 648
Mr = 306.79Dx = 1.328 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.5411 (4) ÅCell parameters from 6801 reflections
b = 7.7421 (2) Åθ = 1.0–27.5°
c = 19.2457 (5) ŵ = 0.25 mm1
β = 130.493 (2)°T = 190 K
V = 1534.39 (8) Å3Block, colourless
Z = 40.38 × 0.32 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.027
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.0°
CCD scansh = 1717
5860 measured reflectionsk = 109
3486 independent reflectionsl = 2424
2715 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.7495P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3486 reflectionsΔρmax = 0.29 e Å3
205 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.63264 (4)0.65297 (6)0.33536 (3)0.03342 (14)
O10.98736 (12)0.08281 (19)0.66919 (8)0.0361 (3)
N30.59725 (12)0.17416 (17)0.53425 (8)0.0187 (3)
N40.65309 (13)0.13670 (18)0.62325 (9)0.0219 (3)
C40.67526 (15)0.1258 (2)0.51633 (10)0.0193 (3)
N20.41873 (13)0.26763 (19)0.38981 (9)0.0230 (3)
C120.42625 (16)0.3337 (2)0.51532 (11)0.0232 (4)
H120.4711480.3277240.5776880.028*
C110.47588 (15)0.2621 (2)0.47773 (10)0.0190 (3)
N10.55052 (14)0.0192 (2)0.35950 (9)0.0220 (3)
C130.30686 (17)0.4145 (2)0.45593 (12)0.0282 (4)
H130.2678810.4604080.4776040.034*
C30.78494 (15)0.0540 (2)0.59559 (10)0.0211 (3)
C60.78026 (16)0.1295 (2)0.44709 (11)0.0246 (4)
C150.30553 (16)0.3529 (2)0.33478 (12)0.0276 (4)
H150.2650920.3627410.2732820.033*
C80.88681 (16)0.0231 (2)0.59948 (11)0.0244 (4)
C50.65109 (15)0.1485 (2)0.42887 (10)0.0207 (3)
H50.6168670.2650080.4054130.025*
C20.76718 (16)0.0664 (2)0.66070 (11)0.0224 (4)
C100.75046 (18)0.1108 (3)0.35558 (12)0.0325 (4)
H10A0.8301390.1134480.3661040.049*
H10B0.6956860.2042480.3158640.049*
H10C0.7069600.0029850.3276130.049*
C140.24569 (17)0.4268 (2)0.36430 (13)0.0297 (4)
H140.1664190.4832510.3236400.036*
C70.85647 (16)0.0288 (2)0.50865 (11)0.0253 (4)
H7A0.8064340.1322170.4761130.030*
H7B0.9373840.0373100.5200350.030*
C10.85803 (17)0.0141 (3)0.75907 (11)0.0312 (4)
H1A0.8096470.0058460.7788440.047*
H1B0.9201740.1045420.7952000.047*
H1C0.9025720.0898060.7663260.047*
C90.86206 (17)0.2931 (2)0.49510 (13)0.0301 (4)
H9A0.8152520.3914770.4565700.045*
H9B0.9424940.2819650.5070270.045*
H9C0.8796170.3081000.5517340.045*
H1N10.487 (2)0.000 (3)0.3670 (14)0.046 (6)*
H2N10.503 (2)0.062 (3)0.2980 (16)0.054 (7)*
H3N10.584 (2)0.088 (3)0.3627 (14)0.042 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0363 (3)0.0353 (3)0.0225 (2)0.0052 (2)0.01632 (19)0.00482 (19)
O10.0235 (7)0.0442 (8)0.0281 (6)0.0113 (6)0.0113 (6)0.0038 (6)
N30.0190 (7)0.0211 (7)0.0168 (6)0.0005 (6)0.0119 (5)0.0004 (6)
N40.0244 (7)0.0234 (7)0.0184 (6)0.0002 (6)0.0141 (6)0.0012 (6)
C40.0189 (8)0.0186 (8)0.0210 (7)0.0011 (6)0.0132 (7)0.0020 (7)
N20.0207 (7)0.0263 (7)0.0216 (7)0.0011 (6)0.0136 (6)0.0027 (6)
C120.0272 (9)0.0200 (8)0.0268 (8)0.0003 (7)0.0195 (7)0.0005 (7)
C110.0189 (8)0.0157 (8)0.0232 (8)0.0015 (6)0.0140 (7)0.0004 (7)
N10.0204 (7)0.0266 (8)0.0191 (7)0.0023 (6)0.0129 (6)0.0013 (6)
C130.0299 (9)0.0235 (9)0.0400 (10)0.0021 (8)0.0267 (8)0.0010 (8)
C30.0187 (8)0.0209 (8)0.0194 (7)0.0011 (7)0.0105 (6)0.0019 (7)
C60.0218 (8)0.0297 (9)0.0264 (8)0.0031 (7)0.0176 (7)0.0007 (8)
C150.0230 (8)0.0299 (9)0.0252 (8)0.0022 (8)0.0136 (7)0.0063 (8)
C80.0203 (8)0.0213 (8)0.0254 (8)0.0005 (7)0.0122 (7)0.0016 (7)
C50.0205 (8)0.0220 (8)0.0212 (7)0.0022 (7)0.0143 (7)0.0010 (7)
C20.0214 (8)0.0212 (8)0.0201 (8)0.0022 (7)0.0114 (7)0.0010 (7)
C100.0285 (9)0.0455 (12)0.0315 (9)0.0064 (9)0.0230 (8)0.0043 (9)
C140.0224 (9)0.0245 (9)0.0379 (10)0.0048 (7)0.0176 (8)0.0055 (8)
C70.0198 (8)0.0281 (9)0.0290 (9)0.0042 (7)0.0163 (7)0.0020 (8)
C10.0291 (9)0.0364 (11)0.0205 (8)0.0007 (8)0.0127 (8)0.0025 (8)
C90.0251 (9)0.0299 (10)0.0390 (10)0.0022 (8)0.0224 (8)0.0014 (8)
Geometric parameters (Å, º) top
O1—C81.223 (2)C6—C101.537 (2)
N3—C41.360 (2)C6—C71.544 (2)
N3—N41.3811 (18)C6—C51.552 (2)
N3—C111.424 (2)C15—C141.380 (3)
N4—C21.325 (2)C15—H150.9300
C4—C31.378 (2)C8—C71.515 (2)
C4—C51.502 (2)C5—H50.9800
N2—C111.328 (2)C2—C11.496 (2)
N2—C151.341 (2)C10—H10A0.9600
C12—C131.383 (2)C10—H10B0.9600
C12—C111.383 (2)C10—H10C0.9600
C12—H120.9300C14—H140.9300
N1—C51.509 (2)C7—H7A0.9700
N1—H1N10.97 (2)C7—H7B0.9700
N1—H2N10.97 (2)C1—H1A0.9600
N1—H3N10.93 (2)C1—H1B0.9600
C13—C141.381 (3)C1—H1C0.9600
C13—H130.9300C9—H9A0.9600
C3—C21.424 (2)C9—H9B0.9600
C3—C81.459 (2)C9—H9C0.9600
C6—C91.535 (3)
C4—N3—N4111.53 (12)C3—C8—C7114.43 (14)
C4—N3—C11129.76 (13)C4—C5—N1109.18 (13)
N4—N3—C11118.61 (12)C4—C5—C6110.02 (13)
C2—N4—N3105.47 (13)N1—C5—C6111.99 (13)
N3—C4—C3106.66 (13)C4—C5—H5108.5
N3—C4—C5127.76 (14)N1—C5—H5108.5
C3—C4—C5125.56 (14)C6—C5—H5108.5
C11—N2—C15116.33 (14)N4—C2—C3110.63 (14)
C13—C12—C11116.96 (15)N4—C2—C1120.64 (15)
C13—C12—H12121.5C3—C2—C1128.72 (16)
C11—C12—H12121.5C6—C10—H10A109.5
N2—C11—C12125.07 (15)C6—C10—H10B109.5
N2—C11—N3114.67 (13)H10A—C10—H10B109.5
C12—C11—N3120.26 (14)C6—C10—H10C109.5
C5—N1—H1N1110.3 (13)H10A—C10—H10C109.5
C5—N1—H2N1110.9 (14)H10B—C10—H10C109.5
H1N1—N1—H2N1106.3 (18)C15—C14—C13118.12 (16)
C5—N1—H3N1114.2 (13)C15—C14—H14120.9
H1N1—N1—H3N1107.5 (19)C13—C14—H14120.9
H2N1—N1—H3N1107.3 (19)C8—C7—C6114.06 (14)
C14—C13—C12119.76 (16)C8—C7—H7A108.7
C14—C13—H13120.1C6—C7—H7A108.7
C12—C13—H13120.1C8—C7—H7B108.7
C4—C3—C2105.68 (14)C6—C7—H7B108.7
C4—C3—C8121.68 (14)H7A—C7—H7B107.6
C2—C3—C8132.55 (15)C2—C1—H1A109.5
C9—C6—C10108.51 (15)C2—C1—H1B109.5
C9—C6—C7109.37 (14)H1A—C1—H1B109.5
C10—C6—C7110.59 (14)C2—C1—H1C109.5
C9—C6—C5108.97 (14)H1A—C1—H1C109.5
C10—C6—C5109.35 (13)H1B—C1—H1C109.5
C7—C6—C5110.02 (14)C6—C9—H9A109.5
N2—C15—C14123.68 (16)C6—C9—H9B109.5
N2—C15—H15118.2H9A—C9—H9B109.5
C14—C15—H15118.2C6—C9—H9C109.5
O1—C8—C3123.57 (16)H9A—C9—H9C109.5
O1—C8—C7121.97 (15)H9B—C9—H9C109.5
C4—N3—N4—C20.69 (18)N3—C4—C5—N174.7 (2)
C11—N3—N4—C2176.00 (14)C3—C4—C5—N1107.05 (18)
N4—N3—C4—C30.27 (18)N3—C4—C5—C6162.06 (16)
C11—N3—C4—C3176.49 (15)C3—C4—C5—C616.2 (2)
N4—N3—C4—C5178.26 (15)C9—C6—C5—C474.59 (17)
C11—N3—C4—C52.0 (3)C10—C6—C5—C4166.95 (14)
C15—N2—C11—C121.4 (2)C7—C6—C5—C445.31 (18)
C15—N2—C11—N3178.55 (14)C9—C6—C5—N1163.80 (14)
C13—C12—C11—N21.1 (3)C10—C6—C5—N145.35 (19)
C13—C12—C11—N3178.92 (15)C7—C6—C5—N176.29 (16)
C4—N3—C11—N214.7 (2)N3—N4—C2—C31.36 (18)
N4—N3—C11—N2169.29 (14)N3—N4—C2—C1177.90 (15)
C4—N3—C11—C12165.27 (16)C4—C3—C2—N41.55 (19)
N4—N3—C11—C1210.7 (2)C8—C3—C2—N4174.86 (17)
C11—C12—C13—C142.6 (3)C4—C3—C2—C1177.64 (17)
N3—C4—C3—C21.05 (18)C8—C3—C2—C16.0 (3)
C5—C4—C3—C2177.52 (15)N2—C15—C14—C131.0 (3)
N3—C4—C3—C8175.84 (15)C12—C13—C14—C151.7 (3)
C5—C4—C3—C85.6 (3)O1—C8—C7—C6145.62 (17)
C11—N2—C15—C142.5 (3)C3—C8—C7—C636.1 (2)
C4—C3—C8—O1177.45 (17)C9—C6—C7—C862.12 (18)
C2—C3—C8—O16.6 (3)C10—C6—C7—C8178.44 (14)
C4—C3—C8—C74.4 (2)C5—C6—C7—C857.54 (19)
C2—C3—C8—C7171.59 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl1i0.932.803.4470 (17)127
C14—H14···O1ii0.932.443.277 (2)150
C7—H7A···Cl1iii0.972.713.6401 (18)160
C1—H1B···O1iv0.962.603.503 (2)156
N1—H1N1···N4v0.97 (2)2.29 (2)3.218 (2)161 (2)
N1—H1N1···N20.97 (2)2.42 (2)2.928 (2)112 (2)
N1—H2N1···Cl1vi0.97 (2)2.08 (2)3.034 (2)168 (2)
N1—H3N1···Cl1iii0.93 (2)2.27 (2)3.188 (2)167 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1/2, z1/2; (iii) x, y1, z; (iv) x+2, y+1/2, z+3/2; (v) x+1, y, z+1; (vi) x+1, y1/2, z+1/2.
3,6,6-Trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1H-indazol-7-aminium chloride monohydrate (2) top
Crystal data top
C15H19N4O+·Cl·H2OF(000) = 688
Mr = 324.81Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.1855 (2) ÅCell parameters from 8626 reflections
b = 7.4951 (2) Åθ = 1.0–27.5°
c = 20.7961 (4) ŵ = 0.26 mm1
β = 100.545 (1)°T = 190 K
V = 1560.79 (6) Å3Block, colourless
Z = 40.42 × 0.25 × 0.14 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 27.7°, θmin = 3.6°
CCD scansh = 1313
5549 measured reflectionsk = 99
3552 independent reflectionsl = 2726
2874 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.794P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3552 reflectionsΔρmax = 0.29 e Å3
222 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06154 (4)0.62526 (6)0.39636 (2)0.02975 (13)
O10.45919 (12)0.12171 (17)0.26173 (5)0.0286 (3)
N20.33632 (13)0.28400 (18)0.51823 (6)0.0210 (3)
O1W0.00940 (13)0.25508 (19)0.46352 (7)0.0328 (3)
N30.48296 (12)0.17260 (17)0.45521 (6)0.0159 (3)
N10.18153 (14)0.01688 (19)0.43612 (7)0.0183 (3)
N40.61172 (12)0.13967 (18)0.44629 (6)0.0196 (3)
C50.24311 (14)0.1376 (2)0.39147 (7)0.0155 (3)
H50.2239320.2613030.4019630.019*
C120.57141 (16)0.3394 (2)0.55440 (8)0.0219 (3)
H120.6584650.3267360.5473120.026*
C110.46319 (15)0.2686 (2)0.51150 (7)0.0174 (3)
C40.39179 (14)0.1150 (2)0.40322 (7)0.0153 (3)
C60.18454 (15)0.1060 (2)0.31807 (7)0.0176 (3)
C100.03220 (16)0.0870 (2)0.30801 (8)0.0246 (4)
H10A0.0098760.0204140.3287510.037*
H10B0.0039160.0816670.2620560.037*
H10C0.0047050.1878310.3269350.037*
C90.21584 (16)0.2703 (2)0.27933 (8)0.0227 (3)
H9A0.1808100.3752460.2966170.034*
H9B0.1754560.2564600.2341440.034*
H9C0.3107860.2820020.2830390.034*
C30.46350 (15)0.0404 (2)0.35966 (7)0.0166 (3)
C80.39804 (16)0.0515 (2)0.30028 (7)0.0192 (3)
C150.31230 (18)0.3783 (2)0.56960 (8)0.0270 (4)
H150.2240580.3952220.5742400.032*
C70.24693 (16)0.0608 (2)0.29224 (7)0.0213 (3)
H7A0.2230320.1649810.3152750.026*
H7B0.2092840.0758060.2462290.026*
C140.4120 (2)0.4514 (2)0.61590 (8)0.0299 (4)
H140.3915610.5137860.6514500.036*
C130.54279 (19)0.4297 (2)0.60821 (8)0.0280 (4)
H130.6118250.4758970.6392600.034*
C20.59994 (15)0.0631 (2)0.38810 (7)0.0196 (3)
C10.72083 (17)0.0203 (3)0.36008 (9)0.0295 (4)
H1A0.7995160.0464290.3917670.044*
H1B0.7207840.0908540.3215500.044*
H1C0.7200590.1040050.3488780.044*
H1W0.026 (3)0.288 (4)0.4977 (14)0.063 (9)*
H2W0.012 (3)0.362 (4)0.4440 (13)0.066 (8)*
H1N10.1557 (19)0.083 (3)0.4188 (9)0.024 (5)*
H2N10.244 (2)0.009 (3)0.4766 (11)0.036 (5)*
H3N10.112 (2)0.080 (3)0.4513 (11)0.049 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0343 (2)0.0261 (2)0.0301 (2)0.00602 (18)0.00909 (17)0.00145 (17)
O10.0328 (7)0.0360 (7)0.0182 (6)0.0076 (5)0.0077 (5)0.0040 (5)
N20.0237 (7)0.0214 (7)0.0185 (6)0.0011 (6)0.0053 (5)0.0027 (6)
O1W0.0343 (7)0.0287 (7)0.0385 (8)0.0014 (6)0.0152 (6)0.0051 (6)
N30.0144 (6)0.0174 (6)0.0156 (6)0.0002 (5)0.0018 (5)0.0000 (5)
N10.0185 (7)0.0208 (7)0.0162 (6)0.0037 (6)0.0045 (5)0.0014 (6)
N40.0140 (6)0.0226 (7)0.0222 (7)0.0005 (5)0.0036 (5)0.0019 (6)
C50.0155 (7)0.0168 (7)0.0143 (7)0.0016 (6)0.0026 (5)0.0007 (6)
C120.0250 (8)0.0171 (7)0.0211 (8)0.0021 (6)0.0029 (6)0.0022 (6)
C110.0226 (8)0.0141 (7)0.0147 (7)0.0004 (6)0.0018 (6)0.0019 (6)
C40.0164 (7)0.0153 (7)0.0138 (7)0.0017 (6)0.0022 (5)0.0020 (6)
C60.0156 (7)0.0224 (8)0.0140 (7)0.0015 (6)0.0003 (5)0.0008 (6)
C100.0177 (8)0.0332 (9)0.0216 (8)0.0044 (7)0.0002 (6)0.0003 (7)
C90.0221 (8)0.0251 (9)0.0193 (7)0.0006 (7)0.0004 (6)0.0054 (7)
C30.0185 (7)0.0171 (7)0.0146 (7)0.0000 (6)0.0039 (6)0.0017 (6)
C80.0262 (8)0.0180 (7)0.0139 (7)0.0015 (6)0.0045 (6)0.0031 (6)
C150.0344 (9)0.0263 (9)0.0222 (8)0.0030 (7)0.0100 (7)0.0024 (7)
C70.0244 (8)0.0229 (8)0.0163 (7)0.0042 (7)0.0033 (6)0.0034 (6)
C140.0506 (12)0.0225 (9)0.0173 (7)0.0006 (8)0.0079 (7)0.0035 (7)
C130.0427 (11)0.0181 (8)0.0189 (8)0.0055 (7)0.0061 (7)0.0014 (7)
C20.0183 (8)0.0210 (8)0.0201 (7)0.0016 (6)0.0054 (6)0.0036 (6)
C10.0205 (8)0.0392 (11)0.0310 (9)0.0027 (8)0.0109 (7)0.0000 (8)
Geometric parameters (Å, º) top
O1—C81.2207 (19)C6—C71.543 (2)
N2—C111.330 (2)C10—H10A0.9600
N2—C151.340 (2)C10—H10B0.9600
O1W—H1W0.80 (3)C10—H10C0.9600
O1W—H2W0.94 (3)C9—H9A0.9600
N3—C41.3601 (18)C9—H9B0.9600
N3—N41.3800 (17)C9—H9C0.9600
N3—C111.4196 (19)C3—C21.418 (2)
N1—C51.5127 (19)C3—C81.464 (2)
N1—H1N10.85 (2)C8—C71.519 (2)
N1—H2N10.98 (2)C15—C141.378 (3)
N1—H3N10.95 (2)C15—H150.9300
N4—C21.325 (2)C7—H7A0.9700
C5—C41.499 (2)C7—H7B0.9700
C5—C61.5522 (19)C14—C131.380 (3)
C5—H50.9800C14—H140.9300
C12—C131.384 (2)C13—H130.9300
C12—C111.390 (2)C2—C11.491 (2)
C12—H120.9300C1—H1A0.9600
C4—C31.382 (2)C1—H1B0.9600
C6—C101.534 (2)C1—H1C0.9600
C6—C91.537 (2)
C11—N2—C15116.89 (14)H10B—C10—H10C109.5
H1W—O1W—H2W103 (3)C6—C9—H9A109.5
C4—N3—N4111.34 (12)C6—C9—H9B109.5
C4—N3—C11129.57 (13)H9A—C9—H9B109.5
N4—N3—C11118.90 (12)C6—C9—H9C109.5
C5—N1—H1N1113.5 (13)H9A—C9—H9C109.5
C5—N1—H2N1111.4 (12)H9B—C9—H9C109.5
H1N1—N1—H2N1106.9 (18)C4—C3—C2105.85 (13)
C5—N1—H3N1108.9 (15)C4—C3—C8122.00 (13)
H1N1—N1—H3N1112.7 (19)C2—C3—C8132.00 (14)
H2N1—N1—H3N1102.9 (18)O1—C8—C3123.26 (15)
C2—N4—N3105.71 (12)O1—C8—C7122.43 (14)
C4—C5—N1110.64 (12)C3—C8—C7114.23 (13)
C4—C5—C6109.76 (12)N2—C15—C14123.21 (17)
N1—C5—C6112.59 (12)N2—C15—H15118.4
C4—C5—H5107.9C14—C15—H15118.4
N1—C5—H5107.9C8—C7—C6113.45 (13)
C6—C5—H5107.9C8—C7—H7A108.9
C13—C12—C11116.49 (16)C6—C7—H7A108.9
C13—C12—H12121.8C8—C7—H7B108.9
C11—C12—H12121.8C6—C7—H7B108.9
N2—C11—C12124.81 (14)H7A—C7—H7B107.7
N2—C11—N3114.70 (13)C15—C14—C13118.40 (16)
C12—C11—N3120.48 (14)C15—C14—H14120.8
N3—C4—C3106.48 (13)C13—C14—H14120.8
N3—C4—C5128.05 (13)C14—C13—C12120.12 (16)
C3—C4—C5125.34 (13)C14—C13—H13119.9
C10—C6—C9107.73 (13)C12—C13—H13119.9
C10—C6—C7110.38 (13)N4—C2—C3110.57 (13)
C9—C6—C7109.20 (12)N4—C2—C1120.48 (14)
C10—C6—C5110.21 (12)C3—C2—C1128.90 (15)
C9—C6—C5108.27 (12)C2—C1—H1A109.5
C7—C6—C5110.96 (12)C2—C1—H1B109.5
C6—C10—H10A109.5H1A—C1—H1B109.5
C6—C10—H10B109.5C2—C1—H1C109.5
H10A—C10—H10B109.5H1A—C1—H1C109.5
C6—C10—H10C109.5H1B—C1—H1C109.5
H10A—C10—H10C109.5
C4—N3—N4—C20.70 (17)N3—C4—C3—C21.90 (16)
C11—N3—N4—C2174.73 (13)C5—C4—C3—C2174.12 (14)
C15—N2—C11—C121.5 (2)N3—C4—C3—C8174.09 (13)
C15—N2—C11—N3178.02 (14)C5—C4—C3—C89.9 (2)
C13—C12—C11—N21.0 (2)C4—C3—C8—O1178.45 (15)
C13—C12—C11—N3179.50 (14)C2—C3—C8—O13.6 (3)
C4—N3—C11—N29.7 (2)C4—C3—C8—C71.5 (2)
N4—N3—C11—N2175.82 (13)C2—C3—C8—C7173.30 (16)
C4—N3—C11—C12169.86 (15)C11—N2—C15—C142.8 (2)
N4—N3—C11—C124.6 (2)O1—C8—C7—C6148.01 (15)
N4—N3—C4—C30.81 (17)C3—C8—C7—C635.01 (18)
C11—N3—C4—C3175.62 (14)C10—C6—C7—C8179.76 (13)
N4—N3—C4—C5175.06 (14)C9—C6—C7—C861.51 (16)
C11—N3—C4—C50.3 (2)C5—C6—C7—C857.76 (16)
N1—C5—C4—N372.98 (19)N2—C15—C14—C131.5 (3)
C6—C5—C4—N3162.17 (14)C15—C14—C13—C121.2 (3)
N1—C5—C4—C3111.88 (16)C11—C12—C13—C142.3 (2)
C6—C5—C4—C313.0 (2)N3—N4—C2—C31.93 (17)
C4—C5—C6—C10167.33 (13)N3—N4—C2—C1175.62 (15)
N1—C5—C6—C1043.61 (17)C4—C3—C2—N42.45 (18)
C4—C5—C6—C975.07 (15)C8—C3—C2—N4172.97 (15)
N1—C5—C6—C9161.21 (13)C4—C3—C2—C1174.84 (17)
C4—C5—C6—C744.75 (16)C8—C3—C2—C19.7 (3)
N1—C5—C6—C778.96 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl1i0.932.903.7006 (17)145
C14—H14···O1ii0.932.413.244 (2)149
O1W—H1W···Cl1iii0.80 (3)2.39 (3)3.185 (2)176 (3)
O1W—H2W···Cl10.94 (3)2.31 (3)3.247 (2)179 (2)
N1—H1N1···Cl1iv0.85 (2)2.40 (2)3.228 (2)165 (2)
N1—H2N1···N4v0.98 (2)2.20 (2)3.1475 (19)164 (2)
N1—H3N1···O1W0.95 (2)1.85 (3)2.775 (2)162 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1, y, z+1.
 

Funding information

Funding for this research was provided by: Latvian Council of Science (grant No. 14.0593).

References

First citationAbdel-Rahman, H. M. & Ozadali, K. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 878–883.  CAS
First citationAnsari, A., Ali, A., Asif, M. & Shamsuzzaman (2017). New J. Chem. 41, 16–41.
First citationBassyouni, F., El Din Gaffer, A., Roaiah, H., El-Senousy, W. M., El Nakkady, S. S. & &Rehim, M. A. (2016). Res. J. Pharm. Biol. Chem. Sci, 7, 24–37.
First citationBruker (20014). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBurch, J. D., Barrett, K., Chen, Y., DeVoss, J., Eigenbrot, C., Goldsmith, R., Ismaili, M. H. A., Lau, K., Lin, Z., Ortwine, D. F., Zarrin, A. A., McEwan, P. A., Barker, J. J., Ellebrandt, C., Kordt, D., Stein, D. B., Wang, X., Chen, Y., Hu, B., Xu, X., Yuen, P.-W., Zhang, Y. & Pei, Z. (2015). J. Med. Chem. 58, 3806–3816.  CrossRef CAS PubMed
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals
First citationClaramunt, R. M., López, C., Pérez-Medina, C., Pinilla, E., Torres, M. R. & Elguero, J. (2006). Tetrahedron, 62, 11704–11713.  CSD CrossRef CAS
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science
First citationFaidallah, H. M., Khan, K. A., Rostom, S. A. F. & Asiri, A. M. (2013). J. Enzyme Inhib. Med. Chem. 28, 495–508.  CrossRef CAS PubMed
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P. & Domb, A. J. (2015). Eur. J. Med. Chem. 90, 707–731.  Web of Science CrossRef CAS PubMed
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationGuo, S., Song, Y., Huang, Q., Yuan, H., Wan, B., Wang, Y., He, R., Beconi, M. G., Franzblau, S. G. & Kozikowski, A. P. (2010). J. Med. Chem. 53, 649–659.  Web of Science CrossRef CAS PubMed
First citationHeifetz, A., Trani, G., Aldeghi, M., MacKinnon, C. H., McEwan, P. A., Brookfield, F. A., Chudyk, E. I., Bodkin, M., Pei, Z., Burch, J. D. & Ortwine, D. F. (2016). J. Med. Chem. 59, 4352–4363.  CrossRef CAS PubMed
First citationJia, J., Xu, Q.-C., Li, R.-C., Tang, X., He, Y.-F., Zhang, M.-Y., Zhang, Y. & Xing, G.-W. (2012). Org. Biomol. Chem. 10, 6279–6286.  CSD CrossRef CAS PubMed
First citationKhlebnicova, T. S., Piven, Y. A., Baranovsky, A. V., Lakhvich, F. A., Shishkina, S. V., Zicāne, D., Tetere, Z., Rāviņa, I., Kumpiņš, V., Rijkure, I., Mieriņa, I., Peipiņš, U. & Turks, M. (2017). Steroids, 117, 77–89.  CSD CrossRef CAS PubMed
First citationKhlebnikova, T. S., Piven', Y. A., Baranovskii, A. V. & Lakhvich, F. A. (2012). Russ. J. Org. Chem. 48, 411–418.  CrossRef CAS
First citationKim, J., Song, H. & Park, S. B. (2010). Eur. J. Org. Chem. pp. 3815–3822.  CrossRef
First citationMatthews, J. M., McNally, J. J., Connolly, P. J., Xia, M., Zhu, B., Black, S., Chen, C., Hou, C., Liang, Y., Tang, Y. & Macielag, M. J. (2016). Bioorg. Med. Chem. Lett. 26, 5346–5349.  CrossRef CAS PubMed
First citationMurugavel, K., Amirthaganesan, S. & R. T. S. (2010). Chem. Heterocycl. C. 46, 302–306.
First citationNakhai, A. & Bergman, J. (2009). Tetrahedron, 65, 2298–2306.  CrossRef CAS
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationPolo, E., Trilleras, J., Ramos, J., Galdámez, A., Quiroga, J. & Gutierrez, M. (2016). Molecules, 21, article number 903.  CSD CrossRef
First citationScala, A., Piperno, A., Risitano, F., Cirmi, S., Navarra, M. & Grassi, G. (2015). Mol. Divers. 19, 473–480.  CrossRef CAS PubMed
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSilva, V. L. M., Silva, A. M. S., Pinto, D. C. G. A. & Cavaleiro, J. (2006). Synlett, pp. 1369–1373.  CrossRef
First citationSong, H., Lee, H., Kim, J. & Park, S. B. (2012). ACS Comb. Sci. 14, 66–74.  CrossRef CAS PubMed
First citationStrakova, I., Kumpiņa, I., Rjabovs, V., Lugiņina, J., Belyakov, S. & Turks, M. (2011). Tetrahedron Asymmetry, 22, 728–739.  Web of Science CSD CrossRef CAS
First citationStrakova, I., Turks, M. & Strakovs, A. (2009). Tetrahedron Lett. 50, 3046–3049.  CSD CrossRef CAS
First citationTurks, M., Strakova, I., Gorovojs, K., Belyakov, S., Piven, Y. A., Khlebnicova, T. S. & Lakhvich, F. A. (2012). Tetrahedron, 68, 6131–6140.  CSD CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationWiener, J. J. M., Gomez, L., Venkatesan, H., Santillán, A. Jr, Allison, B. D., Schwarz, K. L., Shinde, S., Tang, L., Hack, M. D., Morrow, B. J., Motley, S. T., Goldschmidt, R. M., Shaw, K. J., Jones, T. K. & Grice, C. A. (2007). Bioorg. Med. Chem. Lett. 17, 2718–2722.  CrossRef PubMed CAS
First citationWu, Z.-W., Song, S.-Y., Li, L., Lu, H.-L., Lieberman, B., Huang, Y.-S. & Mach, R. H. (2015). Bioorg. Med. Chem. 23, 1463–1471.  CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds